Current Genomics

Author(s): Weiyang Chen* and Weiwei Li

DOI: 10.2174/1389202924666230816150732

DownloadDownload PDF Flyer Cite As
Application of Feature Definition and Quantification in Biological Sequence Analysis

Page: [64 - 65] Pages: 2

  • * (Excluding Mailing and Handling)

Abstract

Biological sequence analysis is the most fundamental work in bioinformatics. Many research methods have been developed in the development of biological sequence analysis. These methods include sequence alignment-based methods and alignment-free methods. In addition, there are also some sequence analysis methods based on the feature definition and quantification of the sequence itself. This editorial introduces the methods of biological sequence analysis and explores the significance of defining features and quantitative research of biological sequences.

Keywords: Biological sequence, sequence alignment, alignment-free analysis, texture feature, feature definition, quantitative research.

[1]
Chiu, J.K.H.; Ong, R.T.H. Clustering biological sequences with dynamic sequence similarity threshold. BMC Bioinformatics, 2022, 23(1), 108.
[http://dx.doi.org/10.1186/s12859-022-04643-9] [PMID: 35354426]
[2]
Vinga, S. Editorial: Alignment-free methods in computational biology. Brief. Bioinform., 2014, 15(3), 341-342.
[http://dx.doi.org/10.1093/bib/bbu005] [PMID: 24819825]
[3]
Bonham-Carter, O.; Steele, J.; Bastola, D. Alignment-free genetic sequence comparisons: A review of recent approaches by word analysis. Brief. Bioinform., 2014, 15(6), 890-905.
[http://dx.doi.org/10.1093/bib/bbt052] [PMID: 23904502]
[4]
Delibaş E.; Arslan, A.; Şeker, A.; Diri, B. A novel alignment-free DNA sequence similarity analysis approach based on top-k n-gram match-up. J. Mol. Graph. Model., 2020, 100, 107693.
[http://dx.doi.org/10.1016/j.jmgm.2020.107693] [PMID: 32805559]
[5]
Bohnsack, K.S.; Kaden, M.; Abel, J.; Villmann, T. Alignment-free sequence comparison: A systematic survey from a machine learning perspective. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2022, 20(1), 1.
[http://dx.doi.org/10.1109/TCBB.2022.3140873] [PMID: 34990369]
[6]
Vinga, S. Information theory applications for biological sequence analysis. Brief. Bioinform., 2014, 15(3), 376-389.
[http://dx.doi.org/10.1093/bib/bbt068] [PMID: 24058049]
[7]
Ferraro Petrillo, U.; Palini, F.; Cattaneo, G.; Giancarlo, R. Alignment-free genomic analysis via a big data spark platform. Bioinformatics, 2021, 37(12), 1658-1665.
[http://dx.doi.org/10.1093/bioinformatics/btab014] [PMID: 33471066]
[8]
Chen, W.; Liao, B.; Li, W. Use of image texture analysis to find DNA sequence similarities. J. Theor. Biol., 2018, 455, 1-6.
[http://dx.doi.org/10.1016/j.jtbi.2018.07.001] [PMID: 29981336]
[9]
Chen, W.; Liao, B.; Liu, Y.; Zhu, W.; Su, Z. A numerical representation of DNA sequences and its applications. MATCH Commun. Math. Comput. Chem., 2008, 60(2), 291-300.
[10]
Chen, W.; Li, W. Definition and usage of texture feature for biological sequence. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2021, 18(2), 773-776.
[http://dx.doi.org/10.1109/TCBB.2020.2973084] [PMID: 32070991]
[11]
Chen, W.; Liao, B.; Li, W.; Dong, X.; Flavel, M.; Jois, M.; Li, G.; Xian, B. Segmenting microscopy images of multi-well plates based on image contrast. Microsc. Microanal., 2017, 23(5), 932-937.
[http://dx.doi.org/10.1017/S1431927617012375] [PMID: 28712372]
[12]
Gao, S.; Chen, W.; Zhang, N.; Xu, C.; Jing, H.; Zhang, W.; Han, G.; Flavel, M.; Jois, M.; Zeng, Y.; Han, J.D.J.; Xian, B.; Li, G. A High-throughput Assay for the Prediction of Chemical Toxicity by automated phenotypic profiling of Caenorhabditis elegans J. Vis. Exp., 2019, 145
[http://dx.doi.org/10.3791/59082] [PMID: 30933063]
[13]
Chen, W.; Qian, W.; Wu, G.; Chen, W.; Xian, B.; Chen, X.; Cao, Y.; Green, C.D.; Zhao, F.; Tang, K.; Han, J.D.J. Three-dimensional human facial morphologies as robust aging markers. Cell Res., 2015, 25(5), 574-587.
[http://dx.doi.org/10.1038/cr.2015.36] [PMID: 25828530]