Garlic against Heart-related Ailments: Chemistry, Pharmacology, and Future Perspective

Page: [521 - 530] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Allium sativum L. (Garlic) is a well-recognized plant of great nutraceutical value with pharmacological evidences. It is full of dietary as well as pharmaceutical properties and has been used in traditional medications for a long time. It is known for good antioxidant, antifungal, antibacterial, anti-diabetic, anti-inflammatory, anticancer, and antiviral effects, along with other therapeutic roles in cardiovascular diseases, anti-atherosclerotic, antihypertensive, anti-thrombotic, blood pressure, bone and skin related problems etc.

Objective: Considering the potential of garlic in the treatment of cardiovascular/heart-related diseases, the main objective of this study was to prepare a subject-centric mini-review focusing on its chemistry and pharmacology in heart-related issues.

Methods: In order to prepare this mini-review article, an extensive online literature search was performed to find out the most recent studies related to this topic. These studies were briefly reviewed, assessed, and discussed to explore the possible capability of garlic for the cure of cardiovascular problems.

Result: Several experiments on mice models, rat models as well as on humans show the effective role of various forms of garlic in cardiovascular or heart-related ailments. After reviewing the available publications on garlic in heart-related issues, authors found that garlic and its sulfur (S)-based organic constituents may have advantageous applications in the treatment of cardiovascular diseases.

Graphical Abstract

[1]
Chaurasia, P.K.; Bharati, S.L. The Chemistry Inside Spices and Herbs: Research and Developments. Bentham Science Publisher, 2022; Vol. I, pp. 1-300.
[http://dx.doi.org/10.2174/97898150395661220101]
[2]
Chaurasia, P.K.; Bharati, S.L. The Chemistry Inside Spices and Herbs: Research and Developments. Bentham Science Publisher, 2022; Vol. II, pp. 1-280.
[http://dx.doi.org/10.2174/97816810894921220201]
[3]
Singh, S.; Chaurasia, P.K.; Bharati, S.L. Functional roles of Essential oils as an effective alternative of synthetic food preservatives: A review. J. Food Process. Preserv., 2022, 46(8), e16804.
[http://dx.doi.org/10.1111/jfpp.16804]
[4]
Bayan, L.; Koulivand, P.H.; Gorji, A. Garlic: A review of potential therapeutic effects. Avicenna J. Phytomed., 2014, 4(1), 1-14.
[PMID: 25050296]
[5]
Lawson, L.D.; Bauer, R. Garlic: A review of its medicinal effects and indicated active compounds. In: Phytomedicines of Europe. Chemistry and Biological Activity. Series 69 1; American Chemical Society: Washington, DC, 1998; pp. 176-209.
[http://dx.doi.org/10.1021/bk-1998-0691.ch014]
[6]
Rivlrn, R.S. Patient with hyperlipidemia who received garlic supplements Lipid management. Report from the Lipid Education Council., 1998, 3, 6-7.
[7]
Avicenna, A. Al Qanoon Fil Tib; Soroosh Press: Tehran, Iran, 1988, pp. 122-178.
[8]
Cardelle-Cobas, A.; Soria, A.C.; Corzo-Martinez, M.; Villamiel, M. A comprehensive survey of Garlic Functionality. In: Garlic consumption and Health; Pacurar, M.; Krejei, G., Eds.; Nova Science Publishing Inc: New York, 2010; pp. 1-60.
[9]
Sethi, N.; Kaura, S.; Dilbaghi, N.; Parle, M.; Pal, M. Garlic: A pungent wonder from Nature. Int. Res. J. Pharm., 2014, 5(7), 523-529.
[http://dx.doi.org/10.7897/2230-8407.0507106]
[10]
Lawson, L.D. Bioactive organosulfur compound of garlic and garlic product: role in reducing blood lipid. Kinhorn, AD; Balandrin, ME. In: Human medical agents from plants; American Chemical Society: Washington, 1993; pp. 306-330.
[http://dx.doi.org/10.1021/bk-1993-0534.ch021]
[11]
Singh, R.N.; Kumar, P.; Kumar, N.; Singh, D.K. Garlic (Allium sativum): Pharmaceutical uses for human health. Int. J. Pharm. Sci. Res., 2020, 11(9), 4214-4228.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.11(9).4214-28]
[12]
Moutia, M.; Habti, N.; Badou, A. In vitro and in vivo immunomodulator activities of allium sativum L. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/4984659] [PMID: 30008785]
[13]
Melguizo-Rodríguez, L.; García-Recio, E.; Ruiz, C.; De Luna-Bertos, E.; Illescas-Montes, R.; Costela-Ruiz, V.J. Biological properties and therapeutic applications of garlic and its components. Food Funct., 2022, 13(5), 2415-2426.
[http://dx.doi.org/10.1039/D1FO03180E] [PMID: 35174827]
[14]
Kaku, H.; Goldstein, I.J.; Van Damme, E.J.M.; Peumans, W.J. New mannose-specific lectins from garlic (Allium sativum) and ramsons (Allium ursinum) bulbs. Carbohydr. Res., 1992, 229(2), 347-353.
[http://dx.doi.org/10.1016/S0008-6215(00)90580-9] [PMID: 1394291]
[15]
Matsuura, H.; Ushiroguchi, T.; Itakura, Y.; Hayashi, N.; Fuwa, T. A furostanol glycoside from garlic, bulbs of Allium sativum L. Chem. Pharm. Bull., 1988, 36(9), 3659-3663.
[http://dx.doi.org/10.1248/cpb.36.3659]
[16]
Fenwick, G.R.; Hanley, A.B.; Whitaker, J.R. The genus allium. Part 2. CRC Crit. Rev. Food Sci. Nutr., 1985, 22(4), 273-377.
[http://dx.doi.org/10.1080/10408398509527417] [PMID: 3902371]
[17]
Stoll, A.; Seebeck, E. About Alliin, the genuine mother substance of garlic oil. Helv. Chim. Acta, 1948, 31(1), 189-210.
[http://dx.doi.org/10.1002/hlca.19480310140] [PMID: 18912392]
[18]
Fujiwara, M.; Yoshimura, M.; Tsuno, S.; Murakami, F. “allithiamine”, a newly found derivative of vitamin B1: IV. on the alliin homologues in the vegetables. J. Biochem., 1958, 45(3), 141-149.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a126850]
[19]
Londhe, V.P.; Gavasane, A.T.; Nipate, S.S.; Bandawane, D.D.; Chaudhari, P.D. Role of garlic (Allium sativum) in various diseases: an overview. J. Pharm. Res. Opin., 2011, 1(4), 129-134.
[20]
Rana, S.V.; Pal, R.; Vaiphei, K.; Sharma, S.K.; Ola, R.P. Garlic in health and disease. Nutr. Res. Rev., 2011, 24(1), 60-71.
[http://dx.doi.org/10.1017/S0954422410000338] [PMID: 24725925]
[21]
Amagase, H. Clarifying the real bioactive constituents of garlic. J. Nutr., 2006, 136(S3), 716S-725S.
[http://dx.doi.org/10.1093/jn/136.3.716S] [PMID: 16484550]
[22]
Block, E. The organosulfur chemistry of the genus Allium—implications for the organic chemistry of sulphur. Angew. Chem. Int. Ed. Engl., 1992, 31(9), 1135-1178.
[http://dx.doi.org/10.1002/anie.199211351]
[23]
Ansary, J.; Forbes-Hernández, T.Y.; Gil, E.; Cianciosi, D.; Zhang, J.; Elexpuru-Zabaleta, M.; Simal-Gandara, J.; Giampieri, F.; Battino, M. Potential health benefit of garlic based on human intervention studies: A brief overview. Antioxidants, 2020, 9(7), 619.
[http://dx.doi.org/10.3390/antiox9070619] [PMID: 32679751]
[24]
Lawson, L.; Hunsaker, S. Allicin bioavailability and bioequivalence from garlic supplements and garlic foods. Nutrients, 2018, 10(7), 812.
[http://dx.doi.org/10.3390/nu10070812] [PMID: 29937536]
[25]
Varshney, R.; Budoff, M.J. Garlic and heart disease. J. Nutr., 2016, 146(2), 416S-421S.
[http://dx.doi.org/10.3945/jn.114.202333] [PMID: 26764327]
[26]
Sobenin, I.A.; Myasoedova, V.A.; Iltchuk, M.I.; Zhang, D.W.; Orekhov, A.N. Therapeutic effects of garlic in cardiovascular atherosclerotic disease. Chin. J. Nat. Med., 2019, 17(10), 721-728.
[http://dx.doi.org/10.1016/S1875-5364(19)30088-3] [PMID: 31703752]
[27]
Wlosinska, M.; Nilsson, A-C.; Hlebowicz, J.; Fakhro, M.; Malmsjö, M.; Lindstedt, S. Aged garlic extract reduces IL-6: A double-blind placebo-controlled trial in females with a low risk of cardiovascular disease. Evid. Based Complement. Alternat. Med., 2021, 2021, 6636875.
[http://dx.doi.org/10.1155/2021/6636875]
[28]
Valls, R.M.; Companys, J.; Calderón-Pérez, L.; Salamanca, P.; Pla-Pagà, L.; Sandoval-Ramírez, B.A.; Bueno, A.; Puzo, J.; Crescenti, A.; Bas, J.M.; Caimari, A.; Salamanca, A.; Espinel, A.E.; Pedret, A.; Arola, L.; Solà, R. Effects of an optimized aged garlic extract on cardiovascular disease risk factors in moderate hypercholesterolemic subjects: A randomized, crossover, double-blind, sustainedand controlled study. Nutrients, 2022, 14(3), 405.
[http://dx.doi.org/10.3390/nu14030405] [PMID: 35276764]
[29]
Panyod, S.; Wu, W.K.; Chen, P.C. Atherosclerosis amelioration by allicin in raw garlic through gut microbiota and trimethylamine-N-oxide modulation. NPJ Biofilms Microbiomes, 2022, 8(1), 4.
[http://dx.doi.org/10.1038/s41522-022-00266-3]
[30]
Li, M.; Yun, W.; Wang, G.; Li, A.; Gao, J.; He, Q. Roles and mechanisms of garlic and its extracts on atherosclerosis: A review. Front. Pharmacol., 2022, 13, 954938.
[http://dx.doi.org/10.3389/fphar.2022.954938] [PMID: 36263122]
[31]
Imaizumi, V.M.; Laurindo, L.F.; Manzan, B.; Guiguer, E.L.; Oshiiwa, M.; Otoboni, A.M.M.B.; Araujo, A.C.; Tofano, R.J.; Barbalho, S.M. Garlic: A systematic review of the effects on cardiovascular diseases. Crit. Rev. Food Sci. Nutr., 2022, 23, 1-23.
[http://dx.doi.org/10.1080/10408398.2022.2043821] [PMID: 35193446]
[32]
Wlosinska, M.; Nilsson, A.C.; Hlebowicz, J.; Malmsjö, M.; Fakhro, M.; Lindstedt, S. Aged garlic extract preserves cutaneous microcirculation in patients with increased risk for cardiovascular diseases: A double-blinded placebo-controlled study. Int. Wound J., 2019, 16(6), 1487-1493.
[http://dx.doi.org/10.1111/iwj.13220] [PMID: 31518044]
[33]
Zeb, I.; Ahmadi, N.; Flores, F.; Budoff, M.J. Randomized trial evaluating the effect of aged garlic extract with supplements versus placebo on adipose tissue surrogates for coronary atherosclerosis progression. Coron. Artery Dis., 2018, 29(4), 325-328.
[http://dx.doi.org/10.1097/MCA.0000000000000587] [PMID: 29140808]
[34]
Szulińska, M.; Kręgielska-Narożna, M.; Świątek, J.; Styś P.; Kuźnar-Kamińska, B.; Jakubowski, H.; Walkowiak, J.; Bogdański, P. Garlic extract favorably modifies markers of endothelial function in obese patients –randomized double blind placebo-controlled nutritional intervention. Biomed. Pharmacother., 2018, 102, 792-797.
[http://dx.doi.org/10.1016/j.biopha.2018.03.131] [PMID: 29604599]
[35]
Gomaa, A.M.S.; Abdelhafez, A.T.; Aamer, H.A. Garlic (Allium sativum) exhibits a cardioprotective effect in experimental chronic renal failure rat model by reducing oxidative stress and controlling cardiac Na+/K+-ATPase activity and Ca2+ levels. Cell Stress Chaperones, 2018, 23(5), 913-920.
[http://dx.doi.org/10.1007/s12192-018-0898-x] [PMID: 29679284]
[36]
Khatua, T.N.; Borkar, R.M.; Mohammed, S.A.; Dinda, A.K.; Srinivas, R.; Banerjee, S.K. Novel sulfur metabolites of garlic attenuate cardiac hypertrophy and remodeling through induction of Na+/K+-ATPase expression. Front. Pharmacol., 2017, 8, 18.
[http://dx.doi.org/10.3389/fphar.2017.00018] [PMID: 28194108]
[37]
Mahdavi-Roshan, M.; Mirmiran, P.; Arjmand, M.; Nasrollahzadeh, J. Effects of garlic on brachial endothelial function and capacity of plasma to mediate cholesterol efflux in patients with coronary artery disease. Anatol. J. Cardiol., 2017, 18(2), 116-121.
[http://dx.doi.org/10.14744/AnatolJCardiol.2017.7669] [PMID: 28554988]
[38]
Myasoedova, V.; Kirichenko, T.; Melnichenko, A.; Orekhova, V.; Ravani, A.; Poggio, P.; Sobenin, I.; Bobryshev, Y.; Orekhov, A. Anti-atherosclerotic effects of a phytoestrogen-rich herbal preparation in postmenopausal women. Int. J. Mol. Sci., 2016, 17(8), 1318.
[http://dx.doi.org/10.3390/ijms17081318] [PMID: 27529226]
[39]
Ushijima, M.; Takashima, M.; Kunimura, K.; Kodera, Y.; Morihara, N.; Tamura, K. Effects of S -1-propenylcysteine, a sulfur compound in aged garlic extract, on blood pressure and peripheral circulation in spontaneously hypertensive rats. J. Pharm. Pharmacol., 2018, 70(4), 559-565.
[http://dx.doi.org/10.1111/jphp.12865] [PMID: 29380376]
[40]
Park, B.M.; Chun, H.; Chae, S.W.; Kim, S.H. Fermented garlic extract ameliorates monocrotaline-induced pulmonary hypertension in rats. J. Funct. Foods, 2017, 30, 247-253.
[http://dx.doi.org/10.1016/j.jff.2017.01.024]
[41]
Dubey, H.; Singh, A.; Patole, A.M.; Tenpe, C.R. Antihypertensive effect of allicin in dexamethasone-induced hypertensive rats. Integr. Med. Res., 2017, 6(1), 60-65.
[http://dx.doi.org/10.1016/j.imr.2016.12.002] [PMID: 28462145]
[42]
Takashima, M.; Kanamori, Y.; Kodera, Y.; Morihara, N.; Tamura, K. Aged garlic extract exerts endothelium-dependent vasorelaxant effect on rat aorta by increasing nitric oxide production. Phytomedicine, 2017, 24, 56-61.
[http://dx.doi.org/10.1016/j.phymed.2016.11.016] [PMID: 28160862]
[43]
Ezeorba, T.P.C.; Chukwudozie, K.I.; Ezema, C.A.; Anaduaka, E.G.; Nweze, E.J.; Okeke, E.S. Potentials for health and therapeutic benefits of garlic essential oils: Recent findings and future prospects. Pharmacol. Res. Mod. Chin., 2022, 3, 100075.
[http://dx.doi.org/10.1016/j.prmcm.2022.100075]
[44]
Rahman, K.; Lowe, G.M. Garlic and cardiovascular disease: A critical review. J. Nutr., 2006, 136(S3), 736S-740S.
[http://dx.doi.org/10.1093/jn/136.3.736S] [PMID: 16484553]
[45]
Gebhardt, R. Multiple inhibitory effects of garlic extracts on cholesterol biosynthesis in hepatocytes. Lipids, 1993, 28(7), 613-619.
[http://dx.doi.org/10.1007/BF02536055] [PMID: 8394977]
[46]
Liu, L.; Yeh, Y.Y. Water-soluble organosulfur compounds of garlic inhibit fatty acid and triglyceride syntheses in cultured rat hepatocytes. Lipids, 2001, 36(4), 395-400.
[http://dx.doi.org/10.1007/s11745-001-0734-4] [PMID: 11383692]
[47]
Yeh, Y.Y.; Liu, L. Cholesterol-lowering effect of garlic extracts and organosulfur compounds: Human and animal studies. J. Nutr., 2001, 131(3), 989S-993S.
[http://dx.doi.org/10.1093/jn/131.3.989S] [PMID: 11238803]
[48]
Yeh, Y.Y.; Yeh, S.M. Garlic reduces plasma lipids by inhibiting hepatic cholesterol and triacylglycerol synthesis. Lipids, 1994, 29(3), 189-193.
[http://dx.doi.org/10.1007/BF02536728] [PMID: 8170288]
[49]
Gupta, N.; Porter, T.D. Garlic and garlic-derived compounds inhibit human squalene monooxygenase. J. Nutr., 2001, 131(6), 1662-1667.
[http://dx.doi.org/10.1093/jn/131.6.1662] [PMID: 11385050]
[50]
Sendl, A.; Elbl, G.; Steinke, B.; Redl, K.; Breu, W.; Wagner, H. Comparative pharmacological investigations of Allium ursinum and Allium sativum. Planta Med., 1992, 58(1), 1-7.
[http://dx.doi.org/10.1055/s-2006-961378] [PMID: 1620734]
[51]
Qi, R.; Liao, F.; Inoue, K.; Yatomi, Y.; Sato, K.; Ozaki, Y. Inhibition by diallyl trisulfide, a garlic component, of intracellular Ca2+ mobilization without affecting inositol-1,4,5-trisphosphate (IP3) formation in activated platelets. Biochem. Pharmacol., 2000, 60(10), 1475-1483.
[http://dx.doi.org/10.1016/S0006-2952(00)00467-6] [PMID: 11020449]
[52]
Teranishi, K.; Apitz-Castro, R.; Robson, S.C.; Romano, E.; Cooper, D.K.C. Inhibition of baboon platelet aggregation in vitro and in vivo by the garlic derivative, ajoene. Xenotransplantation, 2003, 10(4), 374-379.
[http://dx.doi.org/10.1034/j.1399-3089.2003.02068.x] [PMID: 12795687]
[53]
Chang, H.S.; Yamato, O.; Yamasaki, M.; Maede, Y. Modulatory influence of sodium 2-propenyl thiosulfate from garlic on cyclooxygenase activity in canine platelets: Possible mechanism for the anti-aggregatory effect. Prostaglandins Leukot. Essent. Fatty Acids, 2005, 72(5), 351-355.
[http://dx.doi.org/10.1016/j.plefa.2005.01.003] [PMID: 15850716]
[54]
Moriguchi, T.; Takasugi, N.; Itakura, Y. The effects of aged garlic extract on lipid peroxidation and the deformability of erythrocytes. J. Nutr., 2001, 131(3), 1016S-1019S.
[http://dx.doi.org/10.1093/jn/131.3.1016S] [PMID: 11238808]
[55]
Matsumoto, S.; Nakanishi, R.; Li, D.; Alani, A.; Rezaeian, P.; Prabhu, S.; Abraham, J.; Fahmy, M.A.; Dailing, C.; Flores, F.; Hamal, S.; Broersen, A.; Kitslaar, P.H.; Budoff, M.J. Aged garlic extract reduces low attenuation plaque in coronary arteries of patients with metabolic syndrome in a prospective randomized double-blind study. J. Nutr., 2016, 146(2), 427S-432S.
[http://dx.doi.org/10.3945/jn.114.202424] [PMID: 26764322]
[56]
Jung, E.S.; Park, S.H.; Choi, E.K.; Ryu, B.H.; Park, B.H.; Kim, D.S.; Kim, Y.G.; Chae, S.W. Reduction of blood lipid parameters by a 12-wk supplementation of aged black garlic: A randomized controlled trial. Nutrition, 2014, 30(9), 1034-1039.
[http://dx.doi.org/10.1016/j.nut.2014.02.014] [PMID: 24976429]