Letters in Organic Chemistry

Author(s): Vivek Srivastava*

DOI: 10.2174/1570178620666230821143013

DownloadDownload PDF Flyer Cite As
Silica-supported Active Ni Nanocatalyst for Wittig Reaction

Page: [425 - 437] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

The preparation and characterization of SBA-15 supported Ni catalysts with varying metal loading (1, 2, and 3% by weight) was carried out using the impregnation technique, followed by a rigorous characterization using advanced analytical techniques. The catalytic performance of the synthesized catalysts was evaluated for the Wittig-type olefination reaction, and it was found that the SBA- 15-3Ni catalyst exhibited superior activity for this reaction under mild reaction conditions (70°C and 1 hour). The corresponding stilbenes were obtained in good yield, although with low to average diastereoselectivity. An important feature of this protocol is that the proposed methodology is especially efficient for the synthesis of stilbenes since no additives are required to serve as a hydrogen acceptor. Moreover, the new catalytic system was successfully employed for the synthesis of polymethoxylated and polyhydroxylated stilbenes, including resveratrol and DMU-212, with high yield and easy product isolation. A key advantage of this protocol is that the catalysts can be reused for up to 5 runs without significant loss in catalytic activity, which makes this approach highly sustainable and cost-effective. Additionally, the ligand-free approach proposed in this study is an added advantage, which makes it more attractive for large-scale synthesis of biologically active compounds.

Keywords: Nickel nanoparticle, SBA-15, wittig reaction, olefination, DMU -212, ionic liquid.

Graphical Abstract

[1]
Maryanoff, B.E.; Reitz, A.B. Chem. Rev., 1989, 89(4), 863-927.
[http://dx.doi.org/10.1021/cr00094a007]
[2]
Yanovskaya, L.A. Russ. Chem. Rev., 1961, 30(7), 347-362.
[http://dx.doi.org/10.1070/RC1961v030n07ABEH002988]
[3]
Pommer, H. Angew. Chem. Int. Ed. Engl., 1977, 16(7), 423-429.
[http://dx.doi.org/10.1002/anie.197704233]
[4]
Heravi, M.M.; Zadsirjan, V.; Daraie, M.; Ghanbarian, M. Chem Select, 2020, 5(31), 9654-9690.
[http://dx.doi.org/10.1002/slct.202002192]
[5]
Byrne, P.A.; Gilheany, D.G. Chem. Soc. Rev., 2013, 42(16), 6670-6696.
[http://dx.doi.org/10.1039/c3cs60105f] [PMID: 23673458]
[6]
Ouellette, R.J.; Rawn, J.D. Aldehydes and Ketones: Nucleophilic Addition Reactions; Organic Chemistry, 2018, pp. 595-623.
[7]
Robertson, F.J. World J Chem Edu., 2016, 4(5), 101-106.
[8]
Murphy, P.J.; Lee, S.E. J. Chem. Soc., Perkin Trans. 1, 1999, 1(21), 3049-3066.
[http://dx.doi.org/10.1039/a803560a]
[9]
Palacios, F.; Aparicio, D.; Rubiales, G.; Alonso, C. de los Santos. J. Curr. Org. Chem., 2009, 13(8), 810-828.
[http://dx.doi.org/10.2174/138527209788167196]
[10]
Reiter, D.; Frisch, P.; Szilvási, T.; Inoue, S. J. Am. Chem. Soc., 2019, 141(42), 16991-16996.
[http://dx.doi.org/10.1021/jacs.9b09379] [PMID: 31560854]
[11]
Xu, S.; Tang, Y. Lett. Org. Chem., 2014, 11(7), 524-533.
[http://dx.doi.org/10.2174/1570178611666140401223253]
[12]
Ramazani, A.; Reza Kazemizadeh, A. Curr. Org. Chem., 2011, 15(23), 3986-4020.
[http://dx.doi.org/10.2174/138527211798072412]
[13]
Ramazani, A.; Kazemizadeh, A.; Ahmadi, E.; Noshiranzadeh, N.; Souldozi, A. Curr. Org. Chem., 2008, 12(1), 59-82.
[http://dx.doi.org/10.2174/138527208783330055]
[14]
Thiemann, T. Mini Rev. Org. Chem., 2018, 15(5), 412-432.
[http://dx.doi.org/10.2174/1570193X15666180221152118]
[15]
Collina, S.; Rossi, D.; Urbano, M.; Carnevale Baraglia, A.; Azzolina, O. Lett. Org. Chem., 2007, 4, 384-387.
[http://dx.doi.org/10.2174/157017807781467650]
[16]
Srivastava, V. Curr Organocatal, 2017, 4(3), 209-216.
[http://dx.doi.org/10.2174/2213337205666180131145149]
[17]
Parvatkar, T. Curr. Org. Synth., 2013, 10, 288-317.
[http://dx.doi.org/10.2174/1570179411310020005]
[18]
Longwitz, L.; Werner, T. Pure Appl. Chem., 2019, 91(1), 95-102.
[http://dx.doi.org/10.1515/pac-2018-0920]
[19]
Zhang, K.; Lu, L.Q.; Yao, S.; Chen, J.R.; Shi, D.Q.; Xiao, W.J. J. Am. Chem. Soc., 2017, 139(36), 12847-12854.
[http://dx.doi.org/10.1021/jacs.7b08207] [PMID: 28825817]
[20]
O’Brien, C.J.; Nixon, Z.S.; Holohan, A.J.; Kunkel, S.R.; Tellez, J.L.; Doonan, B.J.; Coyle, E.E.; Lavigne, F.; Kang, L.J.; Przeworski, K.C.; Part, I. Chemistry, 2013, 19(45), 15281-15289.
[http://dx.doi.org/10.1002/chem.201301444] [PMID: 24115040]
[21]
Inaba, R.; Kawashima, I.; Fujii, T.; Yumura, T.; Imoto, H.; Naka, K. Chemistry, 2020, 26(59), 13400-13407.
[http://dx.doi.org/10.1002/chem.202002792] [PMID: 32662545]
[22]
Paul, A.; Martins, L.M.D.R.S.; Karmakar, A.; Kuznetsov, M.L.; Novikov, A.S.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. J. Catal., 2020, 385, 324-337.
[http://dx.doi.org/10.1016/j.jcat.2020.03.035]
[23]
Melekhova, A.A.; Novikov, A.S.; Luzyanin, K.V.; Bokach, N.A.; Starova, G.L.; Gurzhiy, V.V.; Kukushkin, V.Y. Inorg. Chim. Acta, 2015, 434, 31-36.
[http://dx.doi.org/10.1016/j.ica.2015.05.002]
[24]
Anisimova, T.B.; Kinzhalov, M.A.; Guedes da Silva, M.F.C.; Novikov, A.S.; Kukushkin, V.Y.; Pombeiro, A.J.L.; Luzyanin, K.V. New J. Chem., 2017, 41(9), 3246-3250.
[http://dx.doi.org/10.1039/C7NJ00529F]
[25]
Bolotin, D.S.; Bikbaeva, Z.M.; Novikov, A.S.; Suslonov, V.V.; Bokach, N.A. ChemistrySelect, 2017, 2(30), 9674-9678.
[http://dx.doi.org/10.1002/slct.201702232]
[26]
Deriabin, K.V.; Ignatova, N.A.; Kirichenko, S.O.; Novikov, A.S.; Islamova, R.M. Polymer, 2021, 212, 123119.
[http://dx.doi.org/10.1016/j.polymer.2020.123119]
[27]
Bikbaeva, Z.M.; Novikov, A.S.; Suslonov, V.V.; Bokach, N.A.; Kukushkin, V.Y. Dalton Trans., 2017, 46(30), 10090-10101.
[http://dx.doi.org/10.1039/C7DT01960B] [PMID: 28731081]
[28]
Gökpinar, S.; Diment, T.; Janiak, C. Dalton Trans., 2017, 46(30), 9895-9900.
[http://dx.doi.org/10.1039/C7DT01717K] [PMID: 28719671]
[29]
Kucheriv, O.I.; Shylin, S.I.; Ksenofontov, V.; Dechert, S.; Haukka, M.; Fritsky, I.O.; Gural’skiy, I.A. Inorg. Chem., 2016, 55(10), 4906-4914.
[http://dx.doi.org/10.1021/acs.inorgchem.6b00446] [PMID: 27120049]
[30]
Leng, W.L.; Liao, H.; Yao, H.; Ang, Z.E.; Xiang, S.; Liu, X.W. Org. Lett., 2017, 19(2), 416-419.
[http://dx.doi.org/10.1021/acs.orglett.6b03697] [PMID: 28064497]
[31]
Ilia, G.; Simulescu, V.; Plesu, N.; Chiriac, V.; Merghes, P. Page, 1958, 2023(28), 1958.
[32]
Choudary, B.M.; Mahendar, K.; Kantam, M.L.; Ranganath, K.V.S.; Athar, T. Adv. Synth. Catal., 2006, 348(14), 1977-1985.
[http://dx.doi.org/10.1002/adsc.200606001]
[33]
Karaca, Ö.; Anneser, M.R.; Kück, J.W.; Lindhorst, A.C.; Cokoja, M.; Kühn, F.E. J. Catal., 2016, 344, 213-220.
[http://dx.doi.org/10.1016/j.jcat.2016.09.029]
[34]
Moulavi, M.; Kanade, K.; Amalnerkar, D.; Fatehmulla, A.; Aldhafiri, A.M.; Aslam Manthrammel, M. Arab. J. Chem., 2021, 14(5), 103134.
[http://dx.doi.org/10.1016/j.arabjc.2021.103134]
[35]
Wang, L.; Xie, Y.B.; Huang, N.Y.; Yan, J.Y.; Hu, W.M.; Liu, M.G.; Ding, M.W. ACS Catal., 2016, 6(6), 4010-4016.
[http://dx.doi.org/10.1021/acscatal.6b00165]
[36]
Carrillo, A.I.; Schmidt, L.C.; Marín, M.L.; Scaiano, J.C. Catal. Sci. Technol., 2014, 4(2), 435-440.
[http://dx.doi.org/10.1039/C3CY00773A]
[37]
Wimmer, E.; Borghèse, S.; Blanc, A.; Bénéteau, V.; Pale, P. Chemistry, 2017, 23(7), 1484-1489.
[http://dx.doi.org/10.1002/chem.201605048] [PMID: 28090685]
[38]
Sheldon, R.A. Pure Appl. Chem., 2000, 72(7), 1233-1246.
[http://dx.doi.org/10.1351/pac200072071233]
[39]
Moussaoui, Y.; Saïd, K.; Salem, R.B. ARKIVOC, 2006, 2006(12), 1-22.
[http://dx.doi.org/10.3998/ark.5550190.0007.c01]
[40]
Salameh, A.; Copéret, C.; Basset, J.M.; Böhm, V.P.W.; Röper, M. Adv. Synth. Catal., 2007, 349(1-2), 238-242.
[http://dx.doi.org/10.1002/adsc.200600440]
[41]
Cai, L.; Zhang, K.; Chen, S.; Lepage, R.J.; Houk, K.N.; Krenske, E.H.; Kwon, O. J. Am. Chem. Soc., 2019, 141(24), 9537-9542.
[http://dx.doi.org/10.1021/jacs.9b04803] [PMID: 31184143]
[42]
Advanced Nanocatalysis for Organic Synthesis and Electroanalysis. Advanced Nanocatalysis for Organic Synthesis and Electroanalysis; Bentham Science Publishers: Sharjah, 2022.
[43]
Xu, Q.; Song, Y.; Li, Y. Liu. Z. Curr. Org. Chem., 2016, 20(19), 2013-2021.
[http://dx.doi.org/10.2174/1385272820666160215235505]
[44]
Advanced Nanocatalysis for Organic Synthesis and Electroanalysis. Advanced Nanocatalysis for Organic Synthesis and Electroanalysis; Bentham Science Publishers: Sharjah, 2022.
[45]
Advanced Nanocatalysis for Organic Synthesis and Electroanalysis. Advanced Nanocatalysis for Organic Synthesis and Electroanalysis; Bentham Science Publishers: Sharjah, 2022.
[46]
Cong, H.; Porco, J.A., Jr ACS Catal., 2012, 2(1), 65-70.
[http://dx.doi.org/10.1021/cs200495s] [PMID: 22347681]
[47]
Upadhyay, P.; Srivastava, V. Lett. Org. Chem., 2015, 12(8), 528-533.
[http://dx.doi.org/10.2174/157017861208150826112807]
[48]
Gautam, P.; Srivastava, V. Lett. Org. Chem., 2021, 19, 705-710.
[49]
Srivastava, V. Lett. Org. Chem., 2017, 14(2), 74-79.
[http://dx.doi.org/10.2174/1570178614666170126121836]
[50]
Srivastava, V. Lett. Org. Chem., 2015, 12(1), 67-72.
[http://dx.doi.org/10.2174/1570178611666141201223344]
[51]
Srivastava, V. Lett. Org. Chem., 2019, 16(5), 396-408.
[http://dx.doi.org/10.2174/1570178615666180816120058]
[52]
Srivastava, V. Catal. Surv. Asia, 2021, 25(2), 192-205.
[http://dx.doi.org/10.1007/s10563-021-09325-9]
[53]
Upadhyay, P.R.; Srivastava, V. RSC Advances, 2016, 6(48), 42297-42306.
[http://dx.doi.org/10.1039/C6RA03660K]
[54]
Khan, S.B.; Asiri, A.M.; Akhtar, K. Nanomaterials for environmental applications and their fascinating attributes; Bentham Science Publishers: Sharjah, 2018.
[55]
Gautam, P.; Srivastava, V. Lett. Org. Chem., 2020, 17(8), 603-612.
[http://dx.doi.org/10.2174/1570178617666191107112429]
[56]
Redón, R.; Peña, N.; Crescencio, F. Recent Pat. Nanotechnol., 2014, 8(1), 31-51.
[http://dx.doi.org/10.2174/1872210508999140130122644] [PMID: 24635207]
[57]
Lei, Z.; Chen, B.; Koo, Y.M.; MacFarlane, D.R. Chem. Rev., 2017, 117(10), 6633-6635.
[http://dx.doi.org/10.1021/acs.chemrev.7b00246] [PMID: 28535681]
[58]
Vekariya, R.L. J. Mol. Liq., 2017, 227, 44-60.
[http://dx.doi.org/10.1016/j.molliq.2016.11.123]
[59]
Upadhyay, P.; Srivastava, V. Nanomaterials (Basel), 2018, 2018, 67-89.
[60]
Srivastava, V. Cent. Eur. J. Chem., 2010, 8, 269-272.
[61]
Srivastava, V. J. Chem., 2013, 2013, 1-5.
[http://dx.doi.org/10.1155/2013/954094]
[62]
Maria Siedlecka, E.; Czerwicka, M.; Stolte, S.; Stepnowski, P. Curr. Org. Chem., 2011, 15(12), 1974-1991.
[http://dx.doi.org/10.2174/138527211795703630]
[63]
Graser, L.; Betz, D.; Cokoja, M.; Kuhn, E. Curr. Inorg. Chem., 2012, 1, 166-181.
[http://dx.doi.org/10.2174/1877944111101020166]
[64]
Lu, J.; He, A.; Li, S.; Nie, L.; Zhang, W.; Yao, S. Mini Rev. Org. Chem., 2015, 12(5), 435-448.
[http://dx.doi.org/10.2174/1570193X13666151125230810]
[65]
Prechtl, M.H.G. Nanocatalysis in Ionic Liquids; Wiley: Hoboken, 2016, pp. 1-300.
[http://dx.doi.org/10.1002/9783527693283]
[66]
Shahbazi-Alavi, H.; Safaei-Ghomi, J.; Dehghan, M.S. Nanochemistry Research, 2020, 5, 111-119.
[67]
Ghorbani-Choghamarani, A.; Taherinia, Z.; Nikoorazm, M. Res. Chem. Intermed., 2018, 44(11), 6591-6604.
[http://dx.doi.org/10.1007/s11164-018-3510-1]
[68]
Xiao, C.; Wang, H.; Mu, X.; Kou, Y. J. Catal., 2007, 250(1), 25-32.
[http://dx.doi.org/10.1016/j.jcat.2007.05.009]
[69]
Beier, M.J.; Andanson, J.M.; Baiker, A. ACS Catal., 2012, 2(12), 2587-2595.
[http://dx.doi.org/10.1021/cs300529y]
[70]
Zhang, B.; Yan, N. Catal., 2013, 3(2), 543-562.
[71]
Bartlewicz, O.; Dąbek, I.; Szymańska, A.; Maciejewski, H. Catal., 2020, 10(11), 1227.
[72]
Thielemann, J.P.; Girgsdies, F.; Schlögl, R.; Hess, C. Beilstein J. Nanotechnol., 2011, 2, 110-118.
[http://dx.doi.org/10.3762/bjnano.2.13] [PMID: 21977421]
[73]
Kruk, M.; Jaroniec, M.; Ko, C.H.; Ryoo, R. Chem. Mater., 2000, 12(7), 1961-1968.
[http://dx.doi.org/10.1021/cm000164e]
[74]
Ziarani, G.M.; Javadi, F.; Mohajer, F.; Badiei, A. Curr. Org. Synth., 2022, 19(8), 874-904.
[http://dx.doi.org/10.2174/1570179419666220329161233] [PMID: 35352650]
[75]
Shang, N.Z.; Gao, S.T.; Feng, C.; Wang, C. Wang. Z. Lett. Org. Chem., 2015, 12(10), 693-698.
[http://dx.doi.org/10.2174/1570178612666150910222019]
[76]
Ziarani, G.M.; Khademi, M.; Mohajer, F.; Badiei, A. Curr. Nanomater., 2022, 7(1), 4-24.
[http://dx.doi.org/10.2174/2405461506666210420132630]
[77]
Mohammadi Ziarani, G.; Lashgari, N.; Badiei, A. Curr. Org. Chem., 2017, 21(8), 674-687.
[http://dx.doi.org/10.2174/1385272820666160525123600]
[78]
Chuan, Wu; Li-Wen, Xu; Ming-Song, Yang; Jian-Xiong, Jiang; Hua-Yu, Qiu; Guo-Qiao, Lai Lett. Org. Chem., 2007, 4(4), 242-245.
[http://dx.doi.org/10.2174/157017807781024156]
[79]
Mahmoudi, H.; Malakooti, R. Lett. Org. Chem., 2014, 11(6), 457-464.
[http://dx.doi.org/10.2174/1570178611666140218004037]
[80]
Diccianni, J.; Lin, Q.; Diao, T. Acc. Chem. Res., 2020, 53(4), 906-919.
[http://dx.doi.org/10.1021/acs.accounts.0c00032] [PMID: 32237734]
[81]
Tasker, S.Z.; Standley, E.A.; Jamison, T.F. Nature, 2014, 509(7500), 299-309.
[http://dx.doi.org/10.1038/nature13274] [PMID: 24828188]
[82]
Ananikov, V.P. ACS Catal., 2015, 5(3), 1964-1971.
[http://dx.doi.org/10.1021/acscatal.5b00072]
[83]
Chanda, S.C.; Manna, A.; Vijayan, V.; Nayak, P.K.; Ashok, M.; Acharya, H.N. Mater. Lett., 2007, 61(28), 5059-5062.
[http://dx.doi.org/10.1016/j.matlet.2007.03.112]
[84]
Hou, Y.L.; Gao, S. J. Alloys Compd., 2004, 365(1-2), 112-116.
[http://dx.doi.org/10.1016/S0925-8388(03)00651-0]
[85]
Degen, A. Macek. J. Nanostruct. Mater., 1999, 12(1-4), 225-228.
[http://dx.doi.org/10.1016/S0965-9773(99)00104-X]
[86]
Wang, H.; Kou, X.; Zhang, J. Li. J. Bull. Mater. Sci., 2008, 31(1), 97-100.
[http://dx.doi.org/10.1007/s12034-008-0017-1]
[87]
Calzaferri, G.; Gallagher, S.H.; Lustenberger, S.; Walther, F.; Brühwiler, D. Mater. Chem. Phys., 2023, 296, 127121.
[http://dx.doi.org/10.1016/j.matchemphys.2022.127121]
[88]
Sonwane, C.G.; Ludovice, P.J. J. Mol. Catal. Chem., 2005, 238(1-2), 135-137.
[http://dx.doi.org/10.1016/j.molcata.2005.05.013]
[89]
Bulánek, R.; Čičmanec, P. Pure Appl. Chem., 2017, 89(4), 481-491.
[http://dx.doi.org/10.1515/pac-2016-1017]
[90]
Kokunešoski, M.; Gulicovski, J.; Matović, B.; Logar, M.; Milonjić, S.K.; Babić, B. Mater. Chem. Phys., 2010, 124(2-3), 1248-1252.
[http://dx.doi.org/10.1016/j.matchemphys.2010.08.066]
[91]
Melnyk, I.V.; Nazarchuk, G.I.; Václavíková, M.; Zub, Y.L. Appl. Nanosci., 2019, 9(5), 683-694.
[http://dx.doi.org/10.1007/s13204-018-0761-5]
[92]
Kaminski, P. Arab. J. Chem., 2020, 13(1), 851-862.
[http://dx.doi.org/10.1016/j.arabjc.2017.08.004]
[93]
Lacroix, M. Cancer Chemother. Pharmacol., 2009, 63(3), 567.
[http://dx.doi.org/10.1007/s00280-008-0776-9] [PMID: 18500520]
[94]
Atten, M.J.; Godoy-Romero, E.; Attar, B.M.; Milson, T.; Zopel, M.; Holian, O. Invest. New Drugs, 2005, 23(2), 111-119.
[http://dx.doi.org/10.1007/s10637-005-5855-8] [PMID: 15744586]
[95]
Piotrowska, H.; Myszkowski, K.; Ziółkowska, A.; Kulcenty, K.; Wierzchowski, M.; Kaczmarek, M.; Murias, M.; Kwiatkowska-Borowczyk, E.; Jodynis-Liebert, J. Toxicol. Appl. Pharmacol., 2012, 263(1), 53-60.
[http://dx.doi.org/10.1016/j.taap.2012.05.023] [PMID: 22687606]
[96]
Sale, S.; Tunstall, R.G.; Ruparelia, K.C.; Potter, G.A.; Steward, W.P.; Gescher, A.J. Int. J. Cancer, 2005, 115(2), 194-201.
[http://dx.doi.org/10.1002/ijc.20884] [PMID: 15688382]
[97]
Piotrowska, H.; Kujawska, M.; Nowicki, M.; Petzke, E.; Ignatowicz, E.; Krajka-Kuźniak, V.; Zawierucha, P.; Wierzchowski, M.; Murias, M.; Jodynis-Liebert, J. Hum. Exp. Toxicol., 2017, 36(2), 160-175.
[http://dx.doi.org/10.1177/0960327116641734] [PMID: 27048571]
[98]
Robinson, J.E.; Taylor, R.J.K. Chem. Commun., 2007, 2007(16), 1617-1619.
[http://dx.doi.org/10.1039/B702411H] [PMID: 17530078]
[99]
Miao, Y.; Cui, L.; Chen, Z.; Zhang, L. Pharm. Biol., 2016, 54(4), 660-666.
[http://dx.doi.org/10.3109/13880209.2015.1071414] [PMID: 26428916]
[100]
Ma, Z.; Molavi, O.; Haddadi, A.; Lai, R.; Gossage, R.A.; Lavasanifar, A. Cancer Chemother. Pharmacol., 2008, 63(1), 27-35.
[http://dx.doi.org/10.1007/s00280-008-0704-z] [PMID: 18286288]