Identification of Active Compounds of Pueraria Lobata and their Mechanisms of Action by LC-MS/MS and Network Pharmacology

Page: [398 - 406] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Osteoporosis has become a global public health problem, and Pueraria Lobata (PL) is a potential drug for treating osteoporosis.

Methods: Firstly, the components of PL were detected and identified based on UHPLC-Q-Exactive Orbitrap MS. In addition, we used network pharmacology to study the potential mechanism of PL in treating osteoporosis.

Result: A total of 48 compounds, including 38 isoflavones, 6 puerosides, and 4 others, were identified by UHPLC-Q Exactive-Orbitrap MS. The network of the pharmacological analysis revealed that 28 compounds of PL regulated 19 pathways through 27 targets, including estrogen signaling pathway and NF-kappa B signaling pathway, etc.

Conclusion: This study used LC-MS combined with network pharmacology to identify the compounds of PL and their mechanism of intervention in osteoporosis, which provides a scientific basis for PL to become a functional food for preventing osteoporosis.

[1]
Gao, Y.; Patil, S.; Jia, J. The development of molecular biology of osteoporosis. Int. J. Mol. Sci., 2021, 22(15), 8182.
[http://dx.doi.org/10.3390/ijms22158182] [PMID: 34360948]
[2]
Li, S.S.; He, S.H.; Xie, P.Y.; Li, W.; Zhang, X.X.; Li, T.F.; Li, D.F. Recent progresses in the treatment of osteoporosis. Front. Pharmacol., 2021, 12, 717065.
[http://dx.doi.org/10.3389/fphar.2021.717065] [PMID: 34366868]
[3]
Duong, L.T.; Leung, A.T.; Langdahl, B. Cathepsin K inhibition: A new mechanism for the treatment of osteoporosis. Calcif. Tissue Int., 2016, 98(4), 381-397.
[http://dx.doi.org/10.1007/s00223-015-0051-0] [PMID: 26335104]
[4]
Mukherjee, K.; Chattopadhyay, N. Pharmacological inhibition of cathepsin K: A promising novel approach for postmenopausal osteopo-rosis therapy. Biochem. Pharmacol., 2016, 117, 10-19.
[http://dx.doi.org/10.1016/j.bcp.2016.04.010] [PMID: 27106079]
[5]
Lee, M.; Park, S.J.; Moon, Y.J.; In, G.; Kim, J.H.; Kim, S.W.; Lee, M.H.; Kim, O.K. Combination of sargassum fusiforme and pueraria lobata extracts alleviates postmenopausal symptoms in ovariectomized rats. J. Med. Food, 2020, 23(7), 735-744.
[http://dx.doi.org/10.1089/jmf.2019.4555] [PMID: 32460593]
[6]
Li, H.; Chen, B.; Pang, G.; Chen, J.; Xie, J.; Huang, H. Anti-osteoporotic activity of puerarin 6″- O -xyloside on ovariectomized mice and its potential mechanism. Pharm. Biol., 2016, 54(1), 111-117.
[http://dx.doi.org/10.3109/13880209.2015.1017885] [PMID: 25857587]
[7]
Yang, X.; Yang, Y.; Zhou, S.; Gong, X.; Dai, Q.; Zhang, P.; Jiang, L. Puerarin stimulates osteogenic differentiation and bone formation through the ERK1/2 and p38-MAPK signaling pathways. Curr. Mol. Med., 2018, 17(7), 488-496.
[http://dx.doi.org/10.2174/1566524018666171219101142] [PMID: 29256352]
[8]
Liu, T.; Cao, X.; Cao, D. Combination of UHPLC-Q Exactive-Orbitrap MS and network pharmacology to reveal the mechanism of Eu-commia ulmoides leaves in the treatment of osteoarthritis. J. Food Biochem., 2022, 46(8), e14204.
[http://dx.doi.org/10.1111/jfbc.14204]
[9]
Chen, L.L.; Chen, C.H.; Zhang, X.X.; Wang, Y.; Wang, S.F. Identification of constituents in Gui-Zhi-Jia-Ge-Gen-Tang by LC-IT-MS com-bined with LC-Q-TOF-MS and elucidation of their metabolic networks in rat plasma after oral administration. Chin. J. Nat. Med., 2019, 17(11), 803-821.
[http://dx.doi.org/10.1016/S1875-5364(19)30099-8] [PMID: 31831128]
[10]
Lu, J.; Xie, Y.; Tan, Y.; Qu, J.; Matsuda, H.; Yoshikawa, M.; Yuan, D. Simultaneous determination of isoflavones, saponins and flavones in Flos Puerariae by ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Chem. Pharm. Bull., 2013, 61(9), 941-951.
[http://dx.doi.org/10.1248/cpb.c13-00271] [PMID: 23759517]
[11]
Song, W.; Ye, M. Chemistry of the chinese herbal medicine puerariae radix (Ge-Gen): A review. J. Chin. Pharm. Sci., 2014, 23(6), 6.
[http://dx.doi.org/10.5246/jcps.2014.06.048]
[12]
Wang, Q.; Kuang, Y.; Song, W.; Qian, Y.; Qiao, X.; Guo, D.; Ye, M. Permeability through the Caco-2 cell monolayer of 42 bioactive com-pounds in the TCM formula Gegen-Qinlian Decoction by liquid chromatography tandem mass spectrometry analysis. J. Pharm. Biomed. Anal., 2017, 146, 206-213.
[http://dx.doi.org/10.1016/j.jpba.2017.08.042] [PMID: 28886521]
[13]
Yan, Y.; Chai, C.Z.; Wang, D.W.; Yue, X.Y.; Zhu, D.N.; Yu, B.Y. HPLC-DAD-Q-TOF-MS/MS analysis and HPLC quantitation of chemical constituents in traditional Chinese medicinal formula Ge-Gen Decoction. J. Pharm. Biomed. Anal., 2013, 80, 192-202.
[http://dx.doi.org/10.1016/j.jpba.2013.03.008] [PMID: 23584078]
[14]
Fan, J.Z.; Yang, L.; Meng, G.L.; Lin, Y.S.; Wei, B.Y.; Fan, J.; Hu, H.M.; Liu, Y.W.; Chen, S.; Zhang, J.K.; He, Q.Z.; Luo, Z.J.; Liu, J. Estrogen improves the proliferation and differentiation of hBMSCs derived from postmenopausal osteoporosis through notch signaling pathway. Mol. Cell. Biochem., 2014, 392(1-2), 85-93.
[http://dx.doi.org/10.1007/s11010-014-2021-7]
[15]
Sharma, A.R.; Nam, J.S. Kaempferol stimulates WNT/β-catenin signaling pathway to induce differentiation of osteoblasts. J. Nutr. Biochem., 2019, 74, 108228.
[http://dx.doi.org/10.1016/j.jnutbio.2019.108228] [PMID: 31678747]
[16]
Chen, Y.; Zhang, L.; Li, Z.; Wu, Z.; Lin, X.; Li, N.; Shen, R.; Wei, G.; Yu, N.; Gong, F.; Rui, G.; Xu, R.; Ji, G. Mogrol attenuates osteoclast formation and bone resorption by inhibiting the TRAF6/MAPK/NF-κB signaling pathway in vitro and protects against osteoporosis in postmenopausal mice. Front. Pharmacol., 2022, 13, 803880.
[http://dx.doi.org/10.3389/fphar.2022.803880] [PMID: 35496311]
[17]
Xi, J.C.; Zang, H.Y.; Guo, L.X.; Xue, H.B.; Liu, X.D.; Bai, Y.B.; Ma, Y.Z. The PI3K/AKT cell signaling pathway is involved in regulation of osteoporosis. J. Recept. Signal Transduct. Res., 2015, 35(6), 640-645.
[http://dx.doi.org/10.3109/10799893.2015.1041647] [PMID: 26390889]
[18]
Jang, H.D.; Noh, J.Y.; Shin, J.H.; Lin, J.J.; Lee, S.Y. PTEN regulation by the Akt/GSK-3β axis during RANKL signaling. Bone, 2013, 55(1), 126-131.
[http://dx.doi.org/10.1016/j.bone.2013.02.005] [PMID: 23419777]
[19]
Moon, J.B.; Kim, J.H.; Kim, K.; Youn, B.U.; Ko, A.; Lee, S.Y.; Kim, N. Akt induces osteoclast differentiation through regulating the GSK3β/NFATc1 signaling cascade. J. Immunol., 2012, 188(1), 163-169.
[http://dx.doi.org/10.4049/jimmunol.1101254] [PMID: 22131333]
[20]
Jagga, S.; Sharma, A.R.; Kim, E.J.; Nam, J.S. Isoflavone-enriched whole soy milk powder stimulates osteoblast differentiation. J. Food Sci. Technol., 2021, 58(2), 595-603.
[http://dx.doi.org/10.1007/s13197-020-04572-6] [PMID: 33568853]
[21]
Lee, H.; Choue, R.; Lim, H. Effect of soy isoflavones supplement on climacteric symptoms, bone biomarkers, and quality of life in Kore-an postmenopausal women: A randomized clinical trial. Nutr. Res. Pract., 2017, 11(3), 223-231.
[http://dx.doi.org/10.4162/nrp.2017.11.3.223] [PMID: 28584579]
[22]
Lu, L.W.; Chen, N.W.; Nayeem, F.; Ramanujam, V.S.; Kuo, Y.F.; Brunder, D.G.; Nagamani, M.; Anderson, K.E. Novel effects of phy-toestrogenic soy isoflavones on serum calcium and chloride in premenopausal women: A 2-year double-blind, randomized, placebo-controlled study. Clin. Nutr., 2018, 37(6 Pt A), 1862-1870.
[23]
Martiniakova, M.; Babikova, M.; Omelka, R. Pharmacological agents and natural compounds: Available treatments for osteoporosis. J. Physiol. Pharmacol., 2020, 71(3), 3.
[PMID: 32991310]
[24]
Jin, X.; Sun, J.; Yu, B.; Wang, Y.; Sun, W.J.; Yang, J.; Huang, S.H.; Xie, W.L. Daidzein stimulates osteogenesis facilitating proliferation, differentiation, and antiapoptosis in human osteoblast-like MG-63 cells via estrogen receptor-dependent MEK/ERK and PI3K/Akt activa-tion. Nutr. Res., 2017, 42, 20-30.
[http://dx.doi.org/10.1016/j.nutres.2017.04.009] [PMID: 28633868]
[25]
Filipović, B.; Šošić-Jurjević, B.; Ajdžanović, V.; Živanović, J.; Manojlović-Stojanoski, M.; Nestorović, N.; Ristić, N.; Trifunović, S.; Mi-lošević, V. The phytoestrogen genistein prevents trabecular bone loss and affects thyroid follicular cells in a male rat model of osteoporo-sis. J. Anat., 2018, 233(2), 204-212.
[http://dx.doi.org/10.1111/joa.12828] [PMID: 29761487]
[26]
Liao, S.; Feng, W.; Liu, Y.; Wang, Z.; Ding, X.; Song, F.; Lin, X.; Song, H.; Kc, A.; Su, Y.; Liang, J.; Xu, J.; Liu, Q.; Zhao, J. Inhibitory effects of biochanin A on titanium particle‐induced osteoclast activation and inflammatory bone resorption via NF‐κB and MAPK path-ways. J. Cell. Physiol., 2021, 236(2), 1432-1444.
[http://dx.doi.org/10.1002/jcp.29948] [PMID: 32853427]