[1]
Tabeling, P. Introduction to microfluidics; Oxford University Press: Oxford, 2005.
[2]
Weigl, B.H.; Hedine, K. Lab-on-a-chip-based separation and detection technology for life science applications. Am. Biotechnol. Lab., 2002, 20, 28-30.
[3]
Fainman, Y.; Psaltis, D.; Yang, C. Optofluidics: Fundamentals, devices, and applications; McGraw-Hill: New York, 2010.
[5]
Bruus, H. Theoritical microfluidics; Oxford University Press: Oxford, 2008.
[7]
Geankoplis, C.J. Transport Processes and Separation Process Principles; Prentice Hall: New Jersey, 2003.
[9]
Nguyen, N.T. Micromixers: Fundamentals, design and fabrication; William Andrew Inc: Norwich, 2008.
[15]
Paul, E.L.; Atiemo-Obeng, V.A.; Kresta, S.M. Handbook of industrial mixing science and practice; John Wiley & Sons Inc: New Jersey, 2004.
[16]
Hamidi, I.; Ouederni, A. Single phase flow characteristics in rectangular microchannel: Entrance length and friction factor. Int. J. Innov. Appl. Stud., 2014, 8, 819-826.
[17]
Hengzi, W.; Pio, I.; Erol, H.; Syed, M.; Rowan, D. Mixing of liquids using obstacles in microchannels. Proc. SPIE Int. Soc. Opt. Eng., 2001, 204-212.
[26]
Itomlenskis, M.; Fodor, P.S.; Kaufman, M. Design of passive micromixers using the COMSOL multiphysics software package. Proceedings of the COMSOL Conference, Boston2008.
[30]
Quiroz, C.A.C.; Azarbadegan, A.; Moeendarbary, E. An efficient passive planar micromixer with fin shaped baffles in the tee channel for wide Reynolds number flow range. World Acad. Sci. Eng. Technol., 2010, 4, 127-132.
[56]
Gleichmann, N.; Horbert, P.; Malsch, D.; Henkel, T. System simulation for microfluidic design automation of lab-on-a-chip devices.15th International Conference on Miniaturized Systems for Chemistry and Life Sciences; 2-6 OctSeattle, Washington, USA, 2011, pp. 915-917.
[58]
Beebe, D.J.; Adrian, R.J.; Olsen, M.G.; Stremler, M.A.; Aref, H.; Jo, B.H. Passive mixing in microchannels: Fabrication and flow experiments. Mech. Ind., 2001, 2, 343-348.
[72]
Odiba, S.; Olea, M.; Hodgson, S.; Adgar, A. Computational fluid dynamics for microreactors used in catalytic oxidation of propane. Proceedings of the 213 COMSOL Conference, Boston2013.
[73]
Tsuchiya, K.; Nunokawa, T.; Kikuchi, A.; Nakao, M. Study on multi-layering of metal micro-reactor using diffusion bonding. SeisanKenkyu., 2012, 64, 83-86.
[109]
Sarma, P.; Borah, D.J.; Patowari, P.K.; Likhite, A. Comparative machinability study of ADI-4h and mild steel using WEDM. Int. J. Mach. Mach. Mater., 2023, 25(1), 69-88.
[116]
Sarma, P.; Patowari, P.K. Alternate soft lithographic approaches for microfluidic device fabrication using PCM and EDM based tools. In: Advances in science and technology; Kakati, B; Bora, D, Eds.; i-manager publications, 2019; I, p. 1-5.
[129]
Ionita, C.N.; Mokin, M.; Varble, N.; Bednarek, D.R.; Xiang, J.; Snyder, K.V. Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing. Proc. SPIE Int. Soc. Opt. Eng., 2014, 9038, 90380M.
[150]
Soni, P.; Anupom, T.; Lesanpezeshki, L.; Rahman, M.; Hewitt, J.E.; Vellone, M. Microfluidics-integrated spaceflight hardware for measuring muscle strength of caenorhabditis elegans on the international space station. NPJ Microgravity, 2022, 8, 50.