Effect of Curcumin-containing Nanofibrous Gelatin-hydroxyapatite Scaffold on Proliferation and Early Osteogenic Differentiation of Dental Pulp Stem Cells

Page: [262 - 268] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: In recent years, the electrospinning method has received attention because of its usage in producing a mimetic nanocomposite scaffold for tissue regeneration. Hydroxyapatite and gelatin are suitable materials for producing scaffolds, and curcumin has the osteogenesis induction effect.

Aims: This study aimed to evaluate the toxicity and early osteogenic differentiation stimulation of nanofibrous gelatin-hydroxyapatite scaffold containing curcumin on dental pulp stem cells (DPSCs).

Objective: The objective of the present investigation was the evaluation of the proliferative effect and primary osteogenic stimulation of DPSCs with a nanofibrous gelatin-hydroxyapatite scaffold containing curcumin. Hydroxyapatite and gelatin were used as suitable and biocompatible materials to make a scaffold suitable for stimulating osteogenesis. Curcumin was added to the scaffold as an osteogenic differentiation- enhancing agent.

Methods: The effect of nano-scaffold on the proliferation of DPSCs was evaluated. The activity of alkaline phosphatase (ALP) as the early osteogenic marker was considered to assess primary osteogenesis stimulation in DPSCs.

Results: The nanofibrous gelatin-hydroxyapatite scaffold containing curcumin significantly increased the proliferation and the ALP activity of DPSCs (P<0.05). The proliferative effect was insignificant in the first 2 days, but the scaffold increased cell proliferation by more than 40% in the fourth and sixth days. The prepared scaffold increased the activity of the ALP of DPSCs by 60% compared with the control after 14 days (p<0.05).

Conclusion: The produced nanofibrous gelatin-hydroxyapatite scaffold containing curcumin can be utilized as a potential candidate in tissue engineering and regeneration of bone and tooth. Future Prospects: The prepared scaffold in the present study could be a beneficial biomaterial for tissue engineering and the regeneration of bone and tooth soon.

Graphical Abstract

[1]
Wubneh A, Tsekoura EK, Ayranci C, Uludağ H. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomater 2018; 80: 1-30.
[http://dx.doi.org/10.1016/j.actbio.2018.09.031] [PMID: 30248515]
[2]
Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering. Nat Rev Mater 2020; 5(8): 584-603.
[http://dx.doi.org/10.1038/s41578-020-0204-2]
[3]
Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: A review. RSC Adv 2019; 9(45): 26252-62.
[http://dx.doi.org/10.1039/C9RA05214C] [PMID: 35531040]
[4]
Zhao R, Yang R, Cooper PR, Khurshid Z, Shavandi A, Ratnayake J. Bone grafts and substitutes in dentistry: A review of current trends and developments. Molecules 2021; 26(10): 3007.
[http://dx.doi.org/10.3390/molecules26103007] [PMID: 34070157]
[5]
Govoni M, Vivarelli L, Mazzotta A, Stagni C, Maso A, Dallari D. Commercial bone grafts claimed as an alternative to autografts: Current trends for clinical applications in orthopaedics. Materials 2021; 14(12): 3290.
[http://dx.doi.org/10.3390/ma14123290] [PMID: 34198691]
[6]
Ahmadian E, Shahi S, Yazdani J, Maleki DS, Sharifi S. Local treatment of the dental caries using nanomaterials. Biomed Pharmacother 2018; 108: 443-7.
[http://dx.doi.org/10.1016/j.biopha.2018.09.026] [PMID: 30241047]
[7]
Dalir Abdolahinia E, Barati G, Ranjbar-Navazi Z, et al. Application of nanogels as drug delivery systems in multicellular spheroid tumor model. J Drug Deliv Sci Technol 2022; 68: 103109.
[http://dx.doi.org/10.1016/j.jddst.2022.103109]
[8]
Sharifi S, Dalir Abdolahinia E, Ghavimi MA, et al. Effect of curcumin-loaded mesoporous silica nanoparticles on the head and neck cancer cell line, HN5. Curr Issues Mol Biol 2022; 44(11): 5247-59.
[http://dx.doi.org/10.3390/cimb44110357] [PMID: 36354669]
[9]
Singh RP, Singh P, Singh KR. Introduction to composite materials: Nanocomposites and their potential applications, composite materials. CRC Press 2021; pp. 1-28.
[10]
Hassan T, Salam A, Khan A, et al. Functional nanocomposites and their potential applications: A review. J Polym Res 2021; 28(2): 36.
[http://dx.doi.org/10.1007/s10965-021-02408-1]
[11]
Shahi S, Dehghani F, Abdolahinia ED, et al. Effect of gelatinous spongy scaffold containing nano-hydroxyapatite on the induction of odontogenic activity of dental pulp stem cells. J King Saud Univ Sci 2022; 34(8): 102340.
[http://dx.doi.org/10.1016/j.jksus.2022.102340]
[12]
Gupte MJ, Ma PX. Nanofibrous scaffolds for dental and craniofacial applications. J Dent Res 2012; 91(3): 227-34.
[http://dx.doi.org/10.1177/0022034511417441] [PMID: 21828356]
[13]
Hixon KR, Eberlin CT, Pendyala M, de la Lastra AA, Sell SA. Scaffolds for use in craniofacial bone regeneration, craniofacial development. Springer 2022; pp. 223-34.
[14]
Maleki Dizaj S, Sharifi S, Jahangiri A. Electrospun nanofibers as versatile platform in antimicrobial delivery: Current state and perspectives. Pharm Dev Technol 2019; 24(10): 1187-99.
[http://dx.doi.org/10.1080/10837450.2019.1656238] [PMID: 31424308]
[15]
Pramanik S, Kharche S, More N, Ranglani D, Singh G, Kapusetti G. Natural biopolymers for bone tissue engineering: A brief review. Eng Regen 2023; 4(2): 193-204.
[http://dx.doi.org/10.1016/j.engreg.2022.12.002]
[16]
Zhang M, Yang M, Woo MW, Li Y, Han W, Dang X. High-mechanical strength carboxymethyl chitosan-based hydrogel film for antibacterial wound dressing. Carbohydr Polym 2021; 256: 117590.
[http://dx.doi.org/10.1016/j.carbpol.2020.117590] [PMID: 33483076]
[17]
Akilbekova D, Shaimerdenova M, Adilov S, Berillo D. Biocompatible scaffolds based on natural polymers for regenerative medicine. Int J Biol Macromol 2018; 114: 324-33.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.116] [PMID: 29578021]
[18]
Djagny KB, Wang Z, Xu S. Gelatin: A valuable protein for food and pharmaceutical industries (Review). Crit Rev Food Sci Nutr 2001; 41(6): 481-92.
[http://dx.doi.org/10.1080/20014091091904] [PMID: 11592686]
[19]
Samiei M, Alipour M, Khezri K, et al. Application of collagen and mesenchymal stem cells in regenerative dentistry. Curr Stem Cell Res Ther 2021.
[PMID: 34931969]
[20]
Zhu Y, Gao C, He T, Shen J. Endothelium regeneration on luminal surface of polyurethane vascular scaffold modified with diamine and covalently grafted with gelatin. Biomaterials 2004; 25(3): 423-30.
[http://dx.doi.org/10.1016/S0142-9612(03)00549-0] [PMID: 14585690]
[21]
Salamon A, van Vlierberghe S, van Nieuwenhove I, et al. Gelatin-based hydrogels promote chondrogenic differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Materials 2014; 7(2): 1342-59.
[http://dx.doi.org/10.3390/ma7021342] [PMID: 28788517]
[22]
Qu T, Liu X. Nano-structured gelatin/bioactive glass hybrid scaffolds for the enhancement of odontogenic differentiation of human dental pulp stem cells. J Mater Chem B Mater Biol Med 2013; 1(37): 4764-72.
[http://dx.doi.org/10.1039/c3tb21002b] [PMID: 24098854]
[23]
Kilian O, Wenisch S, Karnati S, et al. Observations on the microvasculature of bone defects filled with biodegradable nanoparticulate hydroxyapatite. Biomaterials 2008; 29(24-25): 3429-37.
[http://dx.doi.org/10.1016/j.biomaterials.2008.05.003] [PMID: 18501961]
[24]
Honda Y, Anada T, Kamakura S, Nakamura M, Sugawara S, Suzuki O. Elevated extracellular calcium stimulates secretion of bone morphogenetic protein 2 by a macrophage cell line. Biochem Biophys Res Commun 2006; 345(3): 1155-60.
[http://dx.doi.org/10.1016/j.bbrc.2006.05.013] [PMID: 16716259]
[25]
Rui L, Yang M, Zhu D, Han W, Dang X. High-modulus nanocomposite scaffold based on waterborne polyurethane grafted collagen polypeptide/hydroxyapatite for potential bone healing. Mater Today Commun 2021; 27: 102222.
[http://dx.doi.org/10.1016/j.mtcomm.2021.102222]
[26]
Anita Lett J, Sagadevan S, Fatimah I, et al. Recent advances in natural polymer-based hydroxyapatite scaffolds: Properties and applications. Eur Polym J 2021; 148: 110360.
[http://dx.doi.org/10.1016/j.eurpolymj.2021.110360]
[27]
Diba M, Kharaziha M, Fathi MH, Gholipourmalekabadi M, Samadikuchaksaraei A. Preparation and characterization of polycaprolactone/forsterite nanocomposite porous scaffolds designed for bone tissue regeneration. Compos Sci Technol 2012; 72(6): 716-23.
[http://dx.doi.org/10.1016/j.compscitech.2012.01.023]
[28]
Lien SM, Li WT, Huang TJ. Genipin-crosslinked gelatin scaffolds for articular cartilage tissue engineering with a novel crosslinking method. Mater Sci Eng C 2008; 28(1): 36-43.
[http://dx.doi.org/10.1016/j.msec.2006.12.015]
[29]
Shahi S, Sharifi S, Khalilov R, Dizaj SM, Abdolahinia ED. Gelatin-hydroxyapatite fibrous nanocomposite for regenerative dentistry and bone tissue engineering. Open Dent J 2022; 16(1): e187421062208200.
[http://dx.doi.org/10.2174/18742106-v16-e2208200]
[30]
Azami M, Tavakol S, Samadikuchaksaraei A, et al. A porous hydroxyapatite/gelatin nanocomposite scaffold for bone tissue repair: in vitro and in vivo evaluation. J Biomater Sci Polym Ed 2012; 23(18): 2353-68.
[http://dx.doi.org/10.1163/156856211X617713] [PMID: 22244095]
[31]
Mohseni M, Samadi N, Ghanbari P, et al. Co-treatment by docetaxel and vinblastine breaks down P-glycoprotein mediated chemo-resistance. Iran J Basic Med Sci 2016; 19(3): 300-9.
[PMID: 27114800]
[32]
Bakhshaiesh TO, Armat M, Shanehbandi D, et al. Arsenic trioxide promotes paclitaxel cytotoxicity in resistant breast cancer cells. Asian Pac J Cancer Prev 2015; 16(13): 5191-7.
[http://dx.doi.org/10.7314/APJCP.2015.16.13.5191] [PMID: 26225652]
[33]
Abadi AJ, Mirzaei S, Mahabady MK, et al. Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects. Phytother Res 2022; 36(1): 189-213.
[http://dx.doi.org/10.1002/ptr.7305] [PMID: 34697839]
[34]
Abd El-Hack ME, El-Saadony MT, Swelum AA, et al. Curcumin, the active substance of turmeric: its effects on health and ways to improve its bioavailability. J Sci Food Agric 2021; 101(14): 5747-62.
[http://dx.doi.org/10.1002/jsfa.11372] [PMID: 34143894]
[35]
Shirsat SP, Tambe KP, Patil GD, Dhakad GG. Review on curcuma aromatic as an herbal medicine. Res J Pahrmacol Pharmacodyn 2022; 14(2): 89-92.
[http://dx.doi.org/10.52711/2321-5836.2022.00016]
[36]
Negahdari R, Ghavimi MA, Barzegar A, et al. Antibacterial effect of nanocurcumin inside the implant fixture: An in vitro study. Clin Exp Dent Res 2021; 7(2): 163-9.
[http://dx.doi.org/10.1002/cre2.348] [PMID: 33210463]
[37]
Maleki Dizaj S, Alipour M, Dalir AE, et al. Curcumin nanoformulations: Beneficial nanomedicine against cancer. Phytother Res 2022; 36(3): 1156-81.
[http://dx.doi.org/10.1002/ptr.7389] [PMID: 35129230]
[38]
Maleki Dizaj S, Sharifi S, Tavakoli F, et al. Curcumin-loaded silica nanoparticles: Applications in infectious disease and food industry. Nanomaterials 2022; 12(16): 2848.
[http://dx.doi.org/10.3390/nano12162848] [PMID: 36014710]
[39]
Dalir AE, Hajisadeghi S, Moayedi BZ, et al. Potential applications of medicinal herbs and phytochemicals in oral and dental health: Status quo and future perspectives. Oral Dis 2022.
[40]
Sharifi S, Moghaddam FA, Abedi A, et al. Phytochemicals impact on osteogenic differentiation of mesenchymal stem cells. Biofactors 2020; 46(6): 874-93.
[http://dx.doi.org/10.1002/biof.1682] [PMID: 33037744]
[41]
Khezri K, Maleki DS, Rahbar SY, et al. Osteogenic differentiation of mesenchymal stem cells via curcumin-containing nanoscaffolds. Stem Cells Int 2021; 2021: 1-9.
[http://dx.doi.org/10.1155/2021/1520052] [PMID: 34335789]
[42]
Samiei M, Abedi A, Sharifi S, Maleki Dizaj S. Early osteogenic differentiation stimulation of dental pulp stem cells by calcitriol and curcumin. Stem Cells Int 2021; 2021: 1-7.
[http://dx.doi.org/10.1155/2021/9980137] [PMID: 34122559]
[43]
Samiei M, Arablouye Moghaddam F, Dalir Abdolahinia E, Ahmadian E, Sharifi S, Maleki Dizaj S. Influence of curcumin nanocrystals on the early osteogenic differentiation and proliferation of dental pulp stem cells. J Nanomater 2022; 2022: 1-8.
[http://dx.doi.org/10.1155/2022/8517543]
[44]
Sharifi S. Zaheri kA, Maleki DS, Rezaei Y. Preparation, physicochemical assessment and the antimicrobial action of hydroxyapatite–gelatin/curcumin nanofibrous composites as a dental biomaterial. Biomimetics 2021; 7(1): 4.
[http://dx.doi.org/10.3390/biomimetics7010004] [PMID: 35076470]
[45]
Hamidi A, Sharifi S, Davaran S, Ghasemi S, Omidi Y, Rashidi M-R. Novel aldehyde-terminated dendrimers; synthesis and cytotoxicity assay. Bioimpacts 2012; 2(2): 97-103.
[PMID: 23678447]
[46]
Ghavimi MA, Bani Shahabadi A, Jarolmasjed S, Memar MY, Maleki Dizaj S, Sharifi S. Nanofibrous asymmetric collagen/curcumin membrane containing aspirin-loaded PLGA nanoparticles for guided bone regeneration. Sci Rep 2020; 10(1): 18200.
[http://dx.doi.org/10.1038/s41598-020-75454-2] [PMID: 33097790]
[47]
Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 1991; 64(4): 841-8.
[http://dx.doi.org/10.1016/0092-8674(91)90512-W] [PMID: 1847668]
[48]
Kim HW, Lee HH, Knowles JC. Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly(lactic acid) for bone regenera-tion. J Biomed Mater Res A 2006; 79A(3): 643-9.
[http://dx.doi.org/10.1002/jbm.a.30866] [PMID: 16826596]
[49]
Kim HW, Kim HE, Salih V. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin–hydroxyapatite for tissue engineering scaffolds. Biomaterials 2005; 26(25): 5221-30.
[http://dx.doi.org/10.1016/j.biomaterials.2005.01.047] [PMID: 15792549]
[50]
Chen P, Liu L, Pan J, Mei J, Li C, Zheng Y. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering. Mater Sci Eng C 2019; 97: 325-35.
[http://dx.doi.org/10.1016/j.msec.2018.12.027] [PMID: 30678918]
[51]
Salifu AA, Lekakou C, Labeed FH. Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering. J Biomed Mater Res A 2017; 105(7): 1911-26.
[52]
Sattary M, Kefayat A, Bigham A, Rafienia M. Polycaprolactone/Gelatin/Hydroxyapatite nanocomposite scaffold seeded with Stem cells from human exfoliated deciduous teeth to enhance bone repair: in vitro and in vivo studies. Materials Technology 2022 Apr 16; 37(5): 302-15.
[http://dx.doi.org/10.1080/10667857.2020.1837488]
[53]
Zambrano LMG, Brandao DA, Rocha FRG, et al. Local administration of curcumin-loaded nanoparticles effectively inhibits ininflammation and bone resorption associated with experimental periodontal disease. Sci Rep 2018; 8(1): 6652.
[http://dx.doi.org/10.1038/s41598-018-24866-2] [PMID: 29703905]
[54]
Li G, Chen L, Chen K. Curcumin promotes femoral fracture healing in a rat model by activation of autophagy. Med Sci Monitor 2018; 24: 4064-72.
[http://dx.doi.org/10.12659/MSM.908311] [PMID: 29902161]
[55]
Son HE, Kim EJ, Jang WG. Curcumin induces osteoblast differentiation tiation through mild-endoplasmic reticulum stress-mediated such as BMP2 on osteoblast cells. Life Science 2018; 193: 9-34.
[http://dx.doi.org/10.1016/j.lfs.2017.12.008] [PMID: 29223538]