Polymeric Gel Scaffolds and Biomimetic Environments for Wound Healing

Page: [3221 - 3239] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Infected wounds that do not heal are a worldwide problem that is worsening, with more people dying and more money being spent on care. For any disease to be managed effectively, its root cause must be addressed. Effective wound care becomes a bigger problem when various traditional wound healing methods and products may not only fail to promote good healing. Still, it may also hinder the healing process, causing wounds to stay open longer. Progress in tissue regeneration has led to developing three-dimensional scaffolds (3D) or constructs that can be leveraged to facilitate cell growth and regeneration while preventing infection and accelerating wound healing. Tissue regeneration uses natural and fabricated biomaterials that encourage the growth of tissues or organs. Even though the clinical need is urgent, the demand for polymer-based therapeutic techniques for skin tissue abnormalities has grown quickly. Hydrogel scaffolds have become one of the most imperative 3D cross-linked scaffolds for tissue regeneration because they can hold water perfectly and are porous, biocompatible, biodegradable, and biomimetic. For damaged organs or tissues to heal well, the porosity topography of the natural extracellular matrix (ECM) should be imitated. This review details the scaffolds that heal wounds and helps skin tissue to develop. After a brief overview of the bioactive and drug-loaded polymeric hydrogels, the discussion moves on to how the scaffolds are made and what they are made of. It highlights the present uses of in vitro and in-vivo employed biomimetic scaffolds. The prospects of how well bioactiveloaded hydrogels heal wounds and how nanotechnology assists in healing and regeneration have been discussed.

[1]
Gonzalez ACO, Costa TF, Andrade ZA, Medrado ARAP. Wound healing - A literature review. An Bras Dermatol 2016; 91(5): 614-20.
[http://dx.doi.org/10.1590/abd1806-4841.20164741] [PMID: 27828635]
[2]
Shi C, Wang C, Liu H, et al. Selection of appropriate wound dressing for various wounds. Front Bioeng Biotechnol 2020; 8: 182.
[http://dx.doi.org/10.3389/fbioe.2020.00182] [PMID: 32266224]
[3]
Mele E. Electrospinning of natural polymers for advanced wound care: Towards responsive and adaptive dressings. J Mater Chem B Mater Biol Med 2016; 4(28): 4801-12.
[http://dx.doi.org/10.1039/C6TB00804F] [PMID: 32263137]
[4]
Saghazadeh S, Rinoldi C, Schot M, et al. Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev 2018; 127: 138-66.
[http://dx.doi.org/10.1016/j.addr.2018.04.008] [PMID: 29626550]
[5]
Liu T, Lu Y, Zhan R, Qian W, Luo G. Nanomaterials and nanomaterials-based drug delivery to promote cutaneous wound healing. Adv Drug Deliv Rev 2023; 193: 114670.
[http://dx.doi.org/10.1016/j.addr.2022.114670] [PMID: 36538990]
[6]
Loo HL. Application of chitosan nanoparticles in skin wound healing. Asian J Pharm Sci 2022; 17(3): 299-332.
[http://dx.doi.org/10.1016/j.ajps.2022.04.001]
[7]
Solarte David VA, Güiza-Argüello VR, Arango-Rodríguez ML, Sossa CL, Becerra-Bayona SM. Decellularized tissues for wound healing: towards closing the gap between scaffold design and effective extracellular matrix remodeling. Front Bioeng Biotechnol 2022; 10: 821852.
[http://dx.doi.org/10.3389/fbioe.2022.821852] [PMID: 35252131]
[8]
Yu R, Zhang H, Guo B. Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-Micro Lett 2022; 14(1): 1-46.
[http://dx.doi.org/10.1007/s40820-021-00751-y] [PMID: 34859323]
[9]
Cheng H, Shi Z, Yue K, et al. Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities. Acta Biomater 2021; 124: 219-32.
[http://dx.doi.org/10.1016/j.actbio.2021.02.002] [PMID: 33556605]
[10]
Gushiken LFS, Beserra FP, Bastos JK, Jackson CJ, Pellizzon CH. Cutaneous wound healing: An update from physiopathology to current therapies. Life 2021; 11(7): 665.
[http://dx.doi.org/10.3390/life11070665] [PMID: 34357037]
[11]
Wilhelm KP, Wilhelm D, Bielfeldt S. Models of wound healing: An emphasis on clinical studies. Skin Res Technol 2017; 23(1): 3-12.
[http://dx.doi.org/10.1111/srt.12317] [PMID: 27503009]
[12]
Wang ST, Neo BH, Betts RJ. Glycosaminoglycans: Sweet as sugar targets for topical skin anti-aging. Clin Cosmet Investig Dermatol 2021; 14: 1227-46.
[http://dx.doi.org/10.2147/CCID.S328671] [PMID: 34548803]
[13]
Nazareth L, St John J, Murtaza M, Ekberg J. Phagocytosis by peripheral glia: Importance for nervous system functions and implications in injury and disease. Front Cell Dev Biol 2021; 9: 660259.
[http://dx.doi.org/10.3389/fcell.2021.660259] [PMID: 33898462]
[14]
Anastasiou IA, Eleftheriadou I, Tentolouris A, Samakidou G, Papanas N, Tentolouris N. Therapeutic properties of honey for the man-agement of wounds; is there a role in the armamentarium of diabetic foot ulcer treatment? Results from in vitro and in vivo studies. Int J Low Extrem Wounds 2021; 20(4): 291-9.
[http://dx.doi.org/10.1177/15347346211026819] [PMID: 34142897]
[15]
Arcanjo A, Guimarães PK, Logullo J, et al. Critically Ill Coronavirus Disease 2019 patients exhibit hyperactive cytokine responses associated with effector exhausted senescent T cells in acute infection. J Infect Dis 2021; 224(10): jiab425.
[http://dx.doi.org/10.1093/infdis/jiab425] [PMID: 34427670]
[16]
Ruiz-Cañada C, Bernabé-García Á, Liarte S, Rodríguez-Valiente M, Nicolás FJ. Chronic wound healing by amniotic membrane: TGF-β and EGF signaling modulation in re-epithelialization. Front Bioeng Biotechnol 2021; 9: 689328.
[http://dx.doi.org/10.3389/fbioe.2021.689328] [PMID: 34295882]
[17]
Arif S, Attiogbe E, Moulin VJ. Granulation tissue myofibroblasts during normal and pathological skin healing: The interaction between their secretome and the microenvironment. Wound Repair Regen 2021; 29(4): 563-72.
[http://dx.doi.org/10.1111/wrr.12919] [PMID: 33887793]
[18]
Xu R, Lu R, Zhang T, et al. Temporal association between human upper respiratory and gut bacterial microbiomes during the course of COVID-19 in adults. Commun Biol 2021; 4(1): 240.
[http://dx.doi.org/10.1038/s42003-021-01796-w] [PMID: 33603076]
[19]
Backes EH, Fernandes EM, Diogo GS, et al. Engineering 3D printed bioactive composite scaffolds based on the combination of aliphatic polyester and calcium phosphates for bone tissue regeneration. Mater Sci Eng C 2021; 122: 111928.
[http://dx.doi.org/10.1016/j.msec.2021.111928] [PMID: 33641921]
[20]
Tran A, Robinson DM. Platelet-rich fibrin matrix. Khetarpal S, Ed. Aesthetic Clinician's Guide to Platelet Rich Plasma. Cham: Springer 2021.
[http://dx.doi.org/10.1007/978-3-030-81427-4_8]
[21]
Budi EH, Schaub JR, Decaris M, Turner S, Derynck R. TGF‐β as a driver of fibrosis: Physiological roles and therapeutic opportunities. J Pathol 2021; 254(4): 358-73.
[http://dx.doi.org/10.1002/path.5680] [PMID: 33834494]
[22]
Kim JH, Kim EY, Chung KJ, et al. Mealworm oil (MWO) enhances wound healing potential through the activation of fibroblast and en-dothelial cells. Molecules 2021; 26(4): 779.
[http://dx.doi.org/10.3390/molecules26040779] [PMID: 33546205]
[23]
González-Díaz E, Varghese S. Hydrogels as extracellular matrix analogs. Gels 2016; 2(3): 20.
[http://dx.doi.org/10.3390/gels2030020] [PMID: 30674152]
[24]
Op ’t Veld RC, van den Boomen OI, Ditte MSL. Thermosensitive biomimetic polyisocyanopeptide hydrogels may facilitate wound repair. Biomaterials 2018; 181: 392-401.
[25]
Zhang S, Ge G, Qin Y, et al. Recent advances in responsive hydrogels for diabetic wound healing. Mater Today Bio 2023; 18: 100508.
[http://dx.doi.org/10.1016/j.mtbio.2022.100508] [PMID: 36504542]
[26]
Romo-Rico J, Krishna SM, Bazaka K, Golledge J, Jacob MV. Potential of plant secondary metabolite-based polymers to enhance wound healing. Acta Biomater 2022; 147: 34-49.
[http://dx.doi.org/10.1016/j.actbio.2022.05.043] [PMID: 35649506]
[27]
Tan G, Wang L, Pan W, Chen K. Polysaccharide electrospun nanofibers for wound healing applications. Int J Nanomedicine 2022; 17: 3913-31.
[http://dx.doi.org/10.2147/IJN.S371900] [PMID: 36097445]
[28]
Talikowska M, Fu X, Lisak G. Application of conducting polymers to wound care and skin tissue engineering: A review. Biosens Bioelectron 2019; 135: 50-63.
[http://dx.doi.org/10.1016/j.bios.2019.04.001] [PMID: 30999241]
[29]
Negut I, Dorcioman G, Grumezescu V. Scaffolds for wound healing applications. Polymers 2020; 12(9): 2010.
[http://dx.doi.org/10.3390/polym12092010] [PMID: 32899245]
[30]
Ramalingam R, Dhand C, Leung C, et al. Poly-ε-caprolactone/ gelatin hybrid electrospun composite nanofibrous mats containing ultra-sound assisted herbal extract: Antimicrobial and cell proliferation study. Nanomaterials 2019; 9(3): 462.
[http://dx.doi.org/10.3390/nano9030462] [PMID: 30897714]
[31]
Haider A, Haider S, Rao Kummara M, et al. Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: A technical and statistical review. J Saudi Chem Soc 2020; 24(2): 186-215.
[http://dx.doi.org/10.1016/j.jscs.2020.01.002]
[32]
Liu J, Liu J, Xu H, et al. Novel tumor-targeting, self-assembling peptide nanofiber as a carrier for effective curcumin delivery. Int J Nanomedicine 2014; 9: 197-207.
[PMID: 24399876]
[33]
Garg T, Rath G, Goyal AK. Biomaterials-based nanofiber scaffold: Targeted and controlled carrier for cell and drug delivery. J Drug Target 2015; 23(3): 202-21.
[http://dx.doi.org/10.3109/1061186X.2014.992899] [PMID: 25539071]
[34]
Li WJ, Keith GD, Peter GA, Rocky ST. Biological response of chondrocytes cultured in three‐dimensional nanofibrous poly (ϵ‐caprolactone) scaffolds. J Biomed Mater Res A 2003; 67(4): 1105-14.
[35]
Xiong Z, Yan Y, Zhang R, Sun L. Fabrication of porous poly(l-lactic acid) scaffolds for bone tissue engineering via precise extrusion. Scr Mater 2001; 45(7): 773-9.
[http://dx.doi.org/10.1016/S1359-6462(01)01094-6]
[36]
Santoro M, Shah SR, Walker JL, Mikos AG. Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Adv Drug Deliv Rev 2016; 107: 206-12.
[http://dx.doi.org/10.1016/j.addr.2016.04.019] [PMID: 27125190]
[37]
Zhang J, Yang S, Yang X, et al. Novel fabricating process for porous polyglycolic acid scaffolds by melt-foaming using supercritical carbon dioxide. ACS Biomater Sci Eng 2018; 4(2): 694-706.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00692] [PMID: 33418757]
[38]
Hu Y, Gu X, Yang Y, et al. Facile fabrication of poly(L-lactic acid)-grafted hydroxyapatite/poly(lactic-co-glycolic acid) scaffolds by Pickering high internal phase emulsion templates. ACS Appl Mater Interfaces 2014; 6(19): 17166-75.
[http://dx.doi.org/10.1021/am504877h] [PMID: 25243730]
[39]
Takimoto Y, Dixit V, Arthur M, Gitnick G. De novo liver tissue formation in rats using a novel collagen-polypropylene scaffold. Cell Transplant 2003; 12(4): 413-21.
[http://dx.doi.org/10.3727/000000003108746966] [PMID: 12911129]
[40]
Nojehdehian H, Moztarzadeh F, Baharvand H, Nazarian H, Tahriri M. Preparation and surface characterization of poly-l-lysine-coated PLGA microsphere scaffolds containing retinoic acid for nerve tissue engineering: in vitro study. Colloids Surf B Biointerfaces 2009; 73(1): 23-9.
[http://dx.doi.org/10.1016/j.colsurfb.2009.04.029] [PMID: 19520554]
[41]
Chircov C, Grumezescu AM, Bejenaru LE. Hyaluronic acid-based scaffolds for tissue engineering. Rom J Morphol Embryol 2018; 59(1): 71-6.
[PMID: 29940614]
[42]
Glowacki J, Mizuno S. Collagen scaffolds for tissue engineering. Biopolymers 2008; 89(5): 338-44.
[http://dx.doi.org/10.1002/bip.20871] [PMID: 17941007]
[43]
Bhattacharjee P, Kundu B, Naskar D, et al. Silk scaffolds in bone tissue engineering: An overview. Acta Biomater 2017; 63: 1-17.
[http://dx.doi.org/10.1016/j.actbio.2017.09.027] [PMID: 28941652]
[44]
Harley B, Leung J, Silva E, Gibson L. Mechanical characterization of collagen-glycosaminoglycan scaffolds. Acta Biomater 2007; 3(4): 463-74.
[http://dx.doi.org/10.1016/j.actbio.2006.12.009] [PMID: 17349829]
[45]
Carnes ME, Gonyea CR, Mooney RG, Njihia JW, Coburn JM, Pins GD. Horseradish peroxidase-catalyzed crosslinking of fibrin micro-thread scaffolds. Tissue Eng Part C Methods 2020; 26(6): 317-31.
[http://dx.doi.org/10.1089/ten.tec.2020.0083] [PMID: 32364015]
[46]
Madihally SV, Matthew HWT. Porous chitosan scaffolds for tissue engineering. Biomaterials 1999; 20(12): 1133-42.
[http://dx.doi.org/10.1016/S0142-9612(99)00011-3] [PMID: 10382829]
[47]
Torres AL, Gaspar VM, Serra IR, et al. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration. Mater Sci Eng C 2013; 33(7): 4460-9.
[http://dx.doi.org/10.1016/j.msec.2013.07.003] [PMID: 23910366]
[48]
Loordhuswamy AM, Krishnaswamy VR, Korrapati PS, Thinakaran S, Rengaswami GDV. Fabrication of highly aligned fibrous scaffolds for tissue regeneration by centrifugal spinning technology. Mater Sci Eng C 2014; 42: 799-807.
[http://dx.doi.org/10.1016/j.msec.2014.06.011] [PMID: 25063182]
[49]
Irastorza-Lorenzo A, Sánchez-Porras D, Ortiz-Arrabal O, et al. Evaluation of marine agarose biomaterials for tissue engineering applications. Int J Mol Sci 2021; 22(4): 1923.
[http://dx.doi.org/10.3390/ijms22041923] [PMID: 33672027]
[50]
Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010; 31(17): 4639-56.
[http://dx.doi.org/10.1016/j.biomaterials.2010.02.044] [PMID: 20303169]
[51]
Tesfamariam B. Bioresorbable vascular scaffolds: Biodegradation, drug delivery and vascular remodeling. Pharmacol Res 2016; 107: 163-71.
[http://dx.doi.org/10.1016/j.phrs.2016.03.020] [PMID: 27001225]
[52]
Jewell M, Daunch W, Bengtson B, Mortarino E. The development of SERI® Surgical Scaffold, an engineered biological scaffold. Ann N Y Acad Sci 2015; 1358(1): 44-55.
[http://dx.doi.org/10.1111/nyas.12886] [PMID: 26376101]
[53]
Capodanno D. Bioresorbable scaffolds in coronary intervention: Unmet needs and evolution. Korean Circ J 2018; 48(1): 24-35.
[http://dx.doi.org/10.4070/kcj.2017.0194] [PMID: 29322695]
[54]
Parrish WR, Roides B. Physiology of blood components in wound healing: An appreciation of cellular co-operativity in platelet rich plasma action. J Exerc Sports Orthop 2017; 4(2): 1-14.
[http://dx.doi.org/10.15226/2374-6904/4/2/00156]
[55]
Bracaglia LG, Smith BT, Watson E, Arumugasaamy N, Mikos AG, Fisher JP. 3D printing for the design and fabrication of polymer-based gradient scaffolds. Acta Biomater 2017; 56: 3-13.
[http://dx.doi.org/10.1016/j.actbio.2017.03.030] [PMID: 28342878]
[56]
Boateng JS, Matthews KH, Stevens HNE, Eccleston GM. Wound healing dressings and drug delivery systems: A review. J Pharm Sci 2008; 97(8): 2892-923.
[http://dx.doi.org/10.1002/jps.21210] [PMID: 17963217]
[57]
Kamoun EA, Kenawy ERS, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 2017; 8(3): 217-33.
[http://dx.doi.org/10.1016/j.jare.2017.01.005] [PMID: 28239493]
[58]
Rezvani Ghomi E, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Ramakrishna S. Wound dressings: Current advances and future directions. J Appl Polym Sci 2019; 136(27): 47738.
[http://dx.doi.org/10.1002/app.47738]
[59]
Varaprasad K, Mohan YM, Vimala K, Mohana Raju K. Synthesis and characterization of hydrogel-silver nanoparticle-curcumin composites for wound dressing and antibacterial application. J Appl Polym Sci 2011; 121(2): 784-96.
[http://dx.doi.org/10.1002/app.33508]
[60]
Domb AJ, Khan W. Focal controlled drug delivery. Springer 2014.
[http://dx.doi.org/10.1007/978-1-4614-9434-8]
[61]
Han G, Ceilley R. Chronic wound healing: A review of current management and treatments. Adv Ther 2017; 34(3): 599-610.
[http://dx.doi.org/10.1007/s12325-017-0478-y] [PMID: 28108895]
[62]
Karahaliloglu Z, Kilicay E, Denkbas EB. Antibacterial chitosan/] silk sericin 3D porous scaffolds as a wound dressing material. Artif Cells Nanomed Biotechnol 2017; 45(6): 1172-85.
[http://dx.doi.org/10.1080/21691401.2016.1203796] [PMID: 27396677]
[63]
Kalantari K, Mostafavi E, Afifi AM, et al. Wound dressings functionalized with silver nanoparticles: promises and pitfalls. Nanoscale 2020; 12(4): 2268-91.
[http://dx.doi.org/10.1039/C9NR08234D] [PMID: 31942896]
[64]
Garg T. Organogels: Advanced and novel drug delivery system. Int Res J Pharm 2011; 2(12): 15-21.
[65]
Chaudhary C, Garg T. Scaffolds: A novel carrier and potential wound healer. Crit Rev Ther Drug Carrier Syst 2015; 32(4): 277-321.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2015011246]
[66]
Sharma R, Harmanpreet S, Munish J, et al. Recent advances in polymeric electrospun nanofibers for drug delivery. Crit Rev Ther Drug Carrier Syst 2014; 31(3): 187-217.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2014008193]
[67]
Singh H, Sharma R, Joshi M, Garg T, Goyal AK, Rath G. Transmucosal delivery of Docetaxel by mucoadhesive polymeric nanofibers. Artif Cells Nanomed Biotechnol 2015; 43(4): 263-9.
[http://dx.doi.org/10.3109/21691401.2014.885442] [PMID: 24621011]
[68]
Whitaker MJ, Quirk RA, Howdle SM, Shakesheff KM. Growth factor release from tissue engineering scaffolds. J Pharm Pharmacol 2010; 53(11): 1427-37.
[http://dx.doi.org/10.1211/0022357011777963] [PMID: 11732745]
[69]
Ruszczak Z. Effect of collagen matrices on dermal wound healing. Adv Drug Deliv Rev 2003; 55(12): 1595-611.
[http://dx.doi.org/10.1016/j.addr.2003.08.003] [PMID: 14623403]
[70]
Dhivya S, Padma VV, Santhini E. Wound dressings - A review. Biomedicine 2015; 5(4): 22.
[http://dx.doi.org/10.7603/s40681-015-0022-9] [PMID: 26615539]
[71]
Hunt TK, Hopf H, Hussain Z. Physiology of wound healing. Adv Skin Wound Care 2000; 13(S2): 6-11.
[PMID: 11074996]
[72]
Strecker-McGraw MK, Jones TR, Baer DG. Soft tissue wounds and principles of healing. Emerg Med Clin North Am 2007; 25(1): 1-22.
[http://dx.doi.org/10.1016/j.emc.2006.12.002] [PMID: 17400070]
[73]
Diomede F, Gugliandolo A, Cardelli P, et al. Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: A new tool for bone defect repair. Stem Cell Res Ther 2018; 9(1): 104.
[http://dx.doi.org/10.1186/s13287-018-0850-0] [PMID: 29653587]
[74]
Rubio-Elizalde I, Bernáldez-Sarabia J, Moreno-Ulloa A, et al. Scaffolds based on alginate-PEG methyl ether methacrylate-Moringa oleifera-Aloe vera for wound healing applications. Carbohydr Polym 2019; 206: 455-67.
[http://dx.doi.org/10.1016/j.carbpol.2018.11.027] [PMID: 30553345]
[75]
Patel DK, Lim K-T. Biomimetic polymer-based engineered scaffolds for improved stem cell function. Materials 2019; 12(18): 2950.
[http://dx.doi.org/10.3390/ma12182950] [PMID: 31514460]
[76]
Celikkin N, Rinoldi C, Costantini M, Trombetta M, Rainer A, Święszkowski W. Naturally derived proteins and glycosaminoglycan scaf-folds for tissue engineering applications. Mater Sci Eng C 2017; 78: 1277-99.
[http://dx.doi.org/10.1016/j.msec.2017.04.016] [PMID: 28575966]
[77]
Eltom A, Zhong G, Muhammad A. Scaffold techniques and designs in tissue engineering functions and purposes: A review. Adv Mater Sci Eng 2019 2019.
[http://dx.doi.org/10.1155/2019/3429527]
[78]
Li H, Xue Y, Jia B, et al. The preparation of hyaluronic acid grafted pullulan polymers and their use in the formation of novel biocompatible wound healing film. Carbohydr Polym 2018; 188: 92-100.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.102] [PMID: 29525177]
[79]
Tran KT, Griffith L, Wells A. Extracellular matrix signaling through growth factor receptors during wound healing. Wound Repair Regen 2004; 12(3): 262-8.
[http://dx.doi.org/10.1111/j.1067-1927.2004.012302.x] [PMID: 15225204]
[80]
Sodhi RNS. Application of surface analytical and modification techniques to biomaterial research. J Electron Spectrosc Relat Phenom 1996; 81(3): 269-84.
[http://dx.doi.org/10.1016/0368-2048(95)02665-7]
[81]
Coombes AGA, Rizzi SC, Williamson M, Barralet JE, Downes S, Wallace WA. Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials 2004; 25(2): 315-25.
[http://dx.doi.org/10.1016/S0142-9612(03)00535-0] [PMID: 14585719]
[82]
Vert M. Aliphatic polyesters: Great degradable polymers that cannot do everything. Biomacromolecules 2005; 6(2): 538-46.
[http://dx.doi.org/10.1021/bm0494702] [PMID: 15762610]
[83]
Colter KD, Shen M, Bell AT. Reduction of progesterone release rate through silicone membranes by plasma polymerization. Biomater Med Devices Artif Organs 1977; 5(1): 13-24.
[http://dx.doi.org/10.3109/10731197709118663] [PMID: 857946]
[84]
Ingber DE. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 2002; 91(10): 877-87.
[http://dx.doi.org/10.1161/01.RES.0000039537.73816.E5] [PMID: 12433832]
[85]
Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomedicine 2006; 1(1): 15-30.
[http://dx.doi.org/10.2147/nano.2006.1.1.15] [PMID: 17722259]
[86]
Ye WP, Du FS, Jin WH, Yang JY, Xu Y. In vitro degradation of poly(caprolactone), poly(lactide) and their block copolymers: influence of composition, temperature and morphology. React Funct Polym 1997; 32(2): 161-8.
[http://dx.doi.org/10.1016/S1381-5148(96)00081-8]
[87]
Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 2004; 32(3): 477-86.
[http://dx.doi.org/10.1023/B:ABME.0000017544.36001.8e] [PMID: 15095822]
[88]
Yang H-C. Immunomodulation of biomaterials by controlling macrophage polarization. In: Biomimetic Medical Materials Advances in Experimental Medicine and Biology. Singapore: Springer 2018; pp. 197-206.
[http://dx.doi.org/10.1007/978-981-13-0445-3_12]
[89]
Eberli D. Tissue engineering for tissue and organ regeneration. BoD-Books on Demand 2011.
[http://dx.doi.org/10.5772/1146]
[90]
Dutta RC, Dey M, Dutta AK, Basu B. Competent processing techniques for scaffolds in tissue engineering. Biotechnol Adv 2017; 35(2): 240-50.
[http://dx.doi.org/10.1016/j.biotechadv.2017.01.001] [PMID: 28095322]
[91]
George AM. Biopolymer-based scaffolds: Development and biomedical applications Biopolymer-Based Formulations. Elsevier 2020; pp. 717-49.
[http://dx.doi.org/10.1016/B978-0-12-816897-4.00029-1]
[92]
Hamid Q, Snyder J, Wang C, et al. Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device. Biofabrication 2011; 3(3): 034109.
[http://dx.doi.org/10.1088/1758-5082/3/3/034109] [PMID: 21727312]
[93]
Tsai WC, Wang Y. Progress of supercritical fluid technology in polymerization and its applications in biomedical engineering. Prog Polym Sci 2019; 98: 101161.
[http://dx.doi.org/10.1016/j.progpolymsci.2019.101161]
[94]
Liu Tsang V, Bhatia SN. Three-dimensional tissue fabrication. Adv Drug Deliv Rev 2004; 56(11): 1635-47.
[http://dx.doi.org/10.1016/j.addr.2004.05.001] [PMID: 15350293]
[95]
Nguyen KT, West JL. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 2002; 23(22): 4307-14.
[http://dx.doi.org/10.1016/S0142-9612(02)00175-8] [PMID: 12219820]
[96]
Kular JK, Basu S, Sharma RI. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J Tissue Eng 2014; 5: 2041731414557112.
[http://dx.doi.org/10.1177/2041731414557112] [PMID: 25610589]
[97]
Ilomuanya MO. Polymeric biomaterials for wound healing incorporating plant extracts and extracellular matrix components. Recent Adv Wound Healing 2021; pp. 1-15.
[98]
Agren MS, Werthén M. The extracellular matrix in wound healing: A closer look at therapeutics for chronic wounds. Int J Low Extrem Wounds 2007; 6(2): 82-97.
[http://dx.doi.org/10.1177/1534734607301394] [PMID: 17558006]
[99]
Lee YJ, Baek SE, Lee S, et al. Wound‐healing effect of adipose stem cell‐derived extracellular matrix sheet on full‐thickness skin defect rat model: Histological and immunohistochemical study. Int Wound J 2019; 16(1): 286-96.
[http://dx.doi.org/10.1111/iwj.13030] [PMID: 30461211]
[100]
Du HC, Lin J, Wen-Xin G, et al. Growth factor-reinforced ECM fabricated from chemically hypoxic MSC sheet with improved in vivo wound repair activity. Biomed Res Int 2017; 2017: 2578017.
[http://dx.doi.org/10.1155/2017/2578017]
[101]
Amajuoyi JN, Ilomuanya MO, Asantewaa-Osei Y, Azubuike CP, Adeosun SO, Igwilo CI. Development of electrospun keratin/] coenzyme Q10/poly vinyl alcohol nanofibrous scaffold containing mupirocin as potential dressing for infected wounds. Future J Pharm Sci 2020; 6(1): 25.
[http://dx.doi.org/10.1186/s43094-020-00043-z]
[102]
Todorovic K, Jovanovic G, Todorovic A, et al. Effects of coenzyme Q10 encapsulated in nanoliposomes on wound healing processes after tooth extraction. J Dent Sci 2018; 13(2): 103-8.
[http://dx.doi.org/10.1016/j.jds.2017.10.004] [PMID: 30895104]
[103]
Desfrançois C, Auzély R, Texier I. Lipid nanoparticles and their hydrogel composites for drug delivery: A review. Pharmaceuticals 2018; 11(4): 118.
[http://dx.doi.org/10.3390/ph11040118] [PMID: 30388738]
[104]
Bashir S, Hina M, Iqbal J, et al. Fundamental concepts of hydrogels: Synthesis, properties, and their applications. Polymers 2020; 12(11): 2702.
[http://dx.doi.org/10.3390/polym12112702] [PMID: 33207715]
[105]
Liang K, Bae KH, Kurisawa M. Recent advances in the design of injectable hydrogels for stem cell-based therapy. J Mater Chem B Mater Biol Med 2019; 7(24): 3775-91.
[http://dx.doi.org/10.1039/C9TB00485H]
[106]
Jacob S, Nair AB, Shah J, Sreeharsha N, Gupta S, Shinu P. Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management. Pharmaceutics 2021; 13(3): 357.
[http://dx.doi.org/10.3390/pharmaceutics13030357] [PMID: 33800402]
[107]
Sharpe LA, Daily AM, Horava SD, Peppas NA. Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv 2014; 11(6): 901-15.
[http://dx.doi.org/10.1517/17425247.2014.902047] [PMID: 24848309]
[108]
Dong R, Guo B. Smart wound dressings for wound healing. Nano Today 2021; 41: 101290.
[http://dx.doi.org/10.1016/j.nantod.2021.101290]
[109]
Huang C, Ye Q, Dong J, et al. Biofabrication of natural Au/] bacterial cellulose hydrogel for bone tissue regeneration via in-situ fermentation. Smart Mater Med 2023; 4: 1-14.
[http://dx.doi.org/10.1016/j.smaim.2022.06.001]
[110]
Chai Q, Jiao Y, Yu X. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels 2017; 3(1): 6.
[http://dx.doi.org/10.3390/gels3010006] [PMID: 30920503]
[111]
Choe G, Park J, Park H, Lee J. Hydrogel biomaterials for stem cell microencapsulation. Polymers 2018; 10(9): 997.
[http://dx.doi.org/10.3390/polym10090997] [PMID: 30960922]
[112]
Huang W, Wang Y, Huang Z, et al. On-demand dissolvable self-healing hydrogel based on carboxymethyl chitosan and cellulose nano-crystal for deep partial thickness burn wound healing. ACS Appl Mater Interfaces 2018; 10(48): 41076-88.
[http://dx.doi.org/10.1021/acsami.8b14526] [PMID: 30398062]
[113]
Ding X, Yu Y, Zu Y. Self-healing hydrogels based on the Knoevenagel condensation reaction for wound healing. Biomed Tech 2023; 2: 70-6.
[http://dx.doi.org/10.1016/j.bmt.2022.11.008]
[114]
Dhandayuthapani B, Zahrasadat P, Maryam RR, et al. Polymeric scaffolds in tissue engineering: A literature review. J Biomed Mater Res B Appl Biomater 2011; 105(2): 431-59.
[http://dx.doi.org/10.1155/2011/290602]
[115]
Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater 2016; 1(12): 16071.
[http://dx.doi.org/10.1038/natrevmats.2016.71] [PMID: 29657852]
[116]
Mandal A, Clegg JR, Anselmo AC, Mitragotri S. Hydrogels in the clinic. Bioeng Transl Med 2020; 5(2): e10158.
[http://dx.doi.org/10.1002/btm2.10158] [PMID: 32440563]
[117]
Uppuluri VNVA. Polymeric hydrogel scaffolds: Skin tissue engineering and regeneration. Adv Pharm Bull 2021; 12(3): 437-48.
[PMID: 35935050]
[118]
Elsayed MM. Hydrogel preparation technologies: Relevance kinetics, thermodynamics and scaling up aspects. J Polym Environ 2019; 27(4): 871-91.
[http://dx.doi.org/10.1007/s10924-019-01376-4]
[119]
Li W, Wang S, Zhong D, Du Z, Zhou M. A bioactive living hydrogel: photosynthetic bacteria mediated hypoxia elimination and bacteria‐killing to promote infected wound healing. Adv Ther 2021; 4(1): 2000107.
[http://dx.doi.org/10.1002/adtp.202000107]
[120]
Vega SL, Kwon MY, Song KH, et al. Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments. Nat Commun 2018; 9(1): 614.
[http://dx.doi.org/10.1038/s41467-018-03021-5] [PMID: 29426836]
[121]
Huang J, Ren J, Chen G, et al. Tunable sequential drug delivery system based on chitosan/hyaluronic acid hydrogels and PLGA micro-spheres for management of non-healing infected wounds. Mater Sci Eng C 2018; 89: 213-22.
[http://dx.doi.org/10.1016/j.msec.2018.04.009] [PMID: 29752091]
[122]
Chen M, Tian J, Liu Y, et al. Dynamic covalent constructed self-healing hydrogel for sequential delivery of antibacterial agent and growth factor in wound healing. Chem Eng J 2019; 373: 413-24.
[http://dx.doi.org/10.1016/j.cej.2019.05.043]
[123]
Ma Z, Song W, He Y, Li H. Multilayer injectable hydrogel system sequentially delivers bioactive substances for each wound healing stage. ACS Appl Mater Interfaces 2020; 12(26): acsami.0c06360..
[http://dx.doi.org/10.1021/acsami.0c06360] [PMID: 32515577]
[124]
Liang Y, Zhao X, Hu T, Han Y, Guo B. Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin. J Colloid Interface Sci 2019; 556: 514-28.
[http://dx.doi.org/10.1016/j.jcis.2019.08.083] [PMID: 31473541]
[125]
Zhao X, Liang Y, Huang Y, He J, Han Y, Guo B. Physical double‐network hydrogel adhesives with rapid shape adaptability, fast self‐healing, antioxidant and NIR/pH stimulus‐responsiveness for multidrug‐resistant bacterial infection and removable wound dressing. Adv Funct Mater 2020; 30(17): 1910748.
[http://dx.doi.org/10.1002/adfm.201910748]
[126]
Gao Y, Li Z, Huang J, Zhao M, Wu J. In situ formation of injectable hydrogels for chronic wound healing. J Mater Chem B Mater Biol Med 2020; 8(38): 8768-80.
[http://dx.doi.org/10.1039/D0TB01074J] [PMID: 33026387]
[127]
Wang P, Huang S, Hu Z, et al. In situ formed anti-inflammatory hydrogel loading plasmid DNA encoding VEGF for burn wound healing. Acta Biomater 2019; 100: 191-201.
[http://dx.doi.org/10.1016/j.actbio.2019.10.004] [PMID: 31586729]
[128]
Zeng Q, Qian Y, Huang Y, Ding F, Qi X, Shen J. Polydopamine nanoparticle-dotted food gum hydrogel with excellent antibacterial activity and rapid shape adaptability for accelerated bacteria-infected wound healing. Bioact Mater 2021; 6(9): 2647-57.
[http://dx.doi.org/10.1016/j.bioactmat.2021.01.035] [PMID: 33665497]
[129]
Ahmed S, Ikram S. Chitosan based scaffolds and their applications in wound healing. Achiev Life Sci 2016; 10(1): 27-37.
[http://dx.doi.org/10.1016/j.als.2016.04.001]
[130]
Lin W, Qi X, Guo W, et al. A barrier against reactive oxygen species: Chitosan/acellular dermal matrix scaffold enhances stem cell retention and improves cutaneous wound healing. Stem Cell Res Ther 2020; 11(1): 383.
[http://dx.doi.org/10.1186/s13287-020-01901-6] [PMID: 32894204]
[131]
Gulrez SK, Al-Assaf S, Phillips GO. Hydrogels: Methods of preparation, characterisation and applications. In: Progress in Molecular and Environmental Bioengineering 2011.
[http://dx.doi.org/10.5772/24553]
[132]
Nguyen TT, Ding D, Wolter WR, et al. Validation of matrix metalloproteinase-9 (MMP-9) as a novel target for treatment of diabetic foot ulcers in humans and discovery of a potent and selective small-molecule MMP-9 inhibitor that accelerates healing. J Med Chem 2018; 61(19): 8825-37.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01005] [PMID: 30212201]
[133]
Peng Z, Nguyen TT, Song W, et al. Selective MMP-9 inhibitor (R)-ND-336 alone or in combination with linezolid accelerates wound healing in infected diabetic mice. ACS Pharmacol Transl Sci 2021; 4(1): 107-17.
[http://dx.doi.org/10.1021/acsptsci.0c00104] [PMID: 33615165]
[134]
Xian C, Gu Z, Liu G, Wu J. Whole wheat flour coating with antioxidant property accelerates tissue remodeling for enhanced wound healing. Chin Chem Lett 2020; 31(6): 1612-5.
[http://dx.doi.org/10.1016/j.cclet.2019.09.011]
[135]
Dai J, Chen H, Chai Y. Advanced glycation end products (AGEs) induce apoptosis of fibroblasts by activation of NLRP3 inflammasome via reactive oxygen species (ROS) signaling pathway. Med Sci Monit 2019; 25: 7499-508.
[http://dx.doi.org/10.12659/MSM.915806] [PMID: 31587010]
[136]
Das S, Singh G, Majid M, et al. Syndesome therapeutics for enhancing diabetic wound healing. Adv Healthc Mater 2016; 5(17): 2248-60.
[http://dx.doi.org/10.1002/adhm.201600285] [PMID: 27385307]
[137]
Singh MR, Patel S, Singh D. Natural polymer-based hydrogels as scaffolds for tissue engineering. In: Nanobiomaterials in soft tissue engineering. Elsevier 2016; pp. 231-60.
[http://dx.doi.org/10.1016/B978-0-323-42865-1.00009-X]
[138]
Vaz LV, Balcão VM, Oliveira JM Jr, et al. Development and characterization of a hydrogel containing silver sulfadiazine for antimicrobial topical applications. Part II: Stability, cytotoxicity and silver release patterns. Braz J Pharm Sci 2022; 58: e18688.
[http://dx.doi.org/10.1590/s2175-97902022e18688]
[139]
Mukherjee D, Azamthulla M, Santhosh S, et al. Development and characterization of chitosan-based hydrogels as wound dressing mate-rials. J Drug Deliv Sci Technol 2018; 46: 498-510.
[http://dx.doi.org/10.1016/j.jddst.2018.06.008]
[140]
Nike D, Katas H, Mohd N, et al. Characterisation of rapid in situ forming gelipin hydrogel for future use in irregular deep cutaneous wound healing. Polymers 2021; 13(18): 3152.
[http://dx.doi.org/10.3390/polym13183152] [PMID: 34578052]
[141]
Iacob AT, Drăgan M, Ghețu N, et al. Preparation, characterization and wound healing effects of new membranes based on chitosan, hyaluronic acid and arginine derivatives. Polymers 2018; 10(6): 607.
[http://dx.doi.org/10.3390/polym10060607] [PMID: 30966641]
[142]
Hasan MM, Forhad U, Nayera Z, et al. Fabrication and characterization of chitosan-polyethylene glycol (Ch-Peg) based hydrogels and evaluation of their potency in rat skin wound model. Int J Biomater 2021 2021.
[143]
Sivaraj D, Chen K, Chattopadhyay A, et al. Hydrogel scaffolds to deliver cell therapies for wound healing. Front Bioeng Biotechnol 2021; 9: 660145.
[http://dx.doi.org/10.3389/fbioe.2021.660145] [PMID: 34012956]
[144]
Rykowska I, Nowak I, Nowak R. Soft contact lenses as drug delivery systems: A review. Molecules 2021; 26(18): 5577.
[http://dx.doi.org/10.3390/molecules26185577] [PMID: 34577045]
[145]
Ciecholewska-Juśko D, Żywicka A, Junka A, et al. Superabsorbent crosslinked bacterial cellulose biomaterials for chronic wound dress-ings. Carbohydr Polym 2021; 253: 117247.
[http://dx.doi.org/10.1016/j.carbpol.2020.117247] [PMID: 33279002]
[146]
Aizawa Y, Owen SC, Shoichet MS. Polymers used to influence cell fate in 3D geometry: New trends. Prog Polym Sci 2012; 37(5): 645-58.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.11.004]
[147]
Albrecht DR, Tsang VL, Sah RL, Bhatia SN. Photo- and electropatterning of hydrogel-encapsulated living cell arrays. Lab Chip 2005; 5(1): 111-8.
[http://dx.doi.org/10.1039/b406953f] [PMID: 15616749]
[148]
Nikolova MP, Chavali MS. Recent advances in biomaterials for 3D scaffolds: A review. Bioact Mater 2019; 4: 271-92.
[http://dx.doi.org/10.1016/j.bioactmat.2019.10.005] [PMID: 31709311]
[149]
Wong CW, Han HW, Tien YW, Hsu S. Biomaterial substrate-derived compact cellular spheroids mimicking the behavior of pancreatic cancer and microenvironment. Biomaterials 2019; 213: 119202.
[http://dx.doi.org/10.1016/j.biomaterials.2019.05.013] [PMID: 31132644]
[150]
Nii T, Tabata Y. Immunosuppressive mesenchymal stem cells aggregates incorporating hydrogel microspheres promote an in vitro inva-sion of cancer cells. Regen Ther 2021; 18: 516-22.
[http://dx.doi.org/10.1016/j.reth.2021.11.006] [PMID: 34977285]
[151]
Ferreira LP, Gaspar VM, Mendes L, Duarte IF, Mano JF. Organotypic 3D decellularized matrix tumor spheroids for high-throughput drug screening. Biomaterials 2021; 275: 120983.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120983] [PMID: 34186236]
[152]
Zhang H, Qadeer A, Chen W. In situ gelable interpenetrating double network hydrogel formulated from binary components: Thiolated chitosan and oxidized dextran. Biomacromolecules 2011; 12(5): 1428-37.
[http://dx.doi.org/10.1021/bm101192b] [PMID: 21410248]
[153]
Cheung HY, Lau K-T, Lu T-P, Hui D. A critical review on polymer-based bio-engineered materials for scaffold development. Compos, Part B Eng 2007; 38(3): 291-300.
[http://dx.doi.org/10.1016/j.compositesb.2006.06.014]
[154]
Castillo-Henríquez L, Castro-Alpízar J, Lopretti-Correa M, Vega-Baudrit J. Exploration of bioengineered scaffolds composed of thermo-responsive polymers for drug delivery in wound healing. Int J Mol Sci 2021; 22(3): 1408.
[http://dx.doi.org/10.3390/ijms22031408] [PMID: 33573351]
[155]
Sun W, Starly B, Darling A, Gomez C. Computer-aided tissue engineering: Application to biomimetic modelling and design of tissue scaffolds. Biotechnol Appl Biochem 2004; 39(1): 49-58.
[http://dx.doi.org/10.1042/BA20030109] [PMID: 14556653]
[156]
Therriault D, White SR, Lewis JA. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat Mater 2003; 2(4): 265-71.
[http://dx.doi.org/10.1038/nmat863] [PMID: 12690401]
[157]
Palumbo VD, Bruno A, Tomasello G, Damiano G, Lo Monte AI. Bioengineered vascular scaffolds: The state of the art. Int J Artif Organs 2014; 37(7): 503-12.
[http://dx.doi.org/10.5301/ijao.5000343] [PMID: 25044387]
[158]
Carey LE, Dearth CL, Johnson SA, et al. In vivo degradation of 14C-labeled porcine dermis biologic scaffold. Biomaterials 2014; 35(29): 8297-304.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.015] [PMID: 24997479]
[159]
Alven S, Aderibigbe BA. Hyaluronic acid-based scaffolds as potential bioactive wound dressings. Polymers 2021; 13(13): 2102.
[http://dx.doi.org/10.3390/polym13132102] [PMID: 34206711]
[160]
Zhang C. Novel polysaccharide-based hydrogel scaffolds for wound care. Patent AU2020267858A1, 2022.
[161]
Landolina JA. In-situ cross-linkable polymeric compositions and methods thereof. Patent US9687584B1, 2020.
[162]
Sant S. Biomimetic hydrogel scaffolds and related methods. Patent US20160361464A1, 2019.
[163]
Cho M. Hybrid superporous hydrogel scaffold for cornea regeneration. Patent US20100080840A1, 2010.
[164]
Kumar A. Hydrogel scaffolds for tissue engineering. Patent US20130236971A1, 2014.
[165]
Tian J, Song X, Wang Y, et al. Regulatory perspectives of combination products. Bioact Mater 2022; 10: 492-503.
[http://dx.doi.org/10.1016/j.bioactmat.2021.09.002] [PMID: 34901562]