Abstract
Autism spectrum disorder (ASD) includes a heterogeneous group of complex neurodevelopmental
disorders characterized by atypical behaviors with two core pathological manifestations: deficits
in social interaction/communication and repetitive behaviors, which are associated with disturbed
redox homeostasis. Modulation of cellular resilience mechanisms induced by low levels of stressors
represents a novel approach for the development of therapeutic strategies, and in this context, neuroprotective
effects of a wide range of polyphenol compounds have been demonstrated in several in vitro
and in vivo studies and thoroughly reviewed. Mushrooms have been used in traditional medicine for
many years and have been associated with a long list of therapeutic properties, including antitumor,
immunomodulatory, antioxidant, antiviral, antibacterial, and hepatoprotective effects. Our recent studies
have strikingly indicated the presence of polyphenols in nutritional mushrooms and demonstrated
their protective effects in different models of neurodegenerative disorders in humans and rats. Although
their therapeutic effects are exerted through multiple mechanisms, increasing attention is focusing
on their capacity to induce endogenous defense systems by modulating cellular signaling processes
such as nuclear factor erythroid 2 related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB) pathways.
Here we discuss the protective role of hormesis and its modulation by hormetic nutrients in
ASD.
Keywords:
Autism spectrum disorders, vitagenes, antioxidants, hormesis, C. elegans, mushrooms.
Graphical Abstract
[21]
Glessner, J.T.; Wang, K.; Cai, G.; Korvatska, O.; Kim, C.E.; Wood, S.; Zhang, H.; Estes, A.; Brune, C.W.; Bradfield, J.P.; Imielinski, M.; Frackelton, E.C.; Reichert, J.; Crawford, E.L.; Munson, J.; Sleiman, P.M.A.; Chiavacci, R.; Annaiah, K.; Thomas, K.; Hou, C.; Glaberson, W.; Flory, J.; Otieno, F.; Garris, M.; Soorya, L.; Klei, L.; Piven, J.; Meyer, K.J.; Anagnostou, E.; Sakurai, T.; Game, R.M.; Rudd, D.S.; Zurawiecki, D.; McDougle, C.J.; Davis, L.K.; Miller, J.; Posey, D.J.; Michaels, S.; Kolevzon, A.; Silverman, J.M.; Bernier, R.; Levy, S.E.; Schultz, R.T.; Dawson, G.; Owley, T.; McMahon, W.M.; Wassink, T.H.; Sweeney, J.A.; Nurnberger, J.I.; Coon, H.; Sutcliffe, J.S.; Minshew, N.J.; Grant, S.F.A.; Bucan, M.; Cook, E.H.; Buxbaum, J.D.; Devlin, B.; Schellenberg, G.D.; Hakonarson, H. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes.
Nature, 2009,
459(7246), 569-573.
[
http://dx.doi.org/10.1038/nature07953] [PMID:
19404257]
[28]
Iossifov, I.; O’Roak, B.J.; Sanders, S.J.; Ronemus, M.; Krumm, N.; Levy, D.; Stessman, H.A.; Witherspoon, K.T.; Vives, L.; Patterson, K.E.; Smith, J.D.; Paeper, B.; Nickerson, D.A.; Dea, J.; Dong, S.; Gonzalez, L.E.; Mandell, J.D.; Mane, S.M.; Murtha, M.T.; Sullivan, C.A.; Walker, M.F.; Waqar, Z.; Wei, L.; Willsey, A.J.; Yamrom, B.; Lee, Y.; Grabowska, E.; Dalkic, E.; Wang, Z.; Marks, S.; Andrews, P.; Leotta, A.; Kendall, J.; Hakker, I.; Rosenbaum, J.; Ma, B.; Rodgers, L.; Troge, J.; Narzisi, G.; Yoon, S.; Schatz, M.C.; Ye, K.; McCombie, W.R.; Shendure, J.; Eichler, E.E.; State, M.W.; Wigler, M. The contribution of de novo coding mutations to autism spectrum disorder.
Nature, 2014,
515(7526), 216-221.
[
http://dx.doi.org/10.1038/nature13908] [PMID:
25363768]