Recent Patents on Nanotechnology

Author(s): Simranjeet Kaur and Dilpreet Singh*

DOI: 10.2174/1872210517666230816122824

A Short Appraisal of Magnetic Nanoparticles for Breast Cancer: In vitro and In vivo Research

Page: [130 - 139] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

The increasing incidence of breast cancer and the associated morbidity due to higher metastasis created the urge to develop a nanocarrier that can be used as a potent therapeutic carrier with targeting efficacy. The use of superparamagnetic nanoparticles in breast cancer research and treatment has gained considerable attention in recent years. Magnetic nanoparticles (MNPs) can be used to construct nanocarriers since they possess superior properties such as superparamagnetism, easy surface functionalization to attach ligands, and non-immunogenic. MNPs are superior carriers that are used to target cancer cells without harming the normal cells in the body, which leads to therapeutic efficacy in the body. Along with their established anticancer potential and enhanced drug concentration at endosomal pH, the superparamagnetic property of MNPs was further exploited for their applications in reticuloendothelial uptake, drug delivery, medical imaging, and theranostics applications in breast cancer. Moreover, the clinical translational of MNPs, along with future prospects and key challenges in vivo, have been duly presented in the final review. The scientists preferred the ongoing research in MNPs due to their high biocompatibility and ease of targeting at molecular and cellular levels. The review highlighted the in vitro and in vivo research and patent supported data for potential use of MNPs for the treatment of breast cancer.

Graphical Abstract

[1]
Mathur P, Sathishkumar K, Chaturvedi M, et al. Cancer statistics, 2020: Report from national cancer registry programme, India. JCO Glob Oncol 2020; 6(6): 1063-75.
[http://dx.doi.org/10.1200/GO.20.00122] [PMID: 32673076]
[2]
Dsouza NDR, Murthy NS, Aras RY. Projection of cancer incident cases for India -till 2026. Asian Pac J Cancer Prev 2013; 14(7): 4379-86.
[http://dx.doi.org/10.7314/APJCP.2013.14.7.4379] [PMID: 23992007]
[3]
Luo C, Wang P, He S, Zhu J, Shi Y, Wang J. Progress and prospect of immunotherapy for triple-negative breast cancer. Front Oncol 2022; 12: 919072.
[http://dx.doi.org/10.3389/fonc.2022.919072] [PMID: 35795050]
[4]
Ghoncheh M, Pournamdar Z, Salehiniya H. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac J Cancer Prev 2016; 17(3): 43-6.
[http://dx.doi.org/10.7314/APJCP.2016.17.S3.43]
[5]
Singh A, Neupane YR, Mangla B, Shafi S, Kohli K. PEGylated nanoliposomes potentiated oral combination therapy for effective cancer treatment. Curr Drug Deliv 2020; 17(9): 728-35.
[http://dx.doi.org/10.2174/1567201817666200724170708] [PMID: 32713341]
[6]
Jafari SH, Saadatpour Z, Salmaninejad A, et al. Breast cancer diagnosis: Imaging techniques and biochemical markers. J Cell Physiol 2018; 233(7): 5200-13.
[http://dx.doi.org/10.1002/jcp.26379] [PMID: 29219189]
[7]
Giaquinto AN, Sung H, Miller KD, et al. Breast cancer statistics, 2022. CA Cancer J Clin 2022; 72(6): 524-41.
[http://dx.doi.org/10.3322/caac.21754] [PMID: 36190501]
[8]
Nicolini A, Ferrari P, Duffy MJ. In Prognostic and predictive biomarkers in breast cancer: Past, present and future, Seminars in cancer biology. In: Elsevier Amsterdam, The Netherlands 2018; pp. 56-73.
[9]
Sangaiya P, Jayaprakash R. A review on iron oxide nanoparticles and their biomedical applications. J Supercond Nov Magn 2018; 31(11): 3397-413.
[http://dx.doi.org/10.1007/s10948-018-4841-2]
[10]
Sun G, Xing W, Xing R, Cong L, Tong S, Yu S. Targeting breast cancer cells with a CuInS2/ZnS quantum dot-labeled Ki-67 bioprobe. Oncol Lett 2018; 15(2): 2471-6.
[PMID: 29434960]
[11]
Waks AG, Winer EP. Breast cancer treatment: A review. JAMA 2019; 321(3): 288-300.
[http://dx.doi.org/10.1001/jama.2018.19323] [PMID: 30667505]
[12]
Barzaman K, Karami J, Zarei Z, et al. Breast cancer: Biology, biomarkers, and treatments. Int Immunopharmacol 2020; 84: 106535.
[http://dx.doi.org/10.1016/j.intimp.2020.106535] [PMID: 32361569]
[13]
Talluri SV, Kuppusamy G, Karri VVSR, Tummala S, Madhunapantula SV. Lipid-based nanocarriers for breast cancer treatment: Comprehensive review. Drug Deliv 2016; 23(4): 1291-305.
[http://dx.doi.org/10.3109/10717544.2015.1092183] [PMID: 26430913]
[14]
Chaturvedi S, Garg A. A comprehensive review on novel delivery approaches for exemestane. J Drug Deliv Sci Technol 2022; 75: 103655.
[http://dx.doi.org/10.1016/j.jddst.2022.103655]
[15]
Teles RHG, Moralles HF, Cominetti MR. Global trends in nanomedicine research on triple negative breast cancer: A bibliometric analysis. Int J Nanomed 2018; 13: 2321-36.
[http://dx.doi.org/10.2147/IJN.S164355] [PMID: 29713164]
[16]
Amiri M, Salavati-Niasari M, Akbari A. Magnetic nanocarriers: Evolution of spinel ferrites for medical applications. Adv Colloid Interface Sci 2019; 265: 29-44.
[http://dx.doi.org/10.1016/j.cis.2019.01.003] [PMID: 30711796]
[17]
Anderson SD, Gwenin VV, Gwenin CD. Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications. Nanoscale Res Lett 2019; 14(1): 188.
[http://dx.doi.org/10.1186/s11671-019-3019-6] [PMID: 31147786]
[18]
Veloso S, Ferreira P, Martins J, Coutinho P, Castanheira E. Magnetogels: Prospects and main challenges in biomedical applications. Pharmaceutics 2018; 10(3): 145.
[http://dx.doi.org/10.3390/pharmaceutics10030145] [PMID: 30181472]
[19]
Bohara RA, Thorat ND, Pawar SH. Role of functionalization: Strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Advances 2016; 6(50): 43989-4012.
[http://dx.doi.org/10.1039/C6RA02129H]
[20]
Ahmad F, Salem-Bekhit MM, Khan F, et al. Unique properties of surface-functionalized nanoparticles for bio-application: Functionalization mechanisms and importance in application. Nanomaterials 2022; 12(8): 1333.
[http://dx.doi.org/10.3390/nano12081333] [PMID: 35458041]
[21]
Sultana S, Khan MR, Kumar M, Kumar S, Ali M. Nanoparticles-mediated drug delivery approaches for cancer targeting: A review. J Drug Target 2013; 21(2): 107-25.
[http://dx.doi.org/10.3109/1061186X.2012.712130] [PMID: 22873288]
[22]
Haghighi AH, Faghih Z, Khorasani MT, Farjadian F. Antibody conjugated onto surface modified magnetic nanoparticles for separation of HER2+ breast cancer cells. J Magn Magn Mater 2019; 490: 165479.
[http://dx.doi.org/10.1016/j.jmmm.2019.165479]
[23]
Lee JH, Lee K, Moon SH, Lee Y, Park TG, Cheon J. All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem Int Ed 2009; 48(23): 4174-9.
[http://dx.doi.org/10.1002/anie.200805998] [PMID: 19408274]
[24]
Aghanejad A, Babamiri H, Adibkia K, Barar J, Omidi Y. Mucin-1 aptamer-armed superparamagnetic iron oxide nanoparticles for targeted delivery of doxorubicin to breast cancer cells. Bioimpacts 2018; 8(2): 117-27.
[http://dx.doi.org/10.15171/bi.2018.14] [PMID: 29977833]
[25]
Kakar S, Batra D, Singh R, Nautiyal U. Magnetic microspheres as magical novel drug delivery system: A review. J Acute Dis 2013; 2(1): 1-12.
[http://dx.doi.org/10.1016/S2221-6189(13)60087-6]
[26]
Abdeen S, Praseetha P. Diagnostics and treatment of metastatic cancers with magnetic nanoparticles. J Nanomedine Biotherapeutic Discov 2013; 3(2): 115.
[http://dx.doi.org/10.4172/2155-983X.1000115]
[27]
Yadavalli T, Ramasamy S, Chandrasekaran G, Michael I, Therese HA, Chennakesavulu R. Dual responsive PNIPAM–chitosan targeted magnetic nanopolymers for targeted drug delivery. J Magn Magn Mater 2015; 380: 315-20.
[http://dx.doi.org/10.1016/j.jmmm.2014.09.035]
[28]
Xu SS, Wu J, Jiang W. Synthesis and characterisation of a pH-sensitive magnetic nanocomposite for controlled delivery of doxorubicin. J Microencapsul 2015; 32(6): 533-7.
[http://dx.doi.org/10.3109/02652048.2015.1065918] [PMID: 26289219]
[29]
Spirou S, Costa LS, Bouziotis P, et al. Recommendations for in vitro and in vivo testing of magnetic nanoparticle hyperthermia combined with radiation therapy. Nanomaterials 2018; 8(5): 306.
[http://dx.doi.org/10.3390/nano8050306] [PMID: 29734795]
[30]
Patil PB, Parit SB, Waifalkar PP, et al. pH triggered curcumin release and antioxidant activity of curcumin loaded γ-Fe2O3 magnetic nanoparticles. Mater Lett 2018; 223: 178-81.
[http://dx.doi.org/10.1016/j.matlet.2018.04.008]
[31]
Shetty V, Jakhade A, Shinde K, Chikate R, Kaul-Ghanekar R. Folate mediated targeted delivery of cinnamaldehyde loaded and FITC functionalized magnetic nanoparticles in breast cancer: In vitro, in vivo and pharmacokinetic studies. New J Chem 2021; 45(3): 1500-15.
[http://dx.doi.org/10.1039/D0NJ04319B]
[32]
Rostami S, Tafvizi F, Kheiri MHR. High efficacy of tamoxifen-loaded L-lysine coated magnetic iron oxide nanoparticles in cell cycle arrest and anti-cancer activity for breast cancer therapy. Bioimpacts 2022; 12(4): 301-13.
[http://dx.doi.org/10.34172/bi.2021.23337] [PMID: 35975200]
[33]
Solak K, Mavi A. Yılmaz B. Disulfiram-loaded functionalized magnetic nanoparticles combined with copper and sodium nitroprusside in breast cancer cells. Mater Sci Eng C 2021; 119: 111452.
[http://dx.doi.org/10.1016/j.msec.2020.111452] [PMID: 33321589]
[34]
Mu Q, Lin G, Jeon M, et al. Iron oxide nanoparticle targeted chemo-immunotherapy for triple negative breast cancer. Mater Today 2021; 50: 149-69.
[http://dx.doi.org/10.1016/j.mattod.2021.08.002] [PMID: 34987308]
[35]
Ashkbar A, Rezaei F, Attari F, Ashkevarian S. Treatment of breast cancer in vivo by dual photodynamic and photothermal approaches with the aid of curcumin photosensitizer and magnetic nanoparticles. Sci Rep 2020; 10(1): 21206.
[http://dx.doi.org/10.1038/s41598-020-78241-1] [PMID: 33273672]
[36]
Farid RM, Gaafar PME, Hazzah HA, Helmy MW, Abdallah OY. Chemotherapeutic potential of L-carnosine from stimuli-responsive magnetic nanoparticles against breast cancer model. Nanomedicine 2020; 15(9): 891-911.
[http://dx.doi.org/10.2217/nnm-2019-0428] [PMID: 32238029]
[37]
Piehler S, Dähring H, Grandke J, et al. Iron oxide nanoparticles as carriers for DOX and magnetic hyperthermia after intratumoral application into breast cancer in mice: Impact and future perspectives. Nanomaterials 2020; 10(6): 1016.
[http://dx.doi.org/10.3390/nano10061016] [PMID: 32466552]
[38]
Amani A, Begdelo JM, Yaghoubi H, Motallebinia S. Multifunctional magnetic nanoparticles for controlled release of anticancer drug, breast cancer cell targeting, MRI/fluorescence imaging, and anticancer drug delivery. J Drug Deliv Sci Technol 2019; 49: 534-46.
[http://dx.doi.org/10.1016/j.jddst.2018.12.034]
[39]
Truffi M, Colombo M, Sorrentino L, et al. Multivalent exposure of trastuzumab on iron oxide nanoparticles improves antitumor potential and reduces resistance in HER2-positive breast cancer cells. Sci Rep 2018; 8(1): 6563.
[http://dx.doi.org/10.1038/s41598-018-24968-x] [PMID: 29700387]
[40]
Salimi M, Sarkar S, Saber R, Delavari H, Alizadeh AM, Mulder HT. Magnetic hyperthermia of breast cancer cells and MRI relaxometry with dendrimer-coated iron-oxide nanoparticles. Cancer Nanotechnol 2018; 9(1): 7.
[http://dx.doi.org/10.1186/s12645-018-0042-8] [PMID: 30363777]
[41]
Yang RM, Fu C, Fang J, et al. Hyaluronan-modified superparamagnetic iron oxide nanoparticles for bimodal breast cancer imaging and photothermal therapy. Int J Nanomedicine 2016; 12: 197-206.
[http://dx.doi.org/10.2147/IJN.S121249] [PMID: 28096667]
[42]
Poller J, Zaloga J, Schreiber E, et al. Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake. Int J Nanomedicine 2017; 12: 3207-20.
[http://dx.doi.org/10.2147/IJN.S132369] [PMID: 28458541]
[43]
Kossatz S, Grandke J, Couleaud P, et al. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res 2015; 17(1): 66.
[http://dx.doi.org/10.1186/s13058-015-0576-1] [PMID: 25968050]
[44]
Nuzhina JV, Shtil AA, Prilepskii AY, Vinogradov VV. Preclinical evaluation and clinical translation of magnetite-based nanomedicines. J Drug Deliv Sci Technol 2019; 54: 101282.
[http://dx.doi.org/10.1016/j.jddst.2019.101282]
[45]
Zheng C, Li M, Ding J. Challenges and opportunities of nanomedicines in clinical translation. BIO Integration 2021; 2(2): 57-60.
[http://dx.doi.org/10.15212/bioi-2021-0016]
[46]
Jain A, Tiwari A, Verma A, Saraf S, Jain S K. Combination cancer therapy using multifunctional liposomes. Crit Rev Ther Drug 2020; 37(2)
[47]
Foulkes R, Man E, Thind J, Yeung S, Joy A, Hoskins C. The regulation of nanomaterials and nanomedicines for clinical application: Current and future perspectives. Biomater Sci 2020; 8(17): 4653-64.
[http://dx.doi.org/10.1039/D0BM00558D] [PMID: 32672255]
[48]
Tambe V, Maheshwari R, Chourasiya Y, Choudhury H, Gorain B, Tekade RK. Clinical aspects and regulatory requirements for nanomedicines In: Basic fundamentals of drug delivery. Elsevier Amsterdam, The Netherlands 2019; pp. 733-52.
[http://dx.doi.org/10.1016/B978-0-12-817909-3.00018-2]
[49]
Maier-Hauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 2011; 103(2): 317-24.
[http://dx.doi.org/10.1007/s11060-010-0389-0] [PMID: 20845061]
[50]
Assa F, Jafarizadeh-Malmiri H, Ajamein H, et al. Chitosan magnetic nanoparticles for drug delivery systems. Crit Rev Biotechnol 2017; 37(4): 492-509.
[http://dx.doi.org/10.1080/07388551.2016.1185389] [PMID: 27248312]
[51]
Mou X, Ali Z, Li S, He N. Applications of magnetic nanoparticles in targeted drug delivery system. J Nanosci Nanotechnol 2015; 15(1): 54-62.
[http://dx.doi.org/10.1166/jnn.2015.9585] [PMID: 26328305]
[52]
Ghosh S, GhoshMitra S. Multimodal therapy for cancer cell destruction. Patent US11077191B2, 2016.
[53]
Creighton FM, Sabo M, Null C, Epplin G, Wachtman JC. Magnetic-based systems and methods for manipulation of magnetic particles. Patent US9883878B2, 2018.
[54]
Weissleder R, Lee H, Yoon T-J. Magnetic nanoparticles. Patent US20120012778A1, 2009.
[55]
Huang X, Bhana S. Iron oxide-gold core-shell nanoparticles and uses thereof. Patent US9952209B2, 2014.
[56]
Khandhar AP, Krishnan KM, Ferguson RM, Kemp S. Coated magnetic nanoparticles. Patent EP2804186B1, 2013.
[57]
Chen H, Sun D. Photothermal therapy using magnetic nanoparticles. Patent US20150051534A1, 2017.
[58]
Kosheleva OK, Lai P, Chen NG, Hsiao M, Chen C-H. Nanoparticle-assisted ultrasound for breast cancer therapy. Patent US20150328485A1, 2014.