Advancing Glioblastoma Therapy: Promising Research in Precision Medicine

Page: [264 - 282] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

The goal of precision medicine is to create treatments for a single person or group of people based on information about their physical condition in the present and the past as well as their exposure to the environment. Precision medicine is now having an impact on how people are treated for their health at different periods of their lives through a variety of applications. Applications of precision medicine can help prevent death, alert patients regarding genetic risks, lower medical expenses, and enhance the quality of life. To determine the risk that a child may inherit an illness, genetic testing is performed before conception. The most severe type of brain cancer is glioblastoma (GBM), commonly referred to as grade IV astrocytoma. Although they can penetrate the brain, GBMs normally do not spread to other organs. One effective kind of treatment for glioblastoma is precision medicine, which is currently being developed. Numerous improvements in diagnosis and therapy have resulted in the healing of many patients without having an impact on their way of life. In terms of diagnosis and treatment, this article compares and contrasts precision technology and traditional therapy. Stem cell treatment, immunotherapy, and combination therapy are all extensively described.

Graphical Abstract

[1]
Strianese, O.; Rizzo, F.; Ciccarelli, M.; Galasso, G.; D’Agostino, Y.; Salvati, A.; Del Giudice, C.; Tesorio, P.; Rusciano, M.R. Precision and personalized medicine: How genomic approach improves the management of cardiovascular and neurodegenerative disease. Genes, 2020, 11(7), 747.
[http://dx.doi.org/10.3390/genes11070747] [PMID: 32640513]
[2]
Sutton, R.T.; Pincock, D.; Baumgart, D.C.; Sadowski, D.C.; Fedorak, R.N.; Kroeker, K.I. An overview of clinical decision support systems: Benefits, risks, and strategies for success. NPJ Digit. Med., 2020, 3(1), 17.
[http://dx.doi.org/10.1038/s41746-020-0221-y] [PMID: 32047862]
[3]
Erikainen, S.; Chan, S. Contested futures: Envisioning “Personalized,” “Stratified,” and “Precision” medicine. New Genet. Soc., 2019, 38(3), 308-330.
[http://dx.doi.org/10.1080/14636778.2019.1637720] [PMID: 31708685]
[4]
Shin, S.H.; Bode, A.M.; Dong, Z. Precision medicine: The foundation of future cancer therapeutics. NPJ Precis. Oncol., 2017, 1(1), 12.
[http://dx.doi.org/10.1038/s41698-017-0016-z] [PMID: 29872700]
[5]
Manolio, T.A. Implementing genomics and pharmacogenomics in the clinic: The national human genome research institute’s genomic medicine portfolio. Atherosclerosis, 2016, 253, 225-236.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.08.034] [PMID: 27612677]
[6]
Ghiaseddin, A.; Hoang Minh, L.B.; Janiszewska, M.; Shin, D.; Wick, W.; Mitchell, D.A.; Wen, P.Y.; Grossman, S.A. Adult precision medicine: Learning from the past to enhance the future. Neurooncol. Adv., 2021, 3(1), vdaa145.
[http://dx.doi.org/10.1093/noajnl/vdaa145] [PMID: 33543142]
[7]
Aronson, S.J.; Rehm, H.L. Building the foundation for genomics in precision medicine. Nature, 2015, 526(7573), 336-342.
[http://dx.doi.org/10.1038/nature15816] [PMID: 26469044]
[8]
Rajaratnam, V.; Islam, M.; Yang, M.; Slaby, R.; Ramirez, H.; Mirza, S. Glioblastoma: Pathogenesis and current status of chemotherapy and other novel treatments. Cancers, 2020, 12(4), 937.
[http://dx.doi.org/10.3390/cancers12040937] [PMID: 32290213]
[9]
Šamec, N.; Zottel, A.; Videtič Paska, A.; Jovčevska, I. Nanomedicine and immunotherapy: A step further towards precision medicine for glioblastoma. Molecules, 2020, 25(3), 490.
[http://dx.doi.org/10.3390/molecules25030490] [PMID: 31979318]
[10]
Alexander, B.M.; Cloughesy, T.F. Adult Glioblastoma. J. Clin. Oncol., 2017, 35(21), 2402-2409.
[http://dx.doi.org/10.1200/JCO.2017.73.0119] [PMID: 28640706]
[11]
Alves, A.L.V.; Gomes, I.N.F.; Carloni, A.C.; Rosa, M.N.; da Silva, L.S.; Evangelista, A.F.; Reis, R.M.; Silva, V.A.O. Role of glioblastoma stem cells in cancer therapeutic resistance: A perspective on antineoplastic agents from natural sources and chemical derivatives. Stem Cell Res. Ther., 2021, 12(1), 206.
[http://dx.doi.org/10.1186/s13287-021-02231-x] [PMID: 33762015]
[12]
Tan, A.C.; Ashley, D.M.; López, G.Y.; Malinzak, M.; Friedman, H.S.; Khasraw, M. Management of glioblastoma: State of the art and future directions. CA Cancer J. Clin., 2020, 70(4), 299-312.
[http://dx.doi.org/10.3322/caac.21613] [PMID: 32478924]
[13]
Gatto, L.; Franceschi, E.; Di Nunno, V.; Tosoni, A.; Lodi, R.; Brandes, A.A. Liquid biopsy in glioblastoma management: From current research to future perspectives. Oncologist, 2021, 26(10), 865-878.
[http://dx.doi.org/10.1002/onco.13858] [PMID: 34105205]
[14]
Ghosh, D.; Nandi, S.; Bhattacharjee, S. Combination therapy to checkmate Glioblastoma: clinical challenges and advances. Clin. Transl. Med., 2018, 7(1), 33.
[http://dx.doi.org/10.1186/s40169-018-0211-8] [PMID: 30327965]
[15]
Ginsburg, G.S.; Phillips, K.A. Precision medicine: From science to value. Health Aff., 2018, 37(5), 694-701.
[http://dx.doi.org/10.1377/hlthaff.2017.1624] [PMID: 29733705]
[16]
Qoronfleh, M.W.; Chouchane, L.; Mifsud, B.; Al Emadi, M.; Ismail, S. The future of medicine, healthcare innovation through precision medicine: Policy case study of Qatar. Life Sci. Soc. Policy, 2020, 16(1), 12.
[http://dx.doi.org/10.1186/s40504-020-00107-1] [PMID: 33129349]
[17]
v Kalayil, N.; D’Souza, S.S.; Khan, S.; Paul, P. Artificial intelligence in pharmacy drug design. Asian J. Pharm. Clin. Res., 2022, 15(4), 21-27.
[http://dx.doi.org/10.22159/ajpcr.2022.v15i4.43890]
[18]
Jafari, S.H.; Rabiei, N.; Taghizadieh, M.; Mirazimi, S.M.A.; Kowsari, H.; Farzin, M.A.; Razaghi Bahabadi, Z.; Rezaei, S.; Mohammadi, A.H.; Alirezaei, Z.; Dashti, F.; Nejati, M. Joint application of biochemical markers and imaging techniques in the accurate and early detection of glioblastoma. Pathol. Res. Pract., 2021, 224, 153528.
[http://dx.doi.org/10.1016/j.prp.2021.153528] [PMID: 34171601]
[19]
T P A.; M, S.S.; Jose, A.; Chandran, L.; Zachariah, S.M. Pharmacogenomics: The right drug to the right person. J. Clin. Med. Res., 2009, 1(4), 191-194.
[http://dx.doi.org/10.4021/jocmr2009.08.1255] [PMID: 22461867]
[20]
Prados, M.D.; Byron, S.A.; Tran, N.L.; Phillips, J.J.; Molinaro, A.M.; Ligon, K.L.; Wen, P.Y.; Kuhn, J.G.; Mellinghoff, I.K.; de Groot, J.F.; Colman, H.; Cloughesy, T.F.; Chang, S.M.; Ryken, T.C.; Tembe, W.D.; Kiefer, J.A.; Berens, M.E.; Craig, D.W.; Carpten, J.D.; Trent, J.M. Toward precision medicine in glioblastoma: The promise and the challenges. Neuro-oncol., 2015, 17(8), 1051-1063.
[http://dx.doi.org/10.1093/neuonc/nov031] [PMID: 25934816]
[21]
von Neubeck, C.; Seidlitz, A.; Kitzler, H.H.; Beuthien-Baumann, B.; Krause, M. Glioblastoma multiforme: Emerging treatments and stratification markers beyond new drugs. Br. J. Radiol., 2015, 88(1053), 20150354.
[http://dx.doi.org/10.1259/bjr.20150354] [PMID: 26159214]
[22]
Mahmoudi, K.; Bouras, A.; Bozec, D.; Ivkov, R.; Hadjipanayis, C. Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy’s history, efficacy and application in humans. Int. J. Hyperthermia, 2018, 34(8), 1316-1328.
[http://dx.doi.org/10.1080/02656736.2018.1430867] [PMID: 29353516]
[23]
Wirsching, H.G.; Galanis, E.; Weller, M. Glioblastoma. Handb. Clin. Neurol., 2016, 134, 381-397.
[http://dx.doi.org/10.1016/B978-0-12-802997-8.00023-2] [PMID: 26948367]
[24]
Ohgaki, H.; Kleihues, P. Genetic pathways to primary and secondary glioblastoma. Am. J. Pathol., 2007, 170(5), 1445-1453.
[http://dx.doi.org/10.2353/ajpath.2007.070011] [PMID: 17456751]
[25]
Delgado-Martín, B.; Medina, M.Á. Advances in the knowledge of the molecular biology of glioblastoma and its impact on patient diagnosis, stratification, and treatment. Adv. Sci. (Weinh.), 2020, 7(9), 1902971.
[http://dx.doi.org/10.1002/advs.201902971] [PMID: 32382477]
[26]
Preusser, M.; de Ribaupierre, S.; Wöhrer, A.; Erridge, S.C.; Hegi, M.; Weller, M.; Stupp, R. Current concepts and management of glioblastoma. Ann. Neurol., 2011, 70(1), 9-21.
[http://dx.doi.org/10.1002/ana.22425] [PMID: 21786296]
[27]
White, K.; Connor, K.; Clerkin, J.; Murphy, B.M.; Salvucci, M.; O’Farrell, A.C.; Rehm, M.; O’Brien, D.; Prehn, J.H.M.; Niclou, S.P.; Lamfers, M.L.M.; Verreault, M.; Idbaih, A.; Verhaak, R.; Golebiewska, A.; Byrne, A.T. New hints towards a precision medicine strategy for IDH wild-type glioblastoma. Ann. Oncol., 2020, 31(12), 1679-1692.
[http://dx.doi.org/10.1016/j.annonc.2020.08.2336] [PMID: 32918998]
[28]
Wrensch, M.; Minn, Y.; Chew, T.; Bondy, M.; Berger, M.S. Epidemiology of primary brain tumors: Current concepts and review of the literature. Neuro-oncol., 2002, 4(4), 278-299.
[http://dx.doi.org/10.1093/neuonc/4.4.278] [PMID: 12356358]
[29]
Barbagallo, G.M.V.; Jenkinson, M.D.; Brodbelt, A.R. ‘Recurrent’ glioblastoma multiforme, when should we reoperate? Br. J. Neurosurg., 2008, 22(3), 452-455.
[http://dx.doi.org/10.1080/02688690802182256] [PMID: 18568742]
[30]
Birkó, Z.; Nagy, B.; Klekner, Á.; Virga, J. Novel molecular markers in glioblastoma-Benefits of liquid biopsy. Int. J. Mol. Sci., 2020, 21(20), 7522.
[http://dx.doi.org/10.3390/ijms21207522] [PMID: 33053907]
[31]
Nowak, B.; Rogujski, P.; Janowski, M.; Lukomska, B.; Andrzejewska, A. Mesenchymal stem cells in glioblastoma therapy and progression: How one cell does it all. Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(1), 188582.
[http://dx.doi.org/10.1016/j.bbcan.2021.188582] [PMID: 34144129]
[32]
Alifieris, C.; Trafalis, D.T. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol. Ther., 2015, 152, 63-82.
[http://dx.doi.org/10.1016/j.pharmthera.2015.05.005] [PMID: 25944528]
[33]
Rajaratnam, V.; Islam, M.; Yang, M.; Slaby, R.; Ramirez, H.; Mirza, S. Glioblastoma: Pathogenesis and current status of chemotherapy and other novel treatments. Cancers (Basel), 2020, 12(4), 937.
[http://dx.doi.org/10.3390/cancers12040937] [PMID: 32290213]
[34]
Alphandéry, E. Glioblastoma treatments: An account of recent industrial developments. Front. Pharmacol., 2018, 9, 879.
[http://dx.doi.org/10.3389/fphar.2018.00879] [PMID: 30271342]
[35]
Hatanpaa, K.J.; Burma, S.; Zhao, D.; Habib, A.A. Epidermal growth factor receptor in glioma: Signal transduction, neuropathology, imaging, and radioresistance. Neoplasia, 2010, 12(9), 675-684.
[http://dx.doi.org/10.1593/neo.10688] [PMID: 20824044]
[36]
Del Bene, M.; Osti, D.; Faletti, S.; Beznoussenko, G.V.; DiMeco, F.; Pelicci, G. Extracellular vesicles: The key for precision medicine in glioblastoma. Neuro-oncol., 2022, 24(2), 184-196.
[http://dx.doi.org/10.1093/neuonc/noab229] [PMID: 34581817]
[37]
Yao, M.; Li, S.; Wu, X.; Diao, S.; Zhang, G.; He, H.; Bian, L.; Lu, Y. Cellular origin of glioblastoma and its implication in precision therapy. Cell. Mol. Immunol., 2018, 15(8), 737-739.
[http://dx.doi.org/10.1038/cmi.2017.159] [PMID: 29553137]
[38]
Cohen, A.L.; Holmen, S.L.; Colman, H. IDH1 and IDH2 mutations in gliomas. Curr. Neurol. Neurosci. Rep., 2013, 13(5), 345.
[http://dx.doi.org/10.1007/s11910-013-0345-4] [PMID: 23532369]
[39]
Lino, M.M.; Merlo, A.; Boulay, J.L. Notch signaling in glioblastoma: A developmental drug target? BMC Med., 2010, 8(1), 72.
[http://dx.doi.org/10.1186/1741-7015-8-72] [PMID: 21078177]
[40]
Bazzoni, R.; Bentivegna, A. Role of a notch signaling pathway in glioblastoma pathogenesis. Cancers, 2019, 11(3), 292.
[http://dx.doi.org/10.3390/cancers11030292] [PMID: 30832246]
[41]
Huse, J.T.; Holland, E.C. Targeting brain cancer: Advances in the molecular pathology of malignant glioma and medulloblastoma. Nat. Rev. Cancer, 2010, 10(5), 319-331.
[http://dx.doi.org/10.1038/nrc2818] [PMID: 20414201]
[42]
Ruvolo, P.P. Ceramide regulates cellular homeostasis via diverse stress signaling pathways. Leukemia, 2001, 15(8), 1153-1160.
[http://dx.doi.org/10.1038/sj.leu.2402197] [PMID: 11480555]
[43]
Dieterich, L.C.; Mellberg, S.; Langenkamp, E.; Zhang, L.; Zieba, A.; Salomäki, H.; Teichert, M.; Huang, H.; Edqvist, P.H.; Kraus, T.; Augustin, H.G.; Olofsson, T.; Larsson, E.; Söderberg, O.; Molema, G.; Pontén, F.; Georgii-Hemming, P.; Alafuzoff, I.; Dimberg, A. Transcriptional profiling of human glioblastoma vessels indicates a key role of VEGF-A and TGFβ2 in vascular abnormalization. J. Pathol., 2012, 228(3), 378-390.
[http://dx.doi.org/10.1002/path.4072] [PMID: 22786655]
[44]
Weathers, S.P.; de Groot, J. VEGF manipulation in glioblastoma. Oncology, 2015, 29(10), 719. https://link.gale.com/apps/doc/ A431444202/AONE?u=anon~a238ff46&sid=googleScholar&xid= daf2d10b
[45]
Cao, Y.; Cao, R.; Hedlund, E.M.R. Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways. J. Mol. Med., 2008, 86(7), 785-789.
[http://dx.doi.org/10.1007/s00109-008-0337-z] [PMID: 18392794]
[46]
Wang, Z.; Ahmad, A.; Li, Y.; Kong, D.; Azmi, A.S.; Banerjee, S.; Sarkar, F.H. Emerging roles of PDGF-D signaling pathway in tumor development and progression. Biochim. Biophys. Acta Rev. Cancer, 2010, 1806(1), 122-130.
[http://dx.doi.org/10.1016/j.bbcan.2010.04.003] [PMID: 20434526]
[47]
Peixoto, P.; Blomme, A.; Costanza, B.; Ronca, R.; Rezzola, S.; Palacios, A.P.; Schoysman, L.; Boutry, S.; Goffart, N.; Peulen, O.; Maris, P.; Di Valentin, E.; Hennequière, V.; Bianchi, E.; Henry, A.; Meunier, P.; Rogister, B.; Muller, R.N.; Delvenne, P.; Bellahcène, A.; Castronovo, V.; Turtoi, A. HDAC7 inhibition resets STAT3 tumorigenic activity in human glioblastoma independently of EGFR and PTEN: New opportunities for selected targeted therapies. Oncogene, 2016, 35(34), 4481-4494.
[http://dx.doi.org/10.1038/onc.2015.506] [PMID: 26853466]
[48]
Lino, M.M.; Merlo, A. PI3Kinase signaling in glioblastoma. J. Neurooncol., 2011, 103(3), 417-427.
[http://dx.doi.org/10.1007/s11060-010-0442-z] [PMID: 21063898]
[49]
Wu, H.; Goel, V.; Haluska, F.G. PTEN signaling pathways in melanoma. Oncogene, 2003, 22(20), 3113-3122.
[http://dx.doi.org/10.1038/sj.onc.1206451] [PMID: 12789288]
[50]
Ma, J.; Sawai, H.; Ochi, N.; Matsuo, Y.; Xu, D.; Yasuda, A.; Takahashi, H.; Wakasugi, T.; Takeyama, H. PTEN regulate angiogenesis through PI3K/Akt/VEGF signaling pathway in human pancreatic cancer cells. Mol. Cell. Biochem., 2009, 331(1-2), 161-171.
[http://dx.doi.org/10.1007/s11010-009-0154-x] [PMID: 19437103]
[51]
Takezaki, T.; Hide, T.; Takanaga, H.; Nakamura, H.; Kuratsu, J.; Kondo, T. Essential role of the Hedgehog signaling pathway in human glioma-initiating cells. Cancer Sci., 2011, 102(7), 1306-1312.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01943.x] [PMID: 21453386]
[52]
Rimkus, T.; Carpenter, R.; Qasem, S.; Chan, M.; Lo, H.W. Targeting the sonic hedgehog signaling pathway: Review of smoothened and GLI inhibitors. Cancers, 2016, 8(2), 22.
[http://dx.doi.org/10.3390/cancers8020022] [PMID: 26891329]
[53]
Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol., 2018, 15(2), 81-94.
[http://dx.doi.org/10.1038/nrclinonc.2017.166] [PMID: 29115304]
[54]
Parsons, DW; Jones, S; Zhang, X; Lin, JC; Leary, RJ; Angenendt, P; Mankoo, P; Carter, H; Siu, IM; Gallia, GL; Olivi, A An integrated genomic analysis of human glioblastoma multiforme. science. 2008, 321(5897), 1807-1812.
[http://dx.doi.org/10.1126/science.1164382]
[55]
Puchalski, R.B.; Shah, N.; Miller, J.; Dalley, R.; Nomura, S.R.; Yoon, J.G.; Smith, K.A.; Lankerovich, M.; Bertagnolli, D.; Bickley, K.; Boe, A.F.; Brouner, K.; Butler, S.; Caldejon, S.; Chapin, M.; Datta, S.; Dee, N.; Desta, T.; Dolbeare, T.; Dotson, N.; Ebbert, A.; Feng, D.; Feng, X.; Fisher, M.; Gee, G.; Goldy, J.; Gourley, L.; Gregor, B.W.; Gu, G.; Hejazinia, N.; Hohmann, J.; Hothi, P.; Howard, R.; Joines, K.; Kriedberg, A.; Kuan, L.; Lau, C.; Lee, F.; Lee, H.; Lemon, T.; Long, F.; Mastan, N.; Mott, E.; Murthy, C.; Ngo, K.; Olson, E.; Reding, M.; Riley, Z.; Rosen, D.; Sandman, D.; Shapovalova, N.; Slaughterbeck, C.R.; Sodt, A.; Stockdale, G.; Szafer, A.; Wakeman, W.; Wohnoutka, P.E.; White, S.J.; Marsh, D.; Rostomily, R.C.; Ng, L.; Dang, C.; Jones, A.; Keogh, B.; Gittleman, H.R.; Barnholtz-Sloan, J.S.; Cimino, P.J.; Uppin, M.S.; Keene, C.D.; Farrokhi, F.R.; Lathia, J.D.; Berens, M.E.; Iavarone, A.; Bernard, A.; Lein, E.; Phillips, J.W.; Rostad, S.W.; Cobbs, C.; Hawrylycz, M.J.; Foltz, G.D. An anatomic transcriptional atlas of human glioblastoma. Science, 2018, 360(6389), 660-663.
[http://dx.doi.org/10.1126/science.aaf2666] [PMID: 29748285]
[56]
Fritz, L.; Dirven, L.; Reijneveld, J.; Koekkoek, J.; Stiggelbout, A.; Pasman, H.; Taphoorn, M. Advance care planning in glioblastoma patients. Cancers, 2016, 8(11), 102.
[http://dx.doi.org/10.3390/cancers8110102] [PMID: 27834803]
[57]
Noll, K.R.; Sullaway, C.M.; Wefel, J.S. Depressive symptoms and executive function in relation to survival in patients with glioblastoma. J. Neurooncol., 2019, 142(1), 183-191.
[http://dx.doi.org/10.1007/s11060-018-03081-z] [PMID: 30680509]
[58]
Rasmussen, B.K.; Hansen, S.; Laursen, R.J.; Kosteljanetz, M.; Schultz, H.; Nørgård, B.M.; Guldberg, R.; Gradel, K.O. Epidemiology of glioma: Clinical characteristics, symptoms, and predictors of glioma patients grade I-IV in the the Danish Neuro-Oncology Registry. J. Neurooncol., 2017, 135(3), 571-579.
[http://dx.doi.org/10.1007/s11060-017-2607-5] [PMID: 28861666]
[59]
Omuro, A.; DeAngelis, L.M. Glioblastoma and other malignant gliomas: A clinical review. JAMA, 2013, 310(17), 1842-1850.
[http://dx.doi.org/10.1001/jama.2013.280319] [PMID: 24193082]
[60]
Tang, P.L.Y.; Méndez Romero, A.; Jaspers, J.P.M.; Warnert, E.A.H. The potential of advanced MR techniques for precision radiotherapy of glioblastoma. MAGMA, 2022, 35(1), 127-143.
[http://dx.doi.org/10.1007/s10334-021-00997-y] [PMID: 35129718]
[61]
Davatzikos, C.; Sotiras, A.; Fan, Y.; Habes, M.; Erus, G.; Rathore, S.; Bakas, S.; Chitalia, R.; Gastounioti, A.; Kontos, D. Precision diagnostics based on machine learning-derived imaging signatures. Magn. Reson. Imaging, 2019, 64, 49-61.
[http://dx.doi.org/10.1016/j.mri.2019.04.012] [PMID: 31071473]
[62]
Kalpathy-Cramer, J.; Gerstner, E.R.; Emblem, K.E.; Andronesi, O.C.; Rosen, B. Advanced magnetic resonance imaging of the physical processes in human glioblastoma. Cancer Res., 2014, 74(17), 4622-4637.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0383] [PMID: 25183787]
[63]
Stumpo, V.; Sebök, M.; van Niftrik, C.H.B.; Seystahl, K.; Hainc, N.; Kulcsar, Z.; Weller, M.; Regli, L.; Fierstra, J. Feasibility of glioblastoma tissue response mapping with physiologic bold imaging using precise oxygen and carbon dioxide challenge. MAGMA, 2022, 35(1), 29-44.
[http://dx.doi.org/10.1007/s10334-021-00980-7] [PMID: 34874499]
[64]
Hillebrand, A.; Singh, K.D.; Holliday, I.E.; Furlong, P.L.; Barnes, G.R. A new approach to neuroimaging with magnetoencephalography. Hum. Brain Mapp., 2005, 25(2), 199-211.
[http://dx.doi.org/10.1002/hbm.20102] [PMID: 15846771]
[65]
Baillet, S. Magnetoencephalography for brain electrophysiology and imaging. Nat. Neurosci., 2017, 20(3), 327-339.
[http://dx.doi.org/10.1038/nn.4504] [PMID: 28230841]
[66]
Krings, T.; Chiappa, K.H.; Foltys, H.; Reinges, M.H.; Cosgrove, R.G.; Thron, A. Introducing navigated transcranial magnetic stimulation as a refined brain mapping methodology. Neurosurg. Rev., 2001, 24(4-6), 171-179.
[http://dx.doi.org/10.1007/s101430100151] [PMID: 11778822]
[67]
Takahashi, S.; Vajkoczy, P.; Picht, T. Navigated transcranial magnetic stimulation for mapping the motor cortex in patients with rolandic brain tumors, Neurosurgical Focus FOC, 2013, 34(4), 3. Available From : https://thejns.org/focus/view/journals/neurosurg-focus/34/4/article-pE3.xml (Accessed on Dec 8 2022).
[68]
Krieg, S.M.; Buchmann, N.H.; Gempt, J.; Shiban, E.; Meyer, B.; Ringel, F. Diffusion tensor imaging fiber tracking using navigated brain stimulation-a feasibility study. Acta Neurochir., 2012, 154(3), 555-563.
[http://dx.doi.org/10.1007/s00701-011-1255-3] [PMID: 22270529]
[69]
Coburger, J.; Scheuerle, A.; Thal, D.R.; Engelke, J.; Hlavac, M.; Wirtz, C.R.; König, R. Linear array ultrasound in low-grade glioma surgery: Histology-based assessment of accuracy in comparison to conventional intraoperative ultrasound and intraoperative MRI. Acta Neurochir., 2015, 157(2), 195-206.
[http://dx.doi.org/10.1007/s00701-014-2314-3] [PMID: 25559430]
[70]
Ryken, T.C.; Aygun, N.; Morris, J.; Schweizer, M.; Nair, R.; Spracklen, C.; Kalkanis, S.N.; Olson, J.J. The role of imaging in the management of progressive glioblastoma. J. Neurooncol., 2014, 118(3), 435-460.
[http://dx.doi.org/10.1007/s11060-013-1330-0] [PMID: 24715656]
[71]
Young, R.M.; Jamshidi, A.; Davis, G.; Sherman, J.H. Current trends in the surgical management and treatment of adult glioblastoma. Ann. Transl. Med., 2015, 3(9), 121.
[PMID: 26207249]
[72]
Hochberg, F.H.; Pruitt, A. Assumptions in the radiotherapy of glioblastoma. Neurology, 1980, 1(30), 9-907.
[http://dx.doi.org/10.1212/WNL.30.9.907]
[73]
Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R.C.; Ludwin, S.K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J.G.; Eisenhauer, E.; Mirimanoff, R.O. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med., 2005, 352(10), 987-996.
[http://dx.doi.org/10.1056/NEJMoa043330] [PMID: 15758009]
[74]
Fishbein, L.; Bonner, L.; Torigian, D. A.; Nathanson, K. L.; Cohen, D. L.; Pryma, D.; Cengel, K. A. External beam radiation therapy (EBRT) for patients with malignant pheochromocytoma and nonhead and -neck paraganglioma: combination with 131i-mibg. hormone and metabolic research = hormon- und stoffwechselforschung = hormones. metabolisme, 2012, 44(5), 405-410.
[http://dx.doi.org/10.1055/s-0032-1308992]
[75]
Xu, D.; Li, G.; Li, H.; Jia, F. Comparison of IMRT versus 3D-CRT in the treatment of esophagus cancer. Medicine, 2017, 96(31), e7685.
[http://dx.doi.org/10.1097/MD.0000000000007685] [PMID: 28767597]
[76]
Intensity-modulated radiotherapy: current status and issues of interest. Int. J. Radiat. Oncol. Biol. Phys., 2001, 51(4), 880-914.
[http://dx.doi.org/10.1016/S0360-3016(01)01749-7] [PMID: 11704310]
[77]
Bauman, G.; Yartsev, S.; Rodrigues, G.; Lewis, C.; Venkatesan, V.M.; Yu, E.; Hammond, A.; Perera, F.; Ash, R.; Dar, A.R.; Lock, M.; Baily, L.; Coad, T.; Trenka, K.; Warr, B.; Kron, T.; Battista, J.; Van Dyk, J. A prospective evaluation of helical tomotherapy. Int. J. Radiat. Oncol. Biol. Phys., 2007, 68(2), 632-641.
[http://dx.doi.org/10.1016/j.ijrobp.2006.11.052] [PMID: 17321068]
[78]
Fatima, N; Meola, A; Pollom, EL; Soltys, SG; Chang, SD Stereotactic radiosurgery versus stereotactic radiotherapy in the management of intracranial meningiomas: A systematic review and meta-analysis. Neurosurgical focus FOC, 2019, 46(6), 2.
[http://dx.doi.org/10.3171/2019.3.FOCUS1970]
[79]
Cammarata, F.P.; Torrisi, F.; Forte, G.I.; Minafra, L.; Bravatà, V.; Pisciotta, P.; Savoca, G.; Calvaruso, M.; Petringa, G.; Cirrone, G.A.P.; Fallacara, A.L.; Maccari, L.; Botta, M.; Schenone, S.; Parenti, R.; Cuttone, G.; Russo, G. Proton therapy and src family kinase inhibitor combined treatments on U87 human glioblastoma multiforme cell line. Int. J. Mol. Sci., 2019, 20(19), 4745.
[http://dx.doi.org/10.3390/ijms20194745] [PMID: 31554327]
[80]
Skowronek, J. Current status of brachytherapy in cancer treatment: Short overview. J. Contemp. Brachytherapy, 2017, 9(6), 581-589.
[http://dx.doi.org/10.5114/jcb.2017.72607] [PMID: 29441104]
[81]
Gabayan, A.J.; Green, S.B.; Sanan, A.; Jenrette, J.; Schultz, C.; Papagikos, M.; Tatter, S.P.; Patel, A.; Amin, P.; Lustig, R.; Bastin, K.T.; Watson, G.; Burri, S.; Stea, B. GliaSite brachytherapy for treatment of recurrent malignant gliomas: A retrospective multi-institutional analysis. Neurosurgery, 2006, 58(4), 701-709.
[http://dx.doi.org/10.1227/01.NEU.0000194836.07848.69] [PMID: 16575334]
[82]
Scheinberg, D.A.; Strand, M.; Gansow, O.A. Tumor imaging with radioactive metal chelates conjugated to monoclonal antibodies. Science, 1982, 215(4539), 1511-1513.
[http://dx.doi.org/10.1126/science.7199757] [PMID: 7199757]
[83]
Vecchio, D.; Daga, A.; Carra, E.; Marubbi, D.; Baio, G.; Neumaier, C.E.; Vagge, S.; Corvò, R.; Pia Brisigotti, M.; Louis Ravetti, J.; Zunino, A.; Poggi, A.; Mascelli, S.; Raso, A.; Frosina, G. Predictability, efficacy and safety of radiosensitization of glioblastoma-initiating cells by the ATM inhibitor KU-60019. Int. J. Cancer, 2014, 135(2), 479-491.
[http://dx.doi.org/10.1002/ijc.28680] [PMID: 24443327]
[84]
Wu, H.; Yang, L.; Liu, H.; Zhou, D.; Chen, D.; Zheng, X.; Yang, H.; Li, C.; Chang, J.; Wu, A.; Wang, Z.; Ren, N.; Lv, S.; Liu, Y.; Jia, M.; Lu, J.; Liu, H.; Sun, G.; Liu, Z.; Liu, J.; Chen, L. Exploring the efficacy of tumor electric field therapy against glioblastoma: An in vivo and in vitro study. CNS Neurosci. Ther., 2021, 27(12), 1587-1604.
[http://dx.doi.org/10.1111/cns.13750] [PMID: 34710276]
[85]
Rick, J.; Chandra, A.; Aghi, M.K. Tumor treating fields: A new approach to glioblastoma therapy. J. Neurooncol., 2018, 137(3), 447-453.
[http://dx.doi.org/10.1007/s11060-018-2768-x] [PMID: 29349613]
[86]
Thomas, J.G.; Rao, G.; Kew, Y.; Prabhu, S.S. Laser interstitial thermal therapy for newly diagnosed and recurrent glioblastoma. Neurosurg. Focus, 2016, 41(4), E12.
[http://dx.doi.org/10.3171/2016.7.FOCUS16234] [PMID: 27690657]
[87]
Traylor, J.I.; Patel, R.; Muir, M.; de Almeida Bastos, D.C.; Ravikumar, V.; Kamiya-Matsuoka, C.; Rao, G.; Thomas, J.G.; Kew, Y.; Prabhu, S.S. Laser interstitial thermal therapy for glioblastoma: A single-center experience. World Neurosurg., 2021, 149, e244-e252.
[http://dx.doi.org/10.1016/j.wneu.2021.02.044] [PMID: 33610872]
[88]
Oberacker, E.; Kuehne, A.; Oezerdem, C.; Nadobny, J.; Weihrauch, M.; Beck, M.; Zschaeck, S.; Diesch, C.; Eigentler, T.W.; Waiczies, H.; Ghadjar, P.; Wust, P.; Winter, L.; Niendorf, T. Radiofrequency applicator concepts for thermal magnetic resonance of brain tumors at 297 MHz (7.0 Tesla). Int. J. Hyperthermia, 2020, 37(1), 549-563.
[http://dx.doi.org/10.1080/02656736.2020.1761462] [PMID: 32484019]
[89]
Wick, W.; Weller, M.; Weiler, M.; Batchelor, T.; Yung, A.W.K.; Platten, M. Pathway inhibition: emerging molecular targets for treating glioblastoma. Neuro-oncol., 2011, 13(6), 566-579.
[http://dx.doi.org/10.1093/neuonc/nor039] [PMID: 21636705]
[90]
Karpati, G.; Li, H.; Nalbantoglu, J. Molecular therapy for glioblastoma. Curr. Opin. Mol. Ther., 1999, 1(5), 545-552.
[PMID: 11249660]
[91]
Jue, T.R.; McDonald, K.L. The challenges associated with molecular targeted therapies for glioblastoma. J. Neurooncol., 2016, 127(3), 427-434.
[http://dx.doi.org/10.1007/s11060-016-2080-6] [PMID: 26900075]
[92]
Birzu, C.; French, P.; Caccese, M.; Cerretti, G.; Idbaih, A.; Zagonel, V.; Lombardi, G. Recurrent glioblastoma: From molecular landscape to new treatment perspectives. Cancers, 2020, 13(1), 47.
[http://dx.doi.org/10.3390/cancers13010047] [PMID: 33375286]
[93]
Liu, X.; Newton, R.C.; Scherle, P.A. Developing c-MET pathway inhibitors for cancer therapy: Progress and challenges. Trends Mol. Med., 2010, 16(1), 37-45.
[http://dx.doi.org/10.1016/j.molmed.2009.11.005] [PMID: 20031486]
[94]
Touat, M.; Duran-Peña, A.; Alentorn, A.; Lacroix, L.; Massard, C.; Idbaih, A. Emerging circulating biomarkers in glioblastoma: Promises and challenges. Expert Rev. Mol. Diagn., 2015, 15(10), 1311-1323.
[http://dx.doi.org/10.1586/14737159.2015.1087315] [PMID: 26394701]
[95]
Popescu, AM; Purcaru, SO; Alexandru, O; Dricu, A New perspectives in glioblastoma antiangiogenic therapy. Contemporary Oncology / Współczesna Onkologia, 2016, 20(2), 109-118.
[http://dx.doi.org/10.5114/wo.2015.56122]
[96]
Tsimberidou, A.M.; Wen, S.; Hong, D.S.; Wheler, J.J.; Falchook, G.S.; Fu, S.; Piha-Paul, S.; Naing, A.; Janku, F.; Aldape, K.; Ye, Y.; Kurzrock, R.; Berry, D. Personalized medicine for patients with advanced cancer in the phase I program at MD Anderson: validation and landmark analyses. Clin. Cancer Res., 2014, 20(18), 4827-4836.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0603] [PMID: 24987059]
[97]
Li, X.; Wu, C.; Chen, N.; Gu, H.; Yen, A.; Cao, L.; Wang, E.; Wang, L. PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget, 2016, 7(22), 33440-33450.
[http://dx.doi.org/10.18632/oncotarget.7961] [PMID: 26967052]
[98]
Salphati, L.; Alicke, B.; Heffron, T.P.; Shahidi-Latham, S.; Nishimura, M.; Cao, T.; Carano, R.A.; Cheong, J.; Greve, J.; Koeppen, H.; Lau, S.; Lee, L.B.; Nannini-Pepe, M.; Pang, J.; Plise, E.G.; Quiason, C.; Rangell, L.; Zhang, X.; Gould, S.E.; Phillips, H.S.; Olivero, A.G. Brain distribution and efficacy of the brain penetrant PI3K inhibitor GDC-0084 in orthotopic mouse models of human glioblastoma. Drug Metab. Dispos., 2016, 44(12), 1881-1889.
[http://dx.doi.org/10.1124/dmd.116.071423] [PMID: 27638506]
[99]
Hodges, T.R.; Ferguson, S.D.; Heimberger, A.B. Immunotherapy in glioblastoma: Emerging options in precision medicine. CNS Oncol., 2016, 5(3), 175-186.
[http://dx.doi.org/10.2217/cns-2016-0009] [PMID: 27225028]
[100]
Elsamadicy, A.A.; Chongsathidkiet, P.; Desai, R.; Woroniecka, K.; Farber, S.H.; Fecci, P.E.; Sampson, J.H. Prospect of rindopepimut in the treatment of glioblastoma. Expert Opin. Biol. Ther., 2017, 17(4), 507-513.
[http://dx.doi.org/10.1080/14712598.2017.1299705] [PMID: 28274144]
[101]
Alexander, B.M.; Trippa, L.; Gaffey, S.; Arrillaga-Romany, I.C.; Lee, E.Q.; Rinne, M.L.; Ahluwalia, M.S.; Colman, H.; Fell, G.; Galanis, E.; de Groot, J.; Drappatz, J.; Lassman, A.B.; Meredith, D.M.; Nabors, L.B.; Santagata, S.; Schiff, D.; Welch, M.R.; Ligon, K.L.; Wen, P.Y. Individualized screening trial of innovative glioblastoma therapy (INSIGhT): A Bayesian adaptive platform trial to develop precision medicines for patients with glioblastoma. JCO Precis. Oncol., 2019, 3(3), 1-13.
[http://dx.doi.org/10.1200/PO.18.00071] [PMID: 32914038]
[102]
Sevastre, A.S.; Costachi, A.; Tataranu, L.; Brandusa, C.; Artene, S.; Stovicek, O.; Alexandru, O.; Danoiu, S.; Sfredel, V.; Dricu, A. Glio-blastoma pharmacotherapy: A multifaceted perspective of conventional and emerging treatments. (Review). Exp. Ther. Med., 2021, 22(6), 1408.
[http://dx.doi.org/10.3892/etm.2021.10844] [PMID: 34676001]
[103]
Schijns, V.; Pretto, C.; Strik, A.; Gloudemans-Rijkers, R.; Deviller, L.; Pierre, D.; Chung, J.; Dandekar, M.; Carrillo, J.; Kong, X.T.; Fu, B.; Hsu, F.; Hofman, F.; Chen, T.; Zidovetzki, R.; Bota, D.; Stathopoulos, A. Therapeutic immunization against glioblastoma. Int. J. Mol. Sci., 2018, 19(9), 2540. https://www.mdpi.com/332244
[http://dx.doi.org/10.3390/ijms19092540] [PMID: 30150597]
[104]
Schoor, O.; Hilf, N.; Dutoit, V.; Weinschenk, T.; Walter, S.; Lewandrowski, P.; Flohr, S.; Trautwein, C.; Gouttefangeas, C.; Stevanović, S.; Rammensee, H-G.; Beckhove, P.; Herold-Mende, C.; Dietrich, P-Y.; Singh, H. Abstract 2396: IMA950: A novel multi-peptide cancer vaccine for treatment of glioblastoma. Cancer Res., 2010, 70(8_Supplement)(Suppl.), 2396-2396.
[http://dx.doi.org/10.1158/1538-7445.AM10-2396]
[105]
Schaller, T.H.; Sampson, J.H. Advances and challenges: Dendritic cell vaccination strategies for glioblastoma. Expert Rev. Vaccines, 2017, 16(1), 27-36.
[http://dx.doi.org/10.1080/14760584.2016.1218762] [PMID: 27500911]
[106]
Zhou, Y.; Wu, W.; Bi, H.; Yang, D.; Zhang, C. Glioblastoma precision therapy: From the bench to the clinic. Cancer Lett., 2020, 475, 79-91.
[http://dx.doi.org/10.1016/j.canlet.2020.01.027] [PMID: 32004571]
[107]
Reed, M.R.; Lyle, A.G.; De Loose, A.; Maddukuri, L.; Learned, K.; Beale, H.C.; Kephart, E.T.; Cheney, A.; van den Bout, A.; Lee, M.P.; Hundley, K.N.; Smith, A.M.; DesRochers, T.M.; Vibat, C.R.T.; Gokden, M.; Salama, S.; Wardell, C.P.; Eoff, R.L.; Vaske, O.M.; Rodriguez, A. A functional precision medicine pipeline combines comparative transcriptomics and tumor organoid modeling to identify bespoke treatment strategies for glioblastoma. Cells, 2021, 10(12), 3400.
[http://dx.doi.org/10.3390/cells10123400] [PMID: 34943910]
[108]
Gavas, S.; Quazi, S.; Karpiński, T.M. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res. Lett., 2021, 16(1), 173.
[http://dx.doi.org/10.1186/s11671-021-03628-6] [PMID: 34866166]
[109]
Gu, W.; Meng, F.; Haag, R.; Zhong, Z. Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation. J. Control. Release, 2021, 329, 676-695.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.003] [PMID: 33022328]
[110]
Mukhtar, M.; Bilal, M.; Rahdar, A.; Barani, M.; Arshad, R.; Behl, T.; Brisc, C.; Banica, F.; Bungau, S. Nanomaterials for diagnosis and treatment of brain cancer: Recent updates. Chemosensors, 2020, 8(4), 117.
[http://dx.doi.org/10.3390/chemosensors8040117]
[111]
Rabha, B.; Bharadwaj, K.K.; Pati, S.; Choudhury, B.K.; Sarkar, T.; Kari, Z.A.; Edinur, H.A.; Baishya, D.; Atanase, L.I. Development of polymer-based nanoformulations for glioblastoma brain cancer therapy and diagnosis: An update. Polymers, 2021, 13(23), 4114.
[http://dx.doi.org/10.3390/polym13234114] [PMID: 34883617]
[112]
Cloughesy, T.F.; Landolfi, J.; Vogelbaum, M.A.; Ostertag, D.; Elder, J.B.; Bloomfield, S.; Carter, B.; Chen, C.C.; Kalkanis, S.N.; Kesari, S.; Lai, A.; Lee, I.Y.; Liau, L.M.; Mikkelsen, T.; Nghiemphu, P.; Piccioni, D.; Accomando, W.; Diago, O.R.; Hogan, D.J.; Gammon, D.; Kasahara, N.; Kheoh, T.; Jolly, D.J.; Gruber, H.E.; Das, A.; Walbert, T. Durable complete responses in some recurrent high-grade glioma patients treated with Toca 511 + Toca FC. Neurooncol., 2018, 20(10), 1383-1392.
[http://dx.doi.org/10.1093/neuonc/noy075] [PMID: 29762717]
[113]
Bhat, P.; Kriel, J.; Shubha Priya, B. Basappa; Shivananju, N.S.; Loos, B. Modulating autophagy in cancer therapy: Advancements and challenges for cancer cell death sensitization. Biochem. Pharmacol., 2018, 147, 170-182.
[http://dx.doi.org/10.1016/j.bcp.2017.11.021] [PMID: 29203368]
[114]
Graham-Gurysh, E.G.; Murthy, A.B.; Moore, K.M.; Hingtgen, S.D.; Bachelder, E.M.; Ainslie, K.M. Synergistic drug combinations for a precision medicine approach to interstitial glioblastoma therapy. J. Control. Release, 2020, 323, 282-292.
[http://dx.doi.org/10.1016/j.jconrel.2020.04.028] [PMID: 32335153]
[115]
Herrlinger, U.; Tzaridis, T.; Mack, F.; Steinbach, J.P.; Schlegel, U.; Sabel, M.; Hau, P.; Kortmann, R.D.; Krex, D.; Grauer, O.; Goldbrunner, R.; Schnell, O.; Bähr, O.; Uhl, M.; Seidel, C.; Tabatabai, G.; Kowalski, T.; Ringel, F.; Schmidt-Graf, F.; Suchorska, B.; Brehmer, S.; Weyerbrock, A.; Renovanz, M.; Bullinger, L.; Galldiks, N.; Vajkoczy, P.; Misch, M.; Vatter, H.; Stuplich, M.; Schäfer, N.; Kebir, S.; Weller, J.; Schaub, C.; Stummer, W.; Tonn, J.C.; Simon, M.; Keil, V.C.; Nelles, M.; Urbach, H.; Coenen, M.; Wick, W.; Weller, M.; Fimmers, R.; Schmid, M.; Hattingen, E.; Pietsch, T.; Coch, C.; Glas, M. Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): A randomised, open-label, phase 3 trial. Lancet, 2019, 393(10172), 678-688.
[http://dx.doi.org/10.1016/S0140-6736(18)31791-4] [PMID: 30782343]
[116]
Prados, M.D.; Schold, S.C., Jr; Fine, H.A.; Jaeckle, K.; Hochberg, F.; Mechtler, L.; Fetell, M.R.; Phuphanich, S.; Feun, L.; Janus, T.J.; Ford, K.; Graney, W. A randomized, double-blind, placebo-controlled, phase 2 study of RMP-7 in combination with carboplatin administered intravenously for the treatment of recurrent malignant glioma. Neuro-oncol., 2003, 5(2), 96-103.
[http://dx.doi.org/10.1093/neuonc/5.2.96] [PMID: 12672281]
[117]
Hegi, M.E.; Diserens, A.C.; Gorlia, T.; Hamou, M.F.; de Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; Bromberg, J.E.C.; Hau, P.; Mirimanoff, R.O.; Cairncross, J.G.; Janzer, R.C.; Stupp, R. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med., 2005, 352(10), 997-1003.
[http://dx.doi.org/10.1056/NEJMoa043331] [PMID: 15758010]
[118]
Golden, E.B.; Cho, H.Y.; Jahanian, A.; Hofman, F.M.; Louie, S.G.; Schönthal, A.H.; Chen, T.C. Chloroquine enhances temozolomide cytotoxicity in malignant gliomas by blocking autophagy. Neurosurg. Focus, 2014, 37(6), E12.
[http://dx.doi.org/10.3171/2014.9.FOCUS14504] [PMID: 25434381]
[119]
Kast, R.E.; Karpel-Massler, G.; Halatsch, M.E. CUSP9* treatment protocol for recurrent glioblastoma: Aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, ritonavir, sertraline augmenting continuous low dose temozolomide. Oncotarget, 2014, 5(18), 8052-8082.
[http://dx.doi.org/10.18632/oncotarget.2408] [PMID: 25211298]
[120]
Wang, X.; Chen, J.; Liu, J.; You, C.; Liu, Y.; Mao, Q. Gain of function of mutant TP53 in glioblastoma: Prognosis and response to temozolomide. Ann. Surg. Oncol., 2014, 21(4), 1337-1344.
[http://dx.doi.org/10.1245/s10434-013-3380-0] [PMID: 24248532]
[121]
Vredenburgh, J.J.; Desjardins, A.; Reardon, D.A.; Friedman, H.S. Experience with irinotecan for the treatment of malignant glioma. Neuro-oncol., 2009, 11(1), 80-91.
[http://dx.doi.org/10.1215/15228517-2008-075] [PMID: 18784279]
[122]
Calinescu, A.A.; Kauss, M.C.; Sultan, Z.; Al-Holou, W.N.; O’Shea, S.K. Stem cells for the treatment of glioblastoma: A 20-year perspective. CNS Oncol., 2021, 10(2), CNS73.
[http://dx.doi.org/10.2217/cns-2020-0026] [PMID: 34006134]
[123]
Benmelouka, A.Y.; Munir, M.; Sayed, A.; Attia, M.S.; Ali, M.M.; Negida, A.; Alghamdi, B.S.; Kamal, M.A.; Barreto, G.E.; Ashraf, G.M.; Meshref, M.; Bahbah, E.I. Neural stem cell-based therapies and glioblastoma management: Current evidence and clinical challenges. Int. J. Mol. Sci., 2021, 22(5), 2258.
[http://dx.doi.org/10.3390/ijms22052258] [PMID: 33668356]
[124]
Abadi, B.; Ahmadi-Zeidabadi, M.; Dini, L.; Vergallo, C. Current status and challenges of stem cell-based therapy for the treating of glioblastoma multiforme. Hematol. Oncol. Stem Cell Ther., 2021, 14(1), 1-15.
[http://dx.doi.org/10.1016/j.hemonc.2020.08.001] [PMID: 32971031]
[125]
Doan, N.B.; Alhajala, H.; Al-Gizawiy, M.M.; Mueller, W.M.; Rand, S.D.; Connelly, J.M.; Cochran, E.J.; Chitambar, C.R.; Clark, P.; Kuo, J.; Schmainda, K.M.; Mirza, S.P. Acid ceramidase and its inhibitors: A de novo drug target and a new class of drugs for killing glioblastoma cancer stem cells with high efficiency. Oncotarget, 2017, 8(68), 112662-112674.
[http://dx.doi.org/10.18632/oncotarget.22637] [PMID: 29348854]
[126]
Mattei, V.; Santilli, F.; Martellucci, S.; Delle Monache, S.; Fabrizi, J.; Colapietro, A.; Angelucci, A.; Festuccia, C. The importance of tumor stem cells in glioblastoma resistance to therapy. Int. J. Mol. Sci., 2021, 22(8), 3863.
[http://dx.doi.org/10.3390/ijms22083863] [PMID: 33917954]
[127]
Mann, J.; Ramakrishna, R.; Magge, R.; Wernicke, A.G. Advances in radiotherapy for glioblastoma. Front. Neurol., 2018, 8, 748.
[http://dx.doi.org/10.3389/fneur.2017.00748] [PMID: 29379468]
[128]
van Solinge, T.S.; Nieland, L.; Chiocca, E.A.; Broekman, M.L.D. Advances in local therapy for glioblastoma: Taking the fight to the tumour. Nat. Rev. Neurol., 2022, 18(4), 221-236.
[http://dx.doi.org/10.1038/s41582-022-00621-0] [PMID: 35277681]
[129]
Van Meir, E.G.; Hadjipanayis, C.G.; Norden, A.D.; Shu, H.K.; Wen, P.Y.; Olson, J.J. Exciting new advances in neuro-oncology: The avenue to a cure for malignant glioma. CA Cancer J. Clin., 2010, 60(3), 166-193.
[http://dx.doi.org/10.3322/caac.20069] [PMID: 20445000]
[130]
Shergalis, A.; Bankhead, A., III; Luesakul, U.; Muangsin, N.; Neamati, N. Current challenges and opportunities in treating glioblastoma. Pharmacol. Rev., 2018, 70(3), 412-445.
[http://dx.doi.org/10.1124/pr.117.014944] [PMID: 29669750]
[131]
Johnson, B.E.; Mazor, T.; Hong, C.; Barnes, M.; Aihara, K.; McLean, C.Y.; Fouse, S.D.; Yamamoto, S.; Ueda, H.; Tatsuno, K.; Asthana, S.; Jalbert, L.E.; Nelson, S.J.; Bollen, A.W.; Gustafson, W.C.; Charron, E.; Weiss, W.A.; Smirnov, I.V.; Song, J.S.; Olshen, A.B.; Cha, S.; Zhao, Y.; Moore, R.A.; Mungall, A.J.; Jones, S.J.M.; Hirst, M.; Marra, M.A.; Saito, N.; Aburatani, H.; Mukasa, A.; Berger, M.S.; Chang, S.M.; Taylor, B.S.; Costello, J.F. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science, 2014, 343(6167), 189-193.
[http://dx.doi.org/10.1126/science.1239947] [PMID: 24336570]
[132]
Lamborn, K.R.; Yung, W.K.A.; Chang, S.M.; Wen, P.Y.; Cloughesy, T.F.; DeAngelis, L.M.; Robins, H.I.; Lieberman, F.S.; Fine, H.A.; Fink, K.L.; Junck, L.; Abrey, L.; Gilbert, M.R.; Mehta, M.; Kuhn, J.G.; Aldape, K.D.; Hibberts, J.; Peterson, P.M.; Prados, M.D. Progression-free survival: An important end point in evaluating therapy for recurrent high-grade gliomas. Neuro-oncol., 2008, 10(2), 162-170.
[http://dx.doi.org/10.1215/15228517-2007-062] [PMID: 18356283]
[133]
Anjum, K.; Shagufta, B.I.; Abbas, S.Q.; Patel, S.; Khan, I.; Shah, S.A.A.; Akhter, N.; Hassan, S.S. Current status and future therapeutic perspectives of glioblastoma multiforme (GBM) therapy: A review. Biomed. Pharmacother., 2017, 92, 681-689.
[http://dx.doi.org/10.1016/j.biopha.2017.05.125] [PMID: 28582760]
[134]
Leone, A.; Colamaria, A.; Fochi, N.P.; Sacco, M.; Landriscina, M.; Parbonetti, G.; de Notaris, M.; Coppola, G.; De Santis, E.; Giordano, G.; Carbone, F. Recurrent glioblastoma treatment: State of the art and future perspectives in the precision medicine era. Biomedicines, 2022, 10(8), 1927.
[http://dx.doi.org/10.3390/biomedicines10081927] [PMID: 36009473]
[135]
Bush, N.A.O.; Chang, S.M.; Berger, M.S. Current and future strategies for treatment of glioma. Neurosurg. Rev., 2017, 40(1), 1-14.
[http://dx.doi.org/10.1007/s10143-016-0709-8] [PMID: 27085859]
[136]
Brem, H.; Piantadosi, S.; Burger, P.C.; Walker, M.; Selker, R.; Vick, N.A.; Black, K.; Sisti, M.; Brem, S.; Mohr, G.; Muller, P.; Morawetz, R.; Schold, S.C. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Lancet, 1995, 345(8956), 1008-1012.
[http://dx.doi.org/10.1016/S0140-6736(95)90755-6] [PMID: 7723496]
[137]
Kwiatkowska, A.; Nandhu, M.; Behera, P.; Chiocca, E.; Viapiano, M. Strategies in gene therapy for glioblastoma. Cancers, 2013, 5(4), 1271-1305.
[http://dx.doi.org/10.3390/cancers5041271] [PMID: 24202446]
[138]
Dhez, A.C.; Benedetti, E.; Antonosante, A.; Panella, G.; Ranieri, B.; Florio, T.M.; Cristiano, L.; Angelucci, F.; Giansanti, F.; Di Leandro, L.; D’An-gelo, M. Targeted therapy of human glioblastoma via delivery of a toxin through a peptide directed to cell surface nucleolin. J. Cellular Physiol., 2018, 233(5), 4091-4105.
[http://dx.doi.org/10.1002/jcp.26205]
[139]
Sottoriva, A.; Spiteri, I.; Piccirillo, S.G.M.; Touloumis, A.; Collins, V.P.; Marioni, J.C.; Curtis, C.; Watts, C.; Tavaré, S. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc. Natl. Acad. Sci. USA, 2013, 110(10), 4009-4014.
[http://dx.doi.org/10.1073/pnas.1219747110] [PMID: 23412337]
[140]
Gallego, O. Nonsurgical treatment of recurrent glioblastoma. Curr. Oncol., 2015, 22(4), 273-281.
[http://dx.doi.org/10.3747/co.22.2436] [PMID: 26300678]
[141]
Bastiancich, C.; Bastiat, G.; Lagarce, F. Gemcitabine and glioblastoma: Challenges and current perspectives. Drug Discov. Today, 2018, 23(2), 416-423.
[http://dx.doi.org/10.1016/j.drudis.2017.10.010] [PMID: 29074439]
[142]
Janjua, T.I.; Rewatkar, P.; Ahmed-Cox, A.; Saeed, I.; Mansfeld, F.M.; Kulshreshtha, R.; Kumeria, T.; Ziegler, D.S.; Kavallaris, M.; Mazzieri, R.; Popat, A. Frontiers in the treatment of glioblastoma: Past, present and emerging. Adv. Drug Deliv. Rev., 2021, 171, 108-138.
[http://dx.doi.org/10.1016/j.addr.2021.01.012] [PMID: 33486006]
[143]
Kamiya-Matsuoka, C.; Gilbert, M.R. Treating recurrent glioblastoma: An update. CNS Oncol., 2015, 4(2), 91-104.
[http://dx.doi.org/10.2217/cns.14.55] [PMID: 25768333]