Current Materials Science

Author(s): T. Prakash*, V. P. Pradeep, T. Suresh and S. Raja

DOI: 10.2174/2666145417666230816091446

DownloadDownload PDF Flyer Cite As
Electric Discharge Machining of Titanium Alloy under Cu Mixed Dielectric Medium

Page: [98 - 109] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Introduction: In the current research work, an attempt has been made to machine Ti6Al4V using Powder Mixed Electric Discharge Machining (PMEDM) technique.

Methods: The experiments were designed utilizing central composite response surface methodology by varying current, pulse on time, gap distance, and powder concentration at five different levels, whereas Material Removal Rate (MRR), Tool Wear Rate (TWR), and Surface Roughness (Ra) were documented as responses. The MRR reduced with an increase in powder concentration until the concentration reached 7.5 g/l because incorporated particles observed the major proportion of heat, and at 10 g/l, MRR increased due to the bridging effect.

Results: The TWR and Ra reduced with an escalation in powder concentration due to expansion in the spark gap, facilitating the flushing of machined debris. The surface topography revealed cracks, pits, globules, and craters. Moreover, with the addition of particles, surface quality improved owing to the elimination of re-melted layers.

Conclusion: The parameters were optimized using the Grey Relational Analysis (GRA), and the combination of 2.5 g/l powder concentration, 20A current, 50 μs ton, and 4 mm gap distance offers the best machining performance.

Keywords: PMEDM, GRA, optimization, response surface methodology, surface topography, MRR.

Graphical Abstract

[1]
Bandyopadhyay, A.; Espana, F.; Balla, V.K.; Bose, S.; Ohgami, Y.; Davies, N.M. Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomater., 2010, 6(4), 1640-1648.
[http://dx.doi.org/10.1016/j.actbio.2009.11.011] [PMID: 19913643]
[2]
Veiga, C. Properties and applications of titanium alloys: A brief review. Rev. Adv. Mater. Sci., 2012, 32(2), 133-148.
[3]
Mierzejewska, Ż.A.; Hudák, R.; Sidun, J. Mechanical properties and microstructure of DMLS Ti6Al4V alloy dedicated to biomedical applications. Materials, 2019, 12(1), 176.
[http://dx.doi.org/10.3390/ma12010176] [PMID: 30621079]
[4]
Liao, Z.; Abdelhafeez, A.; Li, H.; Yang, Y.; Diaz, O.G.; Axinte, D. State-of-the-art of surface integrity in machining of metal matrix composites. Int. J. Mach. Tools Manuf., 2019, 143, 63-91.
[http://dx.doi.org/10.1016/j.ijmachtools.2019.05.006]
[5]
Sivakandhan, C.; Babu Loganathan, G.; Murali, G.; Suresh Prabhu, P.; Marichamy, S.; Sai Krishnan, G.; Pradhan, R. Material characterization and unconventional machining on synthesized Niobium metal matrix. Mater. Res. Express, 2020, 7(1), 015018.
[http://dx.doi.org/10.1088/2053-1591/ab624d]
[6]
Ranjith, R.; Tamilselvam, P.; Prakash, T.; Chinnasamy, C. Examinations concerning the electric discharge machining of AZ91/5B 4 C P composites utilizing distinctive electrode materials. Mater. Manuf. Process., 2019, 34(10), 1120-1128.
[http://dx.doi.org/10.1080/10426914.2019.1628258]
[7]
Ragavendran, U.; Ghadai, R.K.; Bhoi, A.K.; Ramachandran, M.; Kalita, K. Sensitivity analysis and optimization of EDM process parameters. Trans. Can. Soc. Mech. Eng., 2019, 43(1), 13-25.
[http://dx.doi.org/10.1139/tcsme-2018-0021]
[8]
Ranjith, R.; Giridharan, P.K.; Devaraj, J. Influence of titanium-coated (B4C + SiC) particles on electric discharge machining of AA7050 hybrid composites. High Temp. Mater. Process., 2016, 20(2), 93-105.
[http://dx.doi.org/10.1615/HighTempMatProc.2016017308]
[9]
Yuvaraj, T.; Suresh, P. Analysis of EDM Process parameters on inconel 718 using the grey-taguchi and topsis methods. Strojniski vestnik-. Jixie Gongcheng Xuebao, 2019, 65(10), 557-565.
[10]
Rouniyar, A.K.; Shandilya, P. Semi-empirical modeling and optimization of process parameters on overcut during MFAPM-EDM of Al6061 alloy. Proc. Inst. Mech. Eng., E J. Process Mech. Eng., 2021, 235(6), 1784-1796.
[http://dx.doi.org/10.1177/09544089211015890]
[11]
Ranjith, R.; Manoj Prabhakar, S.; Giridharan, K.; Ramu, M. Influence of Al 203 particle mixed dielectric fluid on machining performance of Ti6Al4V. Surf. Topogr., 2021, 9(4), 045052.
[http://dx.doi.org/10.1088/2051-672X/ac456a]
[12]
Singh, G.; Lamichhane, Y.R.; Bhui, A.S.; Sidhu, S.S. Surface morphology and microhardness behavior of 316L in HAp-PMEDM. FU Mech Eng, 2019, 17(3), 445-454.
[13]
Somu, C.; Ranjith, R.; Giridharan, P.K.; Ramu, M. A novel Cu-Gr composite electrode development for electric discharge machining of Inconel 718 alloy. Surf. Topogr., 2021, 9(3), 035025.
[http://dx.doi.org/10.1088/2051-672X/ac1f80]
[14]
Huu, P.N. Multi-objective optimization in titanium powder mixed electrical discharge machining process parameters for die steels. Alex. Eng. J., 2020, 59(6), 4063-4079.
[http://dx.doi.org/10.1016/j.aej.2020.07.012]
[15]
Nguyen, A.T.; Le, X.H.; Nguyen, V.T.; Phan, D.P.; Tran, Q.H.; Nguyen, D.N.; Nguyen, M-C.; Vu, N-P. Optimizing main process parameters when conducting powder-mixed electrical discharge machining of hardened 90CrSi. Machines, 2021, 9(12), 375.
[http://dx.doi.org/10.3390/machines9120375]
[16]
Kansal, H.K.; Singh, S.; Kumar, P. Technology and research developments in powder mixed electric discharge machining (PMEDM). J. Mater. Process. Technol., 2007, 184(1-3), 32-41.
[http://dx.doi.org/10.1016/j.jmatprotec.2006.10.046]
[17]
Yeo, S.H.; Murali, M.; Cheah, H.T. Magnetic field assisted micro electro-discharge machining. J. Micromech. Microeng., 2004, 14(11), 1526-1529.
[http://dx.doi.org/10.1088/0960-1317/14/11/013]
[18]
Kumar, H. Development of mirror like surface characteristics using nano powder mixed electric discharge machining (NPMEDM). Int. J. Adv. Manuf. Technol., 2015, 76(1-4), 105-113.
[http://dx.doi.org/10.1007/s00170-014-5965-6]
[19]
Gugulothu, B.; Rao, G.K.M.; Bezabih, M. Grey relational analysis for multi-response optimization of process parameters in green electrical discharge machining of Ti-6Al-4V alloy. Mater. Today Proc., 2021, 46, 89-98.
[http://dx.doi.org/10.1016/j.matpr.2020.06.135]
[20]
Prabhakar, M. R, R.; S, V. Characterization of electric discharge machining of titanium alloy utilizing MEIOT technique for orthopedic implants. Mater. Res. Express, 2021, 8(8), 086505.
[http://dx.doi.org/10.1088/2053-1591/ac1a2d]
[21]
Chai, R.; Savvaris, A.; Tsourdos, A.; Chai, S.; Xia, Y. A review of optimization techniques in spacecraft flight trajectory design. Prog. Aerosp. Sci., 2019, 109, 100543.
[http://dx.doi.org/10.1016/j.paerosci.2019.05.003]
[22]
Rao, R.V.; Saroj, A.; Ocloń, P.; Taler, J. Design optimization of heat exchangers with advanced optimization techniques: A review. Arch. Comput. Methods Eng., 2020, 27(2), 517-548.
[http://dx.doi.org/10.1007/s11831-019-09318-y]
[23]
Sarker, M.R.; Julai, S.; Sabri, M.F.M.; Said, S.M.; Islam, M.M.; Tahir, M. Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system. Sens. Actuators A Phys., 2019, 300, 111634.
[http://dx.doi.org/10.1016/j.sna.2019.111634]
[24]
Ranjith, R.; Vimalkumar, S.N. Integrated MOORA-ELECTRE approach for solving multi-criteria decision problem. World J. Eng., 2021.
[25]
Rajamanickam, R.; Kumar, S.N.V.; Giridharan, P.K.; Pradeep, V. Characterization of tribological and mechanical properties of AA7050/Al2O3 composites at elevated temperature. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes 2021, 25(4)
[26]
An, N.T.; Nam, N.M.; Qin, X. Solving k-center problems involving sets based on optimization techniques. J. Glob. Optim., 2020, 76(1), 189-209.
[http://dx.doi.org/10.1007/s10898-019-00834-6]
[27]
Bui, V.D.; Mwangi, J.W.; Meinshausen, A.K.; Mueller, A.J.; Bertrand, J.; Schubert, A. Antibacterial coating of Ti-6Al-4V surfaces using silver nano-powder mixed electrical discharge machining. Surf. Coat. Tech., 2020, 383, 125254.
[http://dx.doi.org/10.1016/j.surfcoat.2019.125254]
[28]
Rouniyar, A.K.; Shandilya, P. Fabrication and experimental investigation of magnetic field assisted powder mixed electrical discharge machining on machining of aluminum 6061 alloy. Proc. Inst. Mech. Eng., B J. Eng. Manuf., 2019, 233(12), 2283-2291.
[http://dx.doi.org/10.1177/0954405419838954]
[29]
Sahu, S.K.; Datta, S. Experimental studies on graphite powder-mixed electro-discharge machining of Inconel 718 super alloys: Comparison with conventional electro-discharge machining. Proc. Inst. Mech. Eng., E J. Process Mech. Eng., 2019, 233(2), 384-402.
[http://dx.doi.org/10.1177/0954408918787104]
[30]
Rouniyar, A.K.; Shandilya, P. Experimental investigation on recast layer and surface roughness on aluminum 6061 alloy during magnetic field assisted powder mixed electrical discharge machining. J. Mater. Eng. Perform., 2020, 29(12), 7981-7992.
[http://dx.doi.org/10.1007/s11665-020-05244-4]
[31]
Jadam, T.; Sahu, S.K.; Datta, S.; Masanta, M. Powder-mixed electro-discharge machining performance of Inconel 718: effect of concentration of multi-walled carbon nanotube added to the dielectric media. Sadhana, 2020, 45(1), 135.
[http://dx.doi.org/10.1007/s12046-020-01378-2]
[32]
Ilani, M.A.; Khoshnevisan, M. Powder mixed-electrical discharge machining (EDM) with the electrode is made by fused deposition modeling (FDM) at Ti-6Al-4V machining procedure. Multiscale and Multidiscip. Model. Exp. and Des., 2020, 3(3), 173-186.
[33]
Dinesh, S.; Vijayan, V.; Thanikaikarasan, S.; Sebastian, P.J. Productivity and quality enhancement in powder mixed electrical discharge machining for OHNS die steel by utilization of ANN and RSM modeling. J. New Mater. Electrochem. Syst., 2019, 22(1), 33-43.
[34]
Dharmendra, B.V.; Kodali, S.P.; Nageswara Rao, B. A simple and reliable Taguchi approach for multi-objective optimization to identify optimal process parameters in nano-powder-mixed electrical discharge machining of INCONEL800 with copper electrode. Heliyon, 2019, 5(8), e02326.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02326] [PMID: 31485524]
[35]
Kalaman, S.; Yasar, H.; Ekmekci, N.; Opoz, T.T.; Ekmekci, B. Powder mixed electrical discharge machining and biocompatibility: A state of the art review. The 18th International Conference on Machine Design and Production; , 2018.
[36]
Prakash, C.; Singh, S.; Singh, M.; Antil, P.; Aliyu, A.A.A.; Abdul-Rani, A.M.; Sidhu, S.S. Multi-objective optimization of MWCNT mixed electric discharge machining of Al–30SiC p MMC using particle swarm optimization. In: Futuristic Composites; Springer: Singapore, 2018; pp. 145-164.
[http://dx.doi.org/10.1007/978-981-13-2417-8_7]
[37]
Mohanty, S.; Mishra, A.; Nanda, B.K.; Routara, B.C. Multi-objective parametric optimization of nano powder mixed electrical discharge machining of AlSiCp using response surface methodology and particle swarm optimization. Alex. Eng. J., 2018, 57(2), 609-619.
[http://dx.doi.org/10.1016/j.aej.2017.02.006]
[38]
Jatti, V.S.; Bagane, S. Thermo-electric modelling, simulation and experimental validation of powder mixed electric discharge machining (PMEDM) of BeCu alloys. Alex. Eng. J., 2018, 57(2), 643-653.
[http://dx.doi.org/10.1016/j.aej.2017.02.023]
[39]
Banh, T.L.; Nguyen, H.P.; Ngo, C.; Nguyen, D.T. Characteristics optimization of powder mixed electric discharge machining using titanium powder for die steel materials. Proc. Inst. Mech. Eng., E J. Process Mech. Eng., 2018, 232(3), 281-298.
[http://dx.doi.org/10.1177/0954408917693661]
[40]
Ramesh, S.; Jenarthanan, M.P. Experimental investigation of powder-mixed electric discharge machining of AISI P20 steel using different powders and tool materials. Multidiscip. Model. Mater. Struct., 2018.
[41]
Sharma, D.; Mohanty, S.; Das, A.K. Surface modification of titanium alloy using hBN powder mixed dielectric through micro-electric discharge machining. Surf. Coat. Tech., 2020, 381, 125157.
[http://dx.doi.org/10.1016/j.surfcoat.2019.125157]
[42]
Singh, J.; Sharma, R.K. Multi-objective optimization of green powder-mixed electrical discharge machining of tungsten carbide alloy. Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci., 2018, 232(16), 2774-2786.
[http://dx.doi.org/10.1177/0954406217727306]
[43]
Shard, A.; Shikha, D.; Gupta, V.; Garg, M.P. Effect of B4C abrasive mixed into dielectric fluid on electrical discharge machining. J. Braz. Soc. Mech. Sci. Eng., 2018, 40(12), 554.
[http://dx.doi.org/10.1007/s40430-018-1474-0]
[44]
Nguyen, H.P.; Pham, V.D.; Ngo, N.V. Application of TOPSIS to Taguchi method for multi-characteristic optimization of electrical discharge machining with titanium powder mixed into dielectric fluid. Int. J. Adv. Manuf. Technol., 2018, 98(5-8), 1179-1198.
[http://dx.doi.org/10.1007/s00170-018-2321-2]
[45]
Prakash, K.B.; Amarkarthik, A.; Ravikumar, M.; Manoj Kumar, P.; Jegadheeswaran, S. Optimizing performance characteristics of blower for combustion process using taguchi based grey relational analysis. In: Advances in Materials Research; Springer: Singapore, 2021; pp. 155-163.
[http://dx.doi.org/10.1007/978-981-15-8319-3_17]
[46]
Sarraf, F.; Nejad, S.H. Improving performance evaluation based on balanced scorecard with grey relational analysis and data envelopment analysis approaches: Case study in water and wastewater companies. Eval. Program Plann., 2020, 79, 101762.
[http://dx.doi.org/10.1016/j.evalprogplan.2019.101762] [PMID: 31835153]
[47]
Wu, Y.; Zhou, F.; Kong, J. Innovative design approach for product design based on TRIZ, AD, fuzzy and Grey relational analysis. Comput. Ind. Eng., 2020, 140, 106276.
[http://dx.doi.org/10.1016/j.cie.2020.106276]
[48]
Li, X.; Wang, Z.; Zhang, L.; Zou, C.; Dorrell, D.D. State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis. J. Power Sources, 2019, 410-411, 106-114.
[http://dx.doi.org/10.1016/j.jpowsour.2018.10.069]
[49]
Yazdani, M.; Kahraman, C.; Zarate, P.; Onar, S.C. A fuzzy multi attribute decision framework with integration of QFD and grey relational analysis. Expert Syst. Appl., 2019, 115, 474-485.
[http://dx.doi.org/10.1016/j.eswa.2018.08.017]