Mechanism of Action of Collagen and Epidermal Growth Factor: A Review on Theory and Research Methods

Page: [453 - 477] Pages: 25

  • * (Excluding Mailing and Handling)

Abstract

The most abundant protein found in mammals is collagen, and there are around 28 different types of collagen found in the human body, but there are five types, namely, Type I, Type II, Type III, Type V, and Type X, most generally applied in supplements, and the five common types of collagen are available in various forms and form different sources, which result in various potential benefits. The epidermal growth factor is one of the main growth factor proteins in the skin, which has an important function in the production of collagen, hyaluronic acid, and elastin to keep the skin healthy and dense appearance. It is a single-chain polypeptide of 53 amino acids, which is a potent mitogen for a variety of cells in vivo and in vitro. It triggers cells to grow, produce, and divide proteins, such as collagen. It may increase collagen production in granulation tissue by stimulation of fibroblast proliferation. This review article aims to provide an overview of different collagens and epidermal growth factors from recently published studies and some important directions for future research. The key words search for Collagen, Epidermal growth, Polypeptides, Amino acids, Protein, and tissue engineering were performed using Google scholar, PubMed, and Scopus. Fibrillar collagens are collagen types I, II, III, V, XI, XXIV, XXVII, and non-fibrillar collagens are collagen types IV, VI, VII, VIII, IX, X, XII, XIII, XIV, XV, XVI, XVII, XVIII, XIX, XX, XXI, XXII, XXIII, XXV, XXVI, XXVIII, and XXIX. Collagen I can be found in bone, skin, tendon, cornea and vascular ligature; collagen II can be discovered in cartilage, vitreous body and gristle; collagen III is the main ingredient of reticular fibers which is often found alongside type I, the location of collagen III is also in skin, uterus, intestine, and vessels. Collagen IV can be identified in capillaries, the epithelium-secreted layer of the basement membrane and forms basal lamina. It forms basal lamina, capillaries, and the epitheliumsecreted layer of the basement membrane, while Collagen V can be discovered in bones, skin, cornea, hair, placenta, and cell surfaces. In addition, collagen VI is found in bones, skin, gristle, cornea and vessels, while collagen VII can be found in skin, bladder, mucous membranes, amniotic fluid and umbilical cord. Lastly, collagen VIII is found in the skin, heart, kidney, brain, bones, gristle and vessels. Moreover, collagen X, XI and IX can be found in the gristle.

Graphical Abstract

[1]
Uzel, S.G.M.; Buehler, M.J. Molecular structure, mechanical behavior and failure mechanism of the C-terminal cross-link domain in type I collagen. J. Mech. Behav. Biomed. Mater., 2011, 4(2), 153-161.
[http://dx.doi.org/10.1016/j.jmbbm.2010.07.003] [PMID: 21262493]
[2]
Kisling, A.; Katwa, L.C. Pro-remodeling peptides modulate collagen α1(I) promoter activity in rat cardiac myofibroblasts. Biochem. Biophys. Res. Commun., 2019, 515(4), 693-698.
[http://dx.doi.org/10.1016/j.bbrc.2019.06.025] [PMID: 31186140]
[3]
Shen, J.; Wang, Z.; Zhao, W.; Fu, Y.; Li, B.; Cheng, J.; Deng, Y.; Li, S.; Li, H. TGF-β1 induces type I collagen deposition in granulosa cells via the AKT/GSK-3β signaling pathway-mediated MMP1 down-regulation. Reprod. Biol., 2022, 22(4), 100705.
[http://dx.doi.org/10.1016/j.repbio.2022.100705] [PMID: 36308873]
[4]
Midura, R.J.; Vasanji, A.; Su, X.; Wang, A.; Midura, S.B.; Gorski, J.P. Calcospherulites isolated from the mineralization front of bone induce the mineralization of type I collagen. Bone, 2007, 41(6), 1005-1016.
[http://dx.doi.org/10.1016/j.bone.2007.08.036] [PMID: 17936099]
[5]
Dönmez, G.; Doral, M.N.; Suljevic Ş.; Sargon, M.F.; Bilgili, H.; Demirel, H.A. Effects of immobilization and whole-body vibration on rat serum Type I collagen turnover. Acta Orthop. Traumatol. Turc., 2016, 50(4), 452-457.
[http://dx.doi.org/10.1016/j.aott.2016.07.007] [PMID: 27480210]
[6]
Teplický, T.; Gregorová, M.; Kalafutová, A.; Hanzel, O.; Mateašík, A.; Filová, B.; Čunderlíková, B. Characterisation of collagen type I matrices for pathophysiologically relevant spatial cancer cell cultures. Biophys. Chem., 2023, 293, 106944.
[http://dx.doi.org/10.1016/j.bpc.2022.106944] [PMID: 36527999]
[7]
Xiong, X.; Ghosh, R.; Hiller, E.; Drepper, F.; Knapp, B.; Brunner, H.; Rupp, S. A new procedure for rapid, high yield purification of Type I collagen for tissue engineering. Process Biochem., 2009, 44(11), 1200-1212.
[http://dx.doi.org/10.1016/j.procbio.2009.06.010]
[8]
Mohanty, C.; Pradhan, J. A human epidermal growth factor-curcumin bandage bioconjugate loaded with mesenchymal stem cell for in vivo diabetic wound healing. Mater. Sci. Eng. C, 2020, 111, 110751.
[http://dx.doi.org/10.1016/j.msec.2020.110751] [PMID: 32279771]
[9]
Sirowanto, I.; Josh, F.; Sulmiati; Ahmadwirawan; Zainuddin, A.A.; Faruk, M. The effect of platelet-rich plasma and stromal vascular fraction combination on epidermal growth factor serum level for anal trauma healing in the wistar rat model. Ann. Med. Surg., 2021, 70, 102773.
[http://dx.doi.org/10.1016/j.amsu.2021.102773] [PMID: 34584679]
[10]
Cross, V.L.; Zheng, Y.; Won Choi, N.; Verbridge, S.S.; Sutermaster, B.A.; Bonassar, L.J.; Fischbach, C.; Stroock, A.D. Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials, 2010, 31(33), 8596-8607.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.072] [PMID: 20727585]
[11]
Cai, L.; Fritz, D.; Stefanovic, L.; Stefanovic, B. Binding of LARP6 to the conserved 5′ stem-loop regulates translation of mRNAs encoding type I collagen. J. Mol. Biol., 2010, 395(2), 309-326.
[http://dx.doi.org/10.1016/j.jmb.2009.11.020] [PMID: 19917293]
[12]
Yano, H.; Hamanaka, R.; Nakamura, M.; Sumiyoshi, H.; Matsuo, N.; Yoshioka, H. Smad, but not MAPK, pathway mediates the expression of type I collagen in radiation induced fibrosis. Biochem. Biophys. Res. Commun., 2012, 418(3), 457-463.
[http://dx.doi.org/10.1016/j.bbrc.2012.01.039] [PMID: 22277670]
[13]
Song, Y.; Hua, S.; Sayyar, S.; Chen, Z.; Chung, J.; Liu, X.; Yue, Z.; Angus, C.; Filippi, B.; Beirne, S.; Wallace, G.; Sutton, G.; You, J. Corneal bioprinting using a high concentration pure collagen I transparent bioink. Bioprinting, 2022, 28, e00235.
[http://dx.doi.org/10.1016/j.bprint.2022.e00235]
[14]
Kisling, A.; Lust, R.M.; Katwa, L.C. What is the role of peptide fragments of collagen I and IV in health and disease? Life Sci., 2019, 228, 30-34.
[http://dx.doi.org/10.1016/j.lfs.2019.04.042] [PMID: 31004660]
[15]
Chen, S.; Hong, Z.; Wen, H.; Hong, B.; Lin, R.; Chen, W.; Xie, Q.; Le, Q.; Yi, R.; Wu, H. Compositional and structural characteristics of pepsin-soluble type I collagen from the scales of red drum fish, Sciaenops ocellatus. Food Hydrocoll., 2022, 123, 107111.
[http://dx.doi.org/10.1016/j.foodhyd.2021.107111]
[16]
Kambic, H.E.; McDevitt, C.A. Spatial organization of types I and II collagen in the canine meniscus. J. Orthop. Res., 2005, 23(1), 142-149.
[http://dx.doi.org/10.1016/j.orthres.2004.06.016] [PMID: 15607886]
[17]
Gawron, K.; Jensen, D.A.; Steplewski, A.; Fertala, A. Reducing the effects of intracellular accumulation of thermolabile collagen II mutants by increasing their thermostability in cell culture conditions. Biochem. Biophys. Res. Commun., 2010, 396(2), 213-218.
[http://dx.doi.org/10.1016/j.bbrc.2010.04.056] [PMID: 20394730]
[18]
Tan, G.K.; Dinnes, D.L.M.; Cooper-White, J.J. Modulation of collagen II fiber formation in 3-D porous scaffold environments. Acta Biomater., 2011, 7(7), 2804-2816.
[http://dx.doi.org/10.1016/j.actbio.2011.03.022] [PMID: 21439411]
[19]
Wang, Y.; Zhang, L.; Liao, W.; Tong, Z.; Yuan, F.; Mao, L.; Liu, J.; Gao, Y. The concentration-, pH- and temperature-responsive self-assembly of undenatured type II collagen: Kinetics, thermodynamics, nanostructure and molecular mechanism. Food Hydrocoll., 2023, 137, 108424.
[http://dx.doi.org/10.1016/j.foodhyd.2022.108424]
[20]
Claassen, H.; Schlüter, M.; Schünke, M.; Kurz, B. Influence of 17β-estradiol and insulin on type II collagen and protein synthesis of articular chondrocytes. Bone, 2006, 39(2), 310-317.
[http://dx.doi.org/10.1016/j.bone.2006.02.067] [PMID: 16631425]
[21]
Choi, J.H.; Lee, J.H.; Roh, K.H.; Seo, S.K.; Choi, I.W.; Park, S.G.; Lim, J.G.; Lee, W.J.; Kim, M.H.; Cho, K.; Kim, Y.J. Gallium nitrate ameliorates type II collagen-induced arthritis in mice. Int. Immunopharmacol., 2014, 20(1), 269-275.
[http://dx.doi.org/10.1016/j.intimp.2014.03.005] [PMID: 24656780]
[22]
Clarke, C.J.; Berg, T.J.; Birch, J.; Ennis, D.; Mitchell, L.; Cloix, C.; Campbell, A.; Sumpton, D.; Nixon, C.; Campbell, K.; Bridgeman, V.L.; Vermeulen, P.B.; Foo, S.; Kostaras, E.; Jones, J.L.; Haywood, L.; Pulleine, E.; Yin, H.; Strathdee, D.; Sansom, O.; Blyth, K.; McNeish, I.; Zanivan, S.; Reynolds, A.R.; Norman, J.C. The inhibitor methionine tRNA drives secretion of type II collagen from stromal fibroblasts to promote tumor growth and angiogenesis. Curr. Biol., 2016, 26(6), 755-765.
[http://dx.doi.org/10.1016/j.cub.2016.01.045] [PMID: 26948875]
[23]
van Hoolwerff, M.; Rodríguez Ruiz, A.; Suchiman, E.; Bouma, M.J.; Freund, C.M.; Mummery, C.L.; Ramos, Y.F.; Meulenbelt, I. High impact mutation FN1 affects cartilage integrity via aberrant binding to collagen type II. Osteoarthr Cartil, 2021, 29(1), S405-S406.
[http://dx.doi.org/10.1016/j.joca.2021.02.525]
[24]
Chung, H.J.; Jensen, D.A.; Gawron, K.; Steplewski, A.; Fertala, A. R992C (p.R1192C) Substitution in collagen II alters the structure of mutant molecules and induces the unfolded protein response. J. Mol. Biol., 2009, 390(2), 306-318.
[http://dx.doi.org/10.1016/j.jmb.2009.05.004] [PMID: 19433093]
[25]
Zhao, Y.; Lu, K.; Piao, X.; Song, Y.; Wang, L.; Zhou, R.; Gao, P.; Khong, H.Y. Collagens for surimi gel fortification: Type-dependent effects and the difference between type I and type II. Food Chem., 2023, 407, 135157.
[http://dx.doi.org/10.1016/j.foodchem.2022.135157] [PMID: 36529012]
[26]
Jeevithan, E.; Jingyi, Z.; Wang, N.; He, L.; Bao, B.; Wu, W. Physico-chemical, antioxidant and intestinal absorption properties of whale shark type-II collagen based on its solubility with acid and pepsin. Process Biochem., 2015, 50(3), 463-472.
[http://dx.doi.org/10.1016/j.procbio.2014.11.015]
[27]
Andrade, L.R.; Salles, F.T.; Grati, M.; Manor, U.; Kachar, B. Tectorins crosslink type II collagen fibrils and connect the tectorial membrane to the spiral limbus. J. Struct. Biol., 2016, 194(2), 139-146.
[http://dx.doi.org/10.1016/j.jsb.2016.01.006] [PMID: 26806019]
[28]
Hao, H.Q.; Zhang, J.F.; He, Q.Q.; Wang, Z. Cartilage oligomeric matrix protein, C-terminal cross-linking telopeptide of type II collagen, and matrix metalloproteinase-3 as biomarkers for knee and hip osteoarthritis (OA) diagnosis: A systematic review and meta-analysis. Osteoarthr Cartil, 2019, 27(5), 726-736.
[http://dx.doi.org/10.1016/j.joca.2018.10.009] [PMID: 30391538]
[29]
Kolpakova-Hart, E.; Nicolae, C.; Zhou, J.; Olsen, B.R. Col2-Cre recombinase is co-expressed with endogenous type II collagen in embryonic renal epithelium and drives development of polycystic kidney disease following inactivation of ciliary genes. Matrix Biol., 2008, 27(6), 505-512.
[http://dx.doi.org/10.1016/j.matbio.2008.05.002] [PMID: 18579360]
[30]
Nishimura, I.; Chano, T.; Kita, H.; Matsusue, Y.; Okabe, H. RB1CC1 protein suppresses type II collagen synthesis in chondrocytes and causes dwarfism. J. Biol. Chem., 2011, 286(51), 43925-43932.
[http://dx.doi.org/10.1074/jbc.M111.264192] [PMID: 22049074]
[31]
Bagi, C.M.; Berryman, E.R.; Teo, S.; Lane, N.E. Oral administration of undenatured native chicken type II collagen (UC-II) diminished deterioration of articular cartilage in a rat model of osteoarthritis (OA). Osteoarthr Cartil, 2017, 25(12), 2080-2090.
[http://dx.doi.org/10.1016/j.joca.2017.08.013] [PMID: 28888901]
[32]
Shafik, N.M.; El-Esawy, R.O.; Mohamed, D.A.; Deghidy, E.A.; El-Deeb, O.S. Regenerative effects of glycyrrhizin and/or platelet rich plasma on type-II collagen induced arthritis: Targeting autophay machinery markers, inflammation and oxidative stress. Arch. Biochem. Biophys., 2019, 675, 108095.
[http://dx.doi.org/10.1016/j.abb.2019.108095] [PMID: 31476301]
[33]
Sun, Y.L.; Luo, Z.P.; Fertala, A.; An, K.N. Stretching type II collagen with optical tweezers. J. Biomech., 2004, 37(11), 1665-1669.
[http://dx.doi.org/10.1016/j.jbiomech.2004.02.028] [PMID: 15388308]
[34]
Olsen, A.K.; Sondergaard, B.C.; Byrjalsen, I.; Tanko, L.B.; Christiansen, C.; Müller, A.; Hein, G.E.; Karsdal, M.A.; Qvist, P. Anabolic and catabolic function of chondrocyte ex vivo is reflected by the metabolic processing of type II collagen. Osteoarthr Cartil, 2007, 15(3), 335-342.
[http://dx.doi.org/10.1016/j.joca.2006.08.015] [PMID: 17045814]
[35]
Tchetina, E.V.; Kobayashi, M.; Yasuda, T.; Meijers, T.; Pidoux, I.; Poole, A.R. Chondrocyte hypertrophy can be induced by a cryptic sequence of type II collagen and is accompanied by the induction of MMP-13 and collagenase activity: Implications for development and arthritis. Matrix Biol., 2007, 26(4), 247-258.
[http://dx.doi.org/10.1016/j.matbio.2007.01.006] [PMID: 17306969]
[36]
Alshammari, A.; Amar, S. Proposal for a novel murine model of human periodontitis using Porphyromonas gingivalis and type II collagen antibody injections. Saudi Dent. J., 2019, 31(2), 181-187.
[http://dx.doi.org/10.1016/j.sdentj.2019.02.043] [PMID: 30983827]
[37]
Groen, S.S.; Sinkeviciute, D.; Bay-Jensen, A.C.; Thudium, C.S.; Karsdal, M.A.; Thomsen, S.F.; Lindemann, S.; Werkmann, D.; Blair, J.; Staunstrup, L.M.; Önnerfjord, P.; Arendt-Nielsen, L.; Nielsen, S.H. A serological type II collagen neoepitope biomarker reflects cartilage breakdown in patients with osteoarthritis. Osteoarthr Cartil, 2021, 3(4), 100207.
[http://dx.doi.org/10.1016/j.ocarto.2021.100207] [PMID: 36474766]
[38]
Kılıç, A.; Sonar, S.S.; Yildirim, A.O.; Fehrenbach, H.; Nockher, W.A.; Renz, H. Nerve growth factor induces type III collagen production in chronic allergic airway inflammation. J. Allergy Clin.Immunol., 2011, 128(5), 1058-1066 .e4, 4..
[http://dx.doi.org/10.1016/j.jaci.2011.06.017] [PMID: 21816457]
[39]
Kuivaniemi, H.; Tromp, G. Type III collagen (COL3A1): Gene and protein structure, tissue distribution, and associated diseases. Gene, 2019, 707, 151-171.
[http://dx.doi.org/10.1016/j.gene.2019.05.003] [PMID: 31075413]
[40]
Brisson, B.K.; Stewart, D.C.; Burgwin, C.; Chenoweth, D.; Wells, R.G.; Adams, S.L.; Volk, S.W. Cysteine-rich domain of type III collagen N-propeptide inhibits fibroblast activation by attenuating TGFβ signaling. Matrix Biol., 2022, 109, 19-33.
[http://dx.doi.org/10.1016/j.matbio.2022.03.004] [PMID: 35339637]
[41]
Guillaume, E.; Zacharopoulou, M.; Reynolds, B.; Aresu, L.; Lobjois, L.; Bleuart, C.; Bourgès-Abella, N.; Delverdier, M.; Lucas, M.N.; Lavoué, R.; Gaide, N. Additional value of second harmonic generation microscopy in the diagnosis of feline collagen type III glomerulopathy. J. Comp. Pathol., 2021, 188, 37-43.
[http://dx.doi.org/10.1016/j.jcpa.2021.08.005] [PMID: 34686276]
[42]
Yang, L.; Wu, H.; Lu, L.; He, Q.; Xi, B.; Yu, H.; Luo, R.; Wang, Y.; Zhang, X. A tailored extracellular matrix (ECM) - Mimetic coating for cardiovascular stents by stepwise assembly of hyaluronic acid and recombinant human type III collagen. Biomaterials, 2021, 276, 121055.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121055] [PMID: 34371447]
[43]
Richardot, P.; Charni-Ben Tabassi, N.; Toh, L.; Marotte, H.; Bay-Jensen, A.C.; Miossec, P.; Garnero, P. Nitrated type III collagen as a biological marker of nitric oxide-mediated synovial tissue metabolism in osteoarthritis. Osteoarthr Cartil, 2009, 17(10), 1362-1367.
[http://dx.doi.org/10.1016/j.joca.2009.04.024] [PMID: 19467351]
[44]
Wu, J.J.; Weis, M.A.; Kim, L.S.; Eyre, D.R. Type III collagen, a fibril network modifier in articular cartilage. J. Biol. Chem., 2010, 285(24), 18537-18544.
[http://dx.doi.org/10.1074/jbc.M110.112904] [PMID: 20404341]
[45]
Rasmussen, D.; Frederiksen, P.; Jatkoe, A.T.; Karsdal, A, M.; Rosenthal, N.; Neal, B.; Genovese, F.; Hansen K, M. POS-392 canagliflozin treatment impacts collagen type III degradation and fromation in the canagliflozin cardiovascular assessment study (Canvas). Kidney Int. Rep., 2022, 7(2), S177.
[http://dx.doi.org/10.1016/j.ekir.2022.01.414]
[46]
Monnet, E.; Sizaret, P.Y.; Arbeille, B.; Fauvel-Lafève, F. Different role of platelet glycoprotein GP Ia/IIa in platelet contact and activation induced by type I and type III collagens. Thromb. Res., 2000, 98(5), 423-433.
[http://dx.doi.org/10.1016/S0049-3848(00)00199-7] [PMID: 10828482]
[47]
Cohen, A.H. Collagen type III glomerulopathies. Adv. Chronic Kidney Dis., 2012, 19(2), 101-106.
[http://dx.doi.org/10.1053/j.ackd.2012.02.017] [PMID: 22449347]
[48]
Bay-Jensen, A.C.; Kjelgaard-Petersen, C.F.; Petersen, K.K.; Arendt-Nielsen, L.; Quasnichka, H.L.; Mobasheri, A.; Karsdal, M.A.; Leeming, D.J. Aggrecanase degradation of type III collagen is associated with clinical knee pain. Clin. Biochem., 2018, 58, 37-43.
[http://dx.doi.org/10.1016/j.clinbiochem.2018.04.022] [PMID: 29702061]
[49]
Bihlet, A.R.; Bjerre-Bastos, J.J.; Byrjalsen, I.; Andersen, J.R.; Bay-Jensen, A.C.; Pelletier, J.P.; Martel-Pelletier, J.; Karsdal, M.A. Elevated serum biomarkers of inflammatory turnover of collagen types III and VI predict rapid cartilage loss. Osteoarthr Cartil, 2019, 27(1), S104-S105.
[http://dx.doi.org/10.1016/j.joca.2019.02.155]
[50]
Chanut-Delalande, H.; Fichard, A.; Bernocco, S.; Garrone, R.; Hulmes, D.J.S.; Ruggiero, F. Control of heterotypic fibril formation by collagen V is determined by chain stoichiometry. J. Biol. Chem., 2001, 276(26), 24352-24359.
[http://dx.doi.org/10.1074/jbc.M101182200] [PMID: 11423559]
[51]
Bonod-Bidaud, C.; Roulet, M.; Hansen, U.; Elsheikh, A.; Malbouyres, M.; Ricard-Blum, S.; Faye, C.; Vaganay, E.; Rousselle, P.; Ruggiero, F. In vivo evidence for a bridging role of a collagen V subtype at the epidermis-dermis interface. J. Invest. Dermatol., 2012, 132(7), 1841-1849.
[http://dx.doi.org/10.1038/jid.2012.56] [PMID: 22437311]
[52]
Wenstrup, R.J.; Florer, J.B.; Brunskill, E.W.; Bell, S.M.; Chervoneva, I.; Birk, D.E. Type V collagen controls the initiation of collagen fibril assembly. J. Biol. Chem., 2004, 279(51), 53331-53337.
[http://dx.doi.org/10.1074/jbc.M409622200] [PMID: 15383546]
[53]
Iwahashi, M.; Muragaki, Y.; Ooshima, A.; Umesaki, N. Increased type III and V collagen expression in human corpora lutea in early pregnancy. Fertil. Steril., 2007, 87(1), 178-181.
[http://dx.doi.org/10.1016/j.fertnstert.2006.06.022] [PMID: 17118369]
[54]
Viglio, S.; Zoppi, N.; Sangalli, A.; Gallanti, A.; Barlati, S.; Mottes, M.; Colombi, M.; Valli, M. Rescue of migratory defects of Ehlers-Danlos syndrome fibroblasts in vitro by type V collagen but not insulin-like binding protein-1. J. Invest. Dermatol., 2008, 128(8), 1915-1919.
[http://dx.doi.org/10.1038/jid.2008.33] [PMID: 18305566]
[55]
Lei, G.S.; Kline, H.L.; Lee, C.H.; Wilkes, D.S.; Zhang, C. Regulation of collagen V expression and epithelial-mesenchymal transition by miR-185 and miR-186 during idiopathic pulmonary fibrosis. Am. J. Pathol., 2016, 186(9), 2310-2316.
[http://dx.doi.org/10.1016/j.ajpath.2016.04.015] [PMID: 27392970]
[56]
Murasawa, Y.; Hayashi, T.; Wang, P.C. The role of type V collagen fibril as an ECM that induces the motility of glomerular endothelial cells. Exp. Cell Res., 2008, 314(20), 3638-3653.
[http://dx.doi.org/10.1016/j.yexcr.2008.08.024] [PMID: 18845143]
[57]
Satomi, É.; Teodoro, W.R.; Parra, E.R.; Fernandes, T.D.; Velosa, A.P.P.; Capelozzi, V.L.; Yoshinari, N.H. Changes in histoanatomical distribution of types I, III and V collagen promote adaptative remodeling in posterior tibial tendon rupture. Clinics, 2008, 63(1), 9-14.
[http://dx.doi.org/10.1590/S1807-59322008000100003] [PMID: 18297201]
[58]
Longo, A.; Tobiasch, E.; Luparello, C. Type V collagen counteracts osteo-differentiation of human mesenchymal stem cells. Biologicals, 2014, 42(5), 294-297.
[http://dx.doi.org/10.1016/j.biologicals.2014.07.002] [PMID: 25132375]
[59]
Wang, L.; Liang, Q.; Wang, Z.; Xu, J.; Liu, Y.; Ma, H. Preparation and characterisation of type I and V collagens from the skin of Amur sturgeon (Acipenser schrenckii). Food Chem., 2014, 148, 410-414.
[http://dx.doi.org/10.1016/j.foodchem.2013.10.074] [PMID: 24262576]
[60]
Birk, D.E. Type V collagen: Heterotypic type I/V collagen interactions in the regulation of fibril assembly. Micron, 2001, 32(3), 223-237.
[http://dx.doi.org/10.1016/S0968-4328(00)00043-3] [PMID: 11006503]
[61]
Yang, C.; Park, A.C.; Davis, N.A.; Russell, J.D.; Kim, B.; Brand, D.D.; Lawrence, M.J.; Ge, Y.; Westphall, M.S.; Coon, J.J.; Greenspan, D.S. Comprehensive mass spectrometric mapping of the hydroxylated amino acid residues of the α1(V) collagen chain. J. Biol. Chem., 2012, 287(48), 40598-40610.
[http://dx.doi.org/10.1074/jbc.M112.406850] [PMID: 23060441]
[62]
Park, A.C.; Huang, G.; Jankowska-Gan, E.; Massoudi, D.; Kernien, J.F.; Vignali, D.A.; Sullivan, J.A.; Wilkes, D.S.; Burlingham, W.J.; Greenspan, D.S. Mucosal administration of collagen V ameliorates the atherosclerotic plaque burden by inducing interleukin 35-dependent tolerance. J. Biol. Chem., 2016, 291(7), 3359-3370.
[http://dx.doi.org/10.1074/jbc.M115.681882] [PMID: 26721885]
[63]
Delacoux, F.; Fichard, A.; Geourjon, C.; Garrone, R.; Ruggiero, F. Molecular features of the collagen V heparin binding site. J. Biol. Chem., 1998, 273(24), 15069-15076.
[http://dx.doi.org/10.1074/jbc.273.24.15069] [PMID: 9614116]
[64]
Unsöld, C.; Pappano, W.N.; Imamura, Y.; Steiglitz, B.M.; Greenspan, D.S. Biosynthetic processing of the pro-α 1(V)2pro-α 2(V) collagen heterotrimer by bone morphogenetic protein-1 and furin-like proprotein convertases. J. Biol. Chem., 2002, 277(7), 5596-5602.
[http://dx.doi.org/10.1074/jbc.M110003200] [PMID: 11741999]
[65]
Wenstrup, R.J.; Smith, S.M.; Florer, J.B.; Zhang, G.; Beason, D.P.; Seegmiller, R.E.; Soslowsky, L.J.; Birk, D.E. Regulation of collagen fibril nucleation and initial fibril assembly involves coordinate interactions with collagens V and XI in developing tendon. J. Biol. Chem., 2011, 286(23), 20455-20465.
[http://dx.doi.org/10.1074/jbc.M111.223693] [PMID: 21467034]
[66]
Chiyo, M.; Iwata, T.; Webb, T.J.; Vasko, M.R.; Thompson, E.L.; Heidler, K.M.; Cummings, O.W.; Yoshida, S.; Fujisawa, T.; Brand, D.D.; Wilkes, D.S. Silencing S1P1 receptors regulates collagen-V reactive lymphocyte-mediated immunobiology in the transplanted lung. Am. J. Transplant., 2008, 8(3), 537-546.
[http://dx.doi.org/10.1111/j.1600-6143.2007.02116.x] [PMID: 18294150]
[67]
Wu, Y.F.; Matsuo, N.; Sumiyoshi, H.; Yoshioka, H. Sp7/Osterix is involved in the up-regulation of the mouse pro-α1(V) collagen gene (Col5a1) in osteoblastic cells. Matrix Biol., 2010, 29(8), 701-706.
[http://dx.doi.org/10.1016/j.matbio.2010.09.002] [PMID: 20888414]
[68]
Yun-Feng, W.; Matsuo, N.; Sumiyoshi, H.; Yoshioka, H. Sp7/Osterix up-regulates the mouse pro-α3(V) collagen gene (Col5a3) during the osteoblast differentiation. Biochem. Biophys. Res. Commun., 2010, 394(3), 503-508.
[http://dx.doi.org/10.1016/j.bbrc.2010.02.171] [PMID: 20206127]
[69]
Zhang, K.; Li, J.A.; Deng, K.; Liu, T.; Chen, J.Y.; Huang, N. The endothelialization and hemocompatibility of the functional multilayer on titanium surface constructed with type IV collagen and heparin. Colloids Surf. B Biointerfaces, 2013, 108, 295-304.
[http://dx.doi.org/10.1016/j.colsurfb.2012.12.053] [PMID: 23563297]
[70]
Li, J.; Zhang, K.; Chen, H.; Liu, T.; Yang, P.; Zhao, Y.; Huang, N. A novel coating of type IV collagen and hyaluronic acid on stent material-titanium for promoting smooth muscle cell contractile phenotype. Mater. Sci. Eng. C, 2014, 38, 235-243.
[http://dx.doi.org/10.1016/j.msec.2014.02.008] [PMID: 24656374]
[71]
Olsen, B.R.; Alper, R.; Kefalides, N.A. Structural characterization of a soluble fraction from lens-capsule basement membrane. Eur. J. Biochem., 1973, 38(2), 220-228.
[http://dx.doi.org/10.1111/j.1432-1033.1973.tb03053.x] [PMID: 4129819]
[72]
Pasco, S.; Brassart, B.; Ramont, L.; Maquart, F.X.; Monboisse, J.C. Control of melanoma cell invasion by type IV collagen. Cancer Detect. Prev., 2005, 29(3), 260-266.
[http://dx.doi.org/10.1016/j.cdp.2004.09.003] [PMID: 15936594]
[73]
Kirsch, T.; von der Mark, K. Ca2+ binding properties of type X collagen. FEBS Lett., 1991, 294(1-2), 149-152.
[http://dx.doi.org/10.1016/0014-5793(91)81363-D] [PMID: 1743285]
[74]
Luvalle, P.; Daniels, K.; Hay, E.D.; Olsen, B.R. Type X collagen is transcriptionally activated and specifically localized during sternal cartilage maturation. Matrix, 1992, 12(5), 404-413.
[http://dx.doi.org/10.1016/S0934-8832(11)80037-5] [PMID: 1484507]
[75]
Chan, D.; Cole, W.G.; Rogers, J.G.; Bateman, J.F. Type X collagen multimer assembly in vitro is prevented by a Gly618 to Val mutation in the α 1(X) NC1 domain resulting in Schmid metaphyseal chondrodysplasia. J. Biol. Chem., 1995, 270(9), 4558-4562.
[http://dx.doi.org/10.1074/jbc.270.9.4558] [PMID: 7876225]
[76]
Bogin, O.; Kvansakul, M.; Rom, E.; Singer, J.; Yayon, A.; Hohenester, E. Insight into Schmid metaphyseal chondrodysplasia from the crystal structure of the collagen X NC1 domain trimer. Structure, 2002, 10(2), 165-173.
[http://dx.doi.org/10.1016/S0969-2126(02)00697-4] [PMID: 11839302]
[77]
Owczarzy, A.; Kurasinski, R.; Kulig, K.; Rogoz, W.; Szkudlarek, A.; Maciazek-Jurczyk, M. Collagen-structure, properties and application. Engin Biomater, 2020, 156, 17-23.
[http://dx.doi.org/10.34821/eng.biomat.156.2020.17-23]
[78]
Kikuchi, H.; Nasu, T.; Satoh, M.; Kotozaki, Y.; Tanno, K.; Asahi, K.; Ohmomo, H.; Kobayashi, T.; Taguchi, S.; Morino, Y.; Shimizu, A.; Sobue, K.; Sasaki, M. Association between total type I collagen N-terminal propeptide and coronary artery disease risk score in the general Japanese population. Int. J. Cardiol. Heart Vasc., 2022, 41, 101056.
[http://dx.doi.org/10.1016/j.ijcha.2022.101056] [PMID: 35620659]
[79]
Cicek, M.; Tumer, M.K.; Unsal, V. A study of chewing muscles: Age-related changes in type I collagen and matrix metalloproteinase-2 expression. Arch. Oral Biol., 2020, 109, 104583.
[http://dx.doi.org/10.1016/j.archoralbio.2019.104583] [PMID: 31706109]
[80]
Shahrajabian, M.H. Medicinal herbs with anti-inflammatory activities for natural and organic healing. Curr. Org. Chem., 2021, 25(23), 2885-2901.
[http://dx.doi.org/10.2174/1385272825666211110115656]
[81]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Molecular breeding and the impacts of some important genes families on agronomic traits, a review. Genet. Resour. Crop Evol., 2021, 68(5), 1709-1730.
[http://dx.doi.org/10.1007/s10722-021-01148-x]
[82]
Shahrajabian, M.H.; Sun, W. Importance of thymoquinone, sulforaphane, phloretin, and epigallocatechin and their health benefits. Lett. Drug Des. Discov., 2022, 19, 209-225.
[http://dx.doi.org/10.2174/1570180819666220902115521]
[83]
Gelse, K.; Pöschl, E.; Aigner, T. Collagens—structure, function, and biosynthesis. Adv. Drug Deliv. Rev., 2003, 55(12), 1531-1546.
[http://dx.doi.org/10.1016/j.addr.2003.08.002] [PMID: 14623400]
[84]
Xiao, J.; Sun, X.; Madhan, B.; Brodsky, B.; Baum, J. NMR studies demonstrate a unique AAB composition and chain register for a heterotrimeric type IV collagen model peptide containing a natural interruption site. J. Biol. Chem., 2015, 290(40), 24201-24209.
[http://dx.doi.org/10.1074/jbc.M115.654871] [PMID: 26209635]
[85]
Paola, C.M.; Camila, A.M.; Ana, C.; Marlon, O.; Diego, S.; Robin, Z.; Beatriz, G.; Cristina, C. Functional textile finishing of type I collagen isolated from bovine bone for potential healthtech. Heliyon, 2019, 5(2), e01260.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01260] [PMID: 30891510]
[86]
Brodsky, B.; Persikov, A.V. Molecular structure of the collagen triple helix. Adv. Protein Chem., 2005, 70, 301-339.
[http://dx.doi.org/10.1016/S0065-3233(05)70009-7] [PMID: 15837519]
[87]
Ahmed, M.; Anand, A.; Verma, A.K.; Patel, R. In-vitro self-assembly and antioxidant properties of collagen type I from Lutjanus erythropterus, and Pampus argenteus skin. Biocatal. Agric. Biotechnol., 2022, 43, 102412.
[http://dx.doi.org/10.1016/j.bcab.2022.102412]
[88]
Dedroog, L.M.; Deschaume, O.; Abrego, C.J.G.; Koos, E.; de Coene, Y.; Vananroye, A.; Thielemans, W.; Bartic, C.; Lettinga, M.P. Stress-controlled shear flow alignment of collagen type I hydrogel systems. Acta Biomater., 2022, 150, 128-137.
[http://dx.doi.org/10.1016/j.actbio.2022.07.008] [PMID: 35842033]
[89]
Liu, C.F.; Chang, K.C.; Sun, Y.S.; Nguyen, D.T.; Huang, H.H. Immobilizing type I collagen via natural cross-linker genipin to enhance the osteogenic responses to titanium implant surface. J. Mater. Res. Technol., 2021, 15, 885-900.
[http://dx.doi.org/10.1016/j.jmrt.2021.08.058]
[90]
Montalbano, G.; Molino, G.; Fiorilli, S.; Vitale-Brovarone, C. Synthesis and incorporation of rod-like nano-hydroxyapatite into type I collagen matrix: A hybrid formulation for 3D printing of bone scaffolds. J. Eur. Ceram. Soc., 2020, 40(11), 3689-3697.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2020.02.018]
[91]
Shahrajabian, M.H.; Sun, W.; Shen, H.; Cheng, Q. Chinese herbal medicine for SARS and SARS-CoV-2 treatment and prevention, encouraging using herbal medicine for COVID-19 outbreak. Acta Agric. Scand. B Soil Plant Sci., 2020, 70(5), 437-443.
[http://dx.doi.org/10.1080/09064710.2020.1763448]
[92]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Product of natural evolution (SARS, MERS, and SARS-CoV-2); deadly diseases, from SARS to SARS-CoV-2. Hum. Vaccin. Immunother., 2021, 17(1), 62-83.
[http://dx.doi.org/10.1080/21645515.2020.1797369] [PMID: 32783700]
[93]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Traditional herbal medicine for the prevention and treatment of cold and flu in the autumn of 2020, overlapped with Covid-19. Nat. Prod. Commun.,, 2020, 15(8) 1934578X2095143
[http://dx.doi.org/10.1177/1934578X20951431]
[94]
Shahrajabian, M.H.; Sun, W.; Soleymani, A.; Cheng, Q. Traditional herbal medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses. Phytother. Res., 2020, 2020(1), 1-11.
[http://dx.doi.org/10.1002/ptr.6888] [PMID: 33350538]
[95]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Barberry (Berberis vulgaris), a medicinal fruit and food with traditional and modern pharmaceutical uses. Isr. J. Plant Sci., 2021, 68(1-2), 61-71.
[http://dx.doi.org/10.1163/22238980-bja10019]
[96]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science. Mini Rev. Med. Chem., 2021, 21(6), 724-730.
[http://dx.doi.org/10.2174/18755607MTEx4OTAn5] [PMID: 33245271]
[97]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Natural dietary and medicinal plants with anti-obesity therapeutics activities for treatment and prevention of obesity during lock down and in post-Covid-19 era. Appl. Sci., 2021, 11(17), 7889.
[http://dx.doi.org/10.3390/app11177889]
[98]
Preston, S.E.J.; Bartish, M.; Richard, V.R.; Aghigh, A.; Gonçalves, C.; Smith-Voudouris, J.; Huang, F.; Thébault, P.; Cleret-Buhot, A.; Lapointe, R.; Légaré, F.; Postovit, L.M.; Zahedi, R.P.; Borchers, C.H.; Miller, W.H., Jr; del Rincón, S.V. Phosphorylation of eIF4E in the stroma drives the production and spatial organisation of collagen type I in the mammary gland. Matrix Biol., 2022, 111, 264-288.
[http://dx.doi.org/10.1016/j.matbio.2022.07.003] [PMID: 35842012]
[99]
McCluskey, A.R.; Hung, K.S.W.; Marzec, B.; Sindt, J.O.; Sommerdijk, N.A.J.M.; Camp, P.J.; Nudelman, F. Disordered filaments mediate the fibrillogenesis of type I collagen in solution. Biomacromolecules, 2020, 21(9), 3631-3643.
[http://dx.doi.org/10.1021/acs.biomac.0c00667] [PMID: 32706578]
[100]
Georgiev, G.P.; Kotov, G.; Iliev, A.; Slavchev, S.; Ovtscharoff, W.; Landzhov, B. A comparative study of the epiligament of the medial collateral and the anterior cruciate ligament in the human knee. Immunohistochemical analysis of collagen type I and V and procollagen type III. Ann. Anat., 2019, 224, 88-96.
[http://dx.doi.org/10.1016/j.aanat.2019.04.002] [PMID: 31022516]
[101]
Lane, B.A.; Harmon, K.A.; Goodwin, R.L.; Yost, M.J.; Shazly, T.; Eberth, J.F. Constitutive modeling of compressible type-I collagen hydrogels. Med. Eng. Phys., 2018, 53, 39-48.
[http://dx.doi.org/10.1016/j.medengphy.2018.01.003] [PMID: 29396019]
[102]
Bao, Z.; Gao, M.; Fan, X.; Cui, Y.; Yang, J.; Peng, X.; Xian, M.; Sun, Y.; Nian, R. Development and characterization of a photo-cross-linked functionalized type-I collagen (Oreochromis niloticus) and polyethylene glycol diacrylate hydrogel. Int. J. Biol. Macromol., 2020, 155, 163-173.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.210] [PMID: 32229213]
[103]
Zhu, L.; Li, J.; Wang, Y.; Sun, X.; Li, B.; Poungchawanwong, S.; Hou, H. Structural feature and self-assembly properties of type II collagens from the cartilages of skate and sturgeon. Food Chem., 2020, 331, 127340.
[http://dx.doi.org/10.1016/j.foodchem.2020.127340] [PMID: 32569971]
[104]
Xu, R.; Zheng, L.; Su, G.; Zhao, M.; Yang, Q.; Wang, J. Electrostatic interactions with anionic polysaccharides reduced the degradation of pepsin soluble undenatured type II collagen during gastric digestion under pH 2.0. Food Hydrocoll., 2022, 122, 107107.
[http://dx.doi.org/10.1016/j.foodhyd.2021.107107]
[105]
Yao, L.; Flynn, N. Dental pulp stem cell-derived chondrogenic cells demonstrate differential cell motility in type I and type II collagen hydrogels. Spine J., 2018, 18(6), 1070-1080.
[http://dx.doi.org/10.1016/j.spinee.2018.02.007] [PMID: 29452287]
[106]
Cohen, A.J.; Lakshmi, T.R.; Niu, Z.; Trindade, J.; Billings, P.C.; Adams, S.L. A novel noncollagenous protein encoded by an alternative transcript of the chick type III collagen gene is expressed in cartilage, bone and muscle. Mech. Dev., 2002, 114(1-2), 177-180.
[http://dx.doi.org/10.1016/S0925-4773(02)00053-9] [PMID: 12175507]
[107]
Sawhney, R. Immunological identification of types I and III collagen in bovine lens epithelium and its anterior lens capsule. Cell Biol. Int., 2005, 29(2), 133-137.
[http://dx.doi.org/10.1016/j.cellbi.2004.09.012] [PMID: 15774310]
[108]
Jakopin, E.; Bevc, S.; Ekart, R.; Hojs, R. Collagen type III nephropathy as a systemic disease? – A case report. Nefrología (English Edition), 2020, 40(1), 106-108.
[http://dx.doi.org/10.1016/j.nefroe.2019.04.007] [PMID: 31377028]
[109]
Gajbhiye, S.; Wairkar, S. Collagen fabricated delivery systems for wound healing: A new roadmap. Biomat. Adv., 2022, 142, 213152.
[http://dx.doi.org/10.1016/j.bioadv.2022.213152] [PMID: 36270159]
[110]
Guo, H.; Liu, X.; Tian, M.; Liu, G.; Yuan, Y.; Ye, X.; Zhang, H.; Xiao, L.; Wang, S.; Hong, Y.; Sun, K.; Lin, F.; Wen, X. Effects of dietary collagen cofactors and hydroxyproline on the growth performance, textural properties and collagen deposition in swim bladder of Nibea coibor based on orthogonal array analysis. Aquacult. Rep., 2022, 27, 101375.
[http://dx.doi.org/10.1016/j.aqrep.2022.101375]
[111]
Heidari, M.G.; Rezaei, M. Extracted pepsin of trout waste and ultrasound-promoted method for green recovery of fish collagen. Sustain. Chem. Pharm., 2022, 30, 100854.
[http://dx.doi.org/10.1016/j.scp.2022.100854]
[112]
Toniasso, D.P.W.; Silva, C.G.D.; Junior, B.D.S.B.; Somacal, S.; Emanuelli, T.; Kubota, E.H.; Dornelles, R.C.P.; Mello, R. Collagen extracted from rabbit: Meat and by-products: Isolation and physicochemical assessment. Food Res. Int., 2022, 162(Part A), 111967.
[http://dx.doi.org/10.1016/j.foodres.2022.111967]
[113]
Yang, M.Y.; Lin, Y.J.; Han, M.M.; Bi, Y.Y.; He, X.Y.; Xing, L.; Jeong, J.H.; Zhou, T.J.; Jiang, H.L. Pathological collagen targeting and penetrating liposomes for idiopathic pulmonary fibrosis therapy. J. Control. Release, 2022, 351, 623-637.
[http://dx.doi.org/10.1016/j.jconrel.2022.09.054] [PMID: 36191673]
[114]
Leiphart, R.J.; Weiss, S.N.; DiStefano, M.S.; Mavridis, A.A.; Adams, S.A.; Dyment, N.A.; Soslowsky, L.J. Collagen V deficiency during murine tendon healing results in distinct healing outcomes based on knockdown severity. J. Biomech., 2022, 144, 111315.
[http://dx.doi.org/10.1016/j.jbiomech.2022.111315] [PMID: 36201909]
[115]
Liu, H.; Li, M.; Tang, K.; Liu, J.; Li, X.; Meng, X. Evolution of conformation and thermal properties of bovine hides collagen in the sodium sulphide solution. J Mol Liq,, 2022, 367(Part A), 120449.
[http://dx.doi.org/10.1016/j.molliq.2022.120449]
[116]
Romanowicz, G.E.; Terhune, A.H.; Bielajew, B.J.; Sexton, B.; Lynch, M.; Mandair, G.S.; McNerny, E.M.B.; Kohn, D.H. Collagen cross-link profiles and mineral are different between the mandible and femur with site specific response to perturbed collagen. Bone Rep., 2022, 17, 101629.
[http://dx.doi.org/10.1016/j.bonr.2022.101629] [PMID: 36325166]
[117]
Sun, W.; Shahrajabian, M.H.; Lin, M. Research progress of fermented functional foods and protein factory-microbial fermentation technology. Fermentation, 2022, 8(12), 688.
[http://dx.doi.org/10.3390/fermentation8120688]
[118]
Shahrajabian, M.H.; Marmitt, D.; Cheng, Q.; Sun, W. Natural antioxidants of the underutilized and neglected plant species of Asia and South America. Lett. Drug Des. Discov., 2022, 19, 1512-1537.
[http://dx.doi.org/10.2174/1570180819666220616145558]
[119]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. The importance of flavonoids and phytochemicals of medicinal plants with antiviral activities. Mini Rev. Org. Chem., 2022, 19(3), 293-318.
[http://dx.doi.org/10.2174/1570178618666210707161025]
[120]
Baidoo, N.; Sanger, G.J.; Belai, A. The vulnerability of the human taenia coli to alterations in total collagen within the colon of the elderly. Acta Histochem., 2022, 124(8), 151958.
[http://dx.doi.org/10.1016/j.acthis.2022.151958] [PMID: 36209554]
[121]
Chi, N.; Lozo, S.; Rathnayake, R.A.C.; Botros-Brey, S.; Ma, Y.; Damaser, M.; Wang, R.R. Distinctive structure, composition and biomechanics of collagen fibrils in vaginal wall connective tissues associated with pelvic organ prolapse. Acta Biomater., 2022, 152, 335-344.
[http://dx.doi.org/10.1016/j.actbio.2022.08.059] [PMID: 36055614]
[122]
Fung, A.; Sun, M.; Soslowsky, L.J.; Birk, D.E. Targeted conditional collagen XII deletion alters tendon function. Matrix Biol. Plus, 2022, 16, 100123.
[http://dx.doi.org/10.1016/j.mbplus.2022.100123] [PMID: 36311462]
[123]
Adamiak, K.; Sionkowska, A. The influence of UV irradiation on fish skin collagen films in the presence of xanthohumol and propanediol. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2022, 282, 121652.
[http://dx.doi.org/10.1016/j.saa.2022.121652] [PMID: 35907314]
[124]
Anithabanu, P.; Balasubramanian, S.; David Dayanidhi, P.; Nandhini, T.; Vaidyanathan, V.G. Physico-chemical characterization studies of collagen labelled with Ru(II) polypyridyl complex. Heliyon, 2022, 8(8), e10173.
[http://dx.doi.org/10.1016/j.heliyon.2022.e10173] [PMID: 36033328]
[125]
Ding, Y.; Tang, R.; Feng, Y.; Yuan, M.; Li, H.; Yuan, M. Synthesis and characterisation of high resilience collagen-polyacrylamide semi-interpenetrating network hydrogel. Mater. Today Commun., 2022, 32, 103955.
[http://dx.doi.org/10.1016/j.mtcomm.2022.103955]
[126]
Puszkarska, A.M.; Frenkel, D.; Colwell, L.J.; Duer, M.J. Using sequence data to predict the self-assembly of supramolecular collagen structures. Biophys. J., 2022, 121(16), 3023-3033.
[http://dx.doi.org/10.1016/j.bpj.2022.07.019] [PMID: 35859421]
[127]
Guszcz, T.; Sankiewicz, A.; Gorodkiewicz, E. Application of surface plasmon resonance imaging biosensors for determination of fibronectin, laminin-5 and type IV collagen in serum of transitional bladder cancer patients. J. Pharm. Biomed. Anal., 2023, 222, 115103.
[http://dx.doi.org/10.1016/j.jpba.2022.115103] [PMID: 36272276]
[128]
Wu, B.; Cheng, K.; Liu, M.; Liu, J.; Jiang, D.; Ma, S.; Yan, B.; Lu, Y. Construction of hyperelastic model of human periodontal ligament based on collagen fibers distribution. J. Mech. Behav. Biomed. Mater., 2022, 135, 105484.
[http://dx.doi.org/10.1016/j.jmbbm.2022.105484] [PMID: 36179616]
[129]
Huang, X.; Zhang, Y.; Zheng, X.; Yu, G.; Dan, N.; Dan, W.; Li, Z.; Chen, Y.; Liu, X. Origin of critical nature and stability enhancement in collagen matrix based biomaterials: Comprehensive modification technologies. Int. J. Biol. Macromol., 2022, 216, 741-756.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.07.199] [PMID: 35908679]
[130]
Lim, H.S.; Lee, S.H.; Seo, H.; Lee, H.H.; Yoon, K.; Kim, Y.; Park, M.K.; Chung, J.H.; Lee, Y.S.; Lee, D.H.; Park, G. Early stage ultraviolet irradiation damage to skin collagen can be suppressed by HPA axis control via controlled CYP11B. Biomed. Pharmacother., 2022, 155, 113716.
[http://dx.doi.org/10.1016/j.biopha.2022.113716] [PMID: 36162374]
[131]
Manimegalai, N.P.; Ramanathan, G.; Gunasekaran, D.; Jeyakumar, G.F.S.; Sivagnanam, U.T. Cardinal acuity on the extraction and characterization of soluble collagen from the underutilized abattoir junks for clinical demands. Process Biochem., 2022, 122(Part 1), 29-37.
[http://dx.doi.org/10.1016/j.procbio.2022.08.011]
[132]
Moo, E.K.; Ebrahimi, M.; Sibole, S.C.; Tanska, P.; Korhonen, R.K. The intrinsic quality of proteoglycans, but not collagen fibres, degrades in osteoarthritic cartilage. Acta Biomater., 2022, 153, 178-189.
[http://dx.doi.org/10.1016/j.actbio.2022.09.002]
[133]
Pezeshk, S.; Rezaei, M.; Abdollahi, M. Impact of ultrasound on extractability of native collagen from tuna by-product and its ultrastructure and physicochemical attributes. Ultrason. Sonochem., 2022, 89, 106129.
[http://dx.doi.org/10.1016/j.ultsonch.2022.106129] [PMID: 36007329]
[134]
Prade, I.; Schröpfer, M.; Seidel, C.; Krumbiegel, C.; Hille, T.; Sonntag, F.; Behrens, S.; Schmieder, F.; Voigt, B.; Meyer, M. Human endothelial cells form an endothelium in freestanding collagen hollow filaments fabricated by direct extrusion printing. Biomater. Biosyst, 2022, 8, 100067.
[http://dx.doi.org/10.1016/j.bbiosy.2022.100067] [PMID: 36824376]
[135]
Proestaki, M.; Sarkar, M.; Burkel, B.M.; Ponik, S.M.; Notbohm, J. Effect of hyaluronic acid on microscale deformations of collagen gels. J. Mech. Behav. Biomed. Mater., 2022, 135, 105465.
[http://dx.doi.org/10.1016/j.jmbbm.2022.105465] [PMID: 36154991]
[136]
Belloni, A.; Furlani, M.; Greco, S.; Notarstefano, V.; Pro, C.; Randazzo, B.; Pellegrino, P.; Zannotti, A.; Carpini, G.D.; Ciavattini, A.; Di Lillo, F.; Giorgini, E.; Giuliani, A.; Cinti, S.; Ciarmela, P. Uterine leiomyoma as useful model to unveil morphometric and macromolecular collagen state and impairment in fibrotic diseases: An ex-vivo human study. Biochim. Biophys. Acta Mol. Basis Dis., 2022, 1868(12), 166494.
[http://dx.doi.org/10.1016/j.bbadis.2022.166494] [PMID: 35850176]
[137]
Durga, R.; Jimenez, N.; Ramanathan, S.; Suraneni, P.; Pestle, W.J. Use of thermogravimetric analysis to estimate collagen and hydroxyapatite contents in archaeological bone. J. Archaeol. Sci., 2022, 145, 105644.
[http://dx.doi.org/10.1016/j.jas.2022.105644]
[138]
Haverkamp, R.G.; Sizeland, K.H.; Wells, H.C.; Kamma-Lorger, C. Collagen dehydration. Int. J. Biol. Macromol., 2022, 216, 140-147.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.06.180] [PMID: 35793742]
[139]
Zhang, Y.; Li, Y.; Liu, X.; Wang, Y.; Tang, H.; Qu, L.; Shang, Y.; Chen, W. Quantitative assessment of collagen degradation in archeological leather by solid-state NMR. J. Cult. Herit., 2022, 58, 179-185.
[http://dx.doi.org/10.1016/j.culher.2022.10.005]
[140]
Gu, C.; Zhang, Y.; Chen, D.; Liu, H.; Mi, K. Tunicamycin-induced endoplasmic reticulum stress inhibits chemoresistance of FaDu hypopharyngeal carcinoma cells in 3D collagen I cultures and in vivo. Exp. Cell Res., 2021, 405(2), 112725.
[http://dx.doi.org/10.1016/j.yexcr.2021.112725] [PMID: 34224701]
[141]
Li, W.; Chi, N.; Rathnayake, R.A.C.; Wang, R. Distinctive roles of fibrillar collagen I and collagen III in mediating fibroblast-matrix interaction: A nanoscopic study. Biochem. Biophys. Res. Commun., 2021, 560, 66-71.
[http://dx.doi.org/10.1016/j.bbrc.2021.04.088] [PMID: 33975247]
[142]
Zhou, B.; Tu, T.; Gao, Z.; Wu, X.; Wang, W.; Liu, W. Impaired collagen fibril assembly in keloids with enhanced expression of lumican and collagen V. Arch. Biochem. Biophys., 2021, 697, 108676.
[http://dx.doi.org/10.1016/j.abb.2020.108676] [PMID: 33188736]
[143]
Sarwar, M.; Sykes, P.H.; Chitcholtan, K.; Evans, J.J. Collagen I dysregulation is pivotal for ovarian cancer progression. Tissue Cell, 2022, 74, 101704.
[http://dx.doi.org/10.1016/j.tice.2021.101704] [PMID: 34871826]
[144]
Yan, Y.; Du, C.; Duan, X.; Yao, X.; Wan, J.; Jiang, Z.; Qin, Z.; Li, W.; Pan, L.; Gu, Z.; Wang, F.; Wang, M.; Qin, Z. Inhibiting collagen I production and tumor cell colonization in the lung via miR-29a-3p loading of exosome-/liposome-based nanovesicles. Acta Pharm. Sin. B, 2022, 12(2), 939-951.
[http://dx.doi.org/10.1016/j.apsb.2021.08.011] [PMID: 35256956]
[145]
Fertala, J.; Arita, M.; Steplewski, A.; Arnold, W.V.; Fertala, A. Epiphyseal growth plate architecture is unaffected by early postnatal activation of the expression of R992C collagen II mutant. Bone, 2018, 112, 42-50.
[http://dx.doi.org/10.1016/j.bone.2018.04.008] [PMID: 29660427]
[146]
Akram, A.N.; Zhang, C. Effect of ultrasonication on the yield, functional and physicochemical characteristics of collagen-II from chicken sternal cartilage. Food Chem., 2020, 307, 125544.
[http://dx.doi.org/10.1016/j.foodchem.2019.125544] [PMID: 31654948]
[147]
Wang, W.; Ji, Y.; Yang, W.; Zhang, C.; Angwa, L.; Jin, B.; Liu, J.; Lv, M.; Ma, W.; Yang, J.; Wang, K. Inhibitors of apoptosis proteins (IAPs) are associated with T-2 toxin-induced decreased collagen II in mouse chondrocytes in vitro. Toxicon, 2020, 176, 34-43.
[http://dx.doi.org/10.1016/j.toxicon.2020.01.002] [PMID: 32103793]
[148]
Zhang, M.; Zhao, D.; Zhu, S.; Nian, Y.; Xu, X.; Zhou, G.; Li, C. Overheating induced structural changes of type I collagen and impaired the protein digestibility. Food Res. Int., 2020, 134, 109225.
[http://dx.doi.org/10.1016/j.foodres.2020.109225] [PMID: 32517907]
[149]
Ren, K.; Ke, X.; Chen, Z.; Zhao, Y.; He, L.; Yu, P.; Xing, J.; Luo, J.; Xie, J.; Li, J. Zwitterionic polymer modified xanthan gum with collagen II-binding capability for lubrication improvement and ROS scavenging. Carbohydr. Polym., 2021, 274, 118672.
[http://dx.doi.org/10.1016/j.carbpol.2021.118672] [PMID: 34702446]
[150]
Liu, J.C.; Wang, F.; Xie, M.L.; Cheng, Z.Q.; Qin, Q.; Chen, L.; Chen, R. Osthole inhibits the expressions of collagen I and III through Smad signaling pathway after treatment with TGF-β1 in mouse cardiac fibroblasts. Int. J. Cardiol., 2017, 228, 388-393.
[http://dx.doi.org/10.1016/j.ijcard.2016.11.202] [PMID: 27870967]
[151]
Huang, Y.; Deng, H.; Zhang, J.; Sun, H.; Li, W.; Li, C.; Zhang, Y.; Sun, D. A photoelectrochemical immunosensor based on ReS2 nanosheets for determination of collagen III related to abdominal aortic aneurysm. Microchem. J., 2021, 168, 106363.
[http://dx.doi.org/10.1016/j.microc.2021.106363]
[152]
Omar, R.; Malfait, F.; Van Agtmael, T. Four decades in the making: Collagen III and mechanisms of vascular Ehlers Danlos Syndrome. Matrix Biol. Plus, 2021, 12, 100090.
[http://dx.doi.org/10.1016/j.mbplus.2021.100090] [PMID: 34849481]
[153]
Koruth, S.; Chetty, N.Y.V. Hernias- Is it a primary defect or a systemic disorder? Role of collagen III in all hernias- A case control study. Ann. Med. Surg., 2017, 19, 37-40.
[http://dx.doi.org/10.1016/j.amsu.2017.05.012] [PMID: 28626580]
[154]
Blotta, R.M.; Costa, S.S.; Trindade, E.N.; Meurer, L.; Maciel-Trindade, M.R. Collagen I and III in women with diastasis recti. Clinics, 2018, 73, e319.
[http://dx.doi.org/10.6061/clinics/2018/e319] [PMID: 29898006]
[155]
Ninh, V.K.; El Hajj, E.C.; Ronis, M.J.; Gardner, J.D. N-Acetylcysteine prevents the decreases in cardiac collagen I/III ratio and systolic function in neonatal mice with prenatal alcohol exposure. Toxicol. Lett., 2019, 315, 87-95.
[http://dx.doi.org/10.1016/j.toxlet.2019.08.010] [PMID: 31425726]
[156]
Martins, V.; da Silva, A.L.; Teodoro, W.R.; Velosa, A.P.P.; Balancin, M.L.; Cruz, F.F.; Silva, P.L.; Rocco, P.R.M.; Capelozzi, V.L. In situ evidence of collagen V and signaling pathway of found inflammatory zone 1 (FIZZ1) is associated with silicotic granuloma in lung mice. Pathol. Res. Pract., 2020, 216(9), 153094.
[http://dx.doi.org/10.1016/j.prp.2020.153094] [PMID: 32825961]
[157]
Yokota, T.; McCourt, J.; Ma, F.; Ren, S.; Li, S.; Kim, T.H.; Kurmangaliyev, Y.Z.; Nasiri, R.; Ahadian, S.; Nguyen, T.; Tan, X.H.M.; Zhou, Y.; Wu, R.; Rodriguez, A.; Cohn, W.; Wang, Y.; Whitelegge, J.; Ryazantsev, S.; Khademhosseini, A.; Teitell, M.A.; Chiou, P.Y.; Birk, D.E.; Rowat, A.C.; Crosbie, R.H.; Pellegrini, M.; Seldin, M.; Lusis, A.J.; Deb, A. Type V collagen in scar tissue regulates the size of scar after heart injury. Cell, 2020, 182(3), 545-562.e23.
[http://dx.doi.org/10.1016/j.cell.2020.06.030] [PMID: 32621799]
[158]
Chandrasekaran, P.; Kwok, B.; Han, B.; Adams, S.M.; Wang, C.; Chery, D.R.; Mauck, R.L.; Dyment, N.A.; Lu, X.L.; Frank, D.B.; Koyama, E.; Birk, D.E.; Han, L. Type V collagen regulates the structure and biomechanics of TMJ condylar cartilage: A fibrous-hyaline hybrid. Matrix Biol., 2021, 102, 1-19.
[http://dx.doi.org/10.1016/j.matbio.2021.07.002] [PMID: 34314838]
[159]
Zhou, X.; Cheng, X.; Xing, D.; Ge, Q.; Li, Y.; Luan, X.; Gu, N.; Qian, Y. Ca ions chelation, collagen I incorporation and 3D bionic PLGA/PCL electrospun architecture to enhance osteogenic differentiation. Mater. Des., 2021, 198, 109300.
[http://dx.doi.org/10.1016/j.matdes.2020.109300]
[160]
Kobayashi, T.; Kakihara, T.; Uchiyama, M. Mutational analysis of type IV collagen α5 chain, with respect to heterotrimer formation. Biochem. Biophys. Res. Commun., 2008, 366(1), 60-65.
[http://dx.doi.org/10.1016/j.bbrc.2007.12.037] [PMID: 18083113]
[161]
Sankiewicz, A.; Lukaszewski, Z.; Trojanowska, K.; Gorodkiewicz, E. Determination of collagen type IV by Surface Plasmon Resonance Imaging using a specific biosensor. Anal. Biochem., 2016, 515, 40-46.
[http://dx.doi.org/10.1016/j.ab.2016.10.002] [PMID: 27717853]
[162]
Clark, A.G.; Worni-Schudel, I.M.; Korte, F.M.; Foster, M.H. A murine Ig light chain transgene reveals IGKV3 gene contributions to anti-collagen types IV and II specificities. Mol. Immunol., 2017, 91, 49-56.
[http://dx.doi.org/10.1016/j.molimm.2017.08.015] [PMID: 28886586]
[163]
Charytan, D.; MacDonald, B.; Sugimoto, H.; Pastan, S.; Staton, G.; Hennigar, R.; Kalluri, R. An unusual case of pulmonary-renal syndrome associated with defects in type IV collagen composition and anti-glomerular basement membrane autoantibodies. Am. J. Kidney Dis., 2005, 45(4), 743-748.
[http://dx.doi.org/10.1053/j.ajkd.2004.12.022] [PMID: 15806477]
[164]
Agarwal, G.; Agrawal, A.K.; Fatima, A.; Srivastava, A. X-ray tomography analysis reveals the influence of graphene on porous morphology of collagen cryogels. Micron, 2021, 150, 103127.
[http://dx.doi.org/10.1016/j.micron.2021.103127] [PMID: 34419716]
[165]
Nicol, L.E.; Coghlan, R.F.; Cuthbertson, D.; Nagamani, S.C.S.; Lee, B.; Olney, R.C.; Horton, W.; Orwoll, E. Alterations of a serum marker of collagen X in growing children with osteogenesis imperfecta. Bone, 2021, 149, 115990.
[http://dx.doi.org/10.1016/j.bone.2021.115990] [PMID: 33932621]
[166]
Hauta-alus, H.H.; Holmlund-Suila, E.M.; Valkama, S.M.; Enlund-Cerullo, M.; Rosendahl, J.; Coghlan, R.F.; Andersson, S.; Mäkitie, O. Collagen X biomarker, linear growth and bone development in a vitamin D intervention study in infants. J. Bone Miner. Res., 2022, 37(9), 1653-1664.
[http://dx.doi.org/10.1002/jbmr.4650] [PMID: 35838180]
[167]
He, Y.; Manon-Jensen, T.; Arendt-Nielsen, L.; Petersen, K.K.; Christiansen, T.; Samuels, J.; Abramson, S.; Karsdal, M.A.; Attur, M.; Bay-Jensen, A.C. Potential diagnostic value of a type X collagen neo-epitope biomarker for knee osteoarthritis. Osteoarthr Cartil, 2019, 27(4), 611-620.
[http://dx.doi.org/10.1016/j.joca.2019.01.001] [PMID: 30654118]
[168]
He, Y.; Karsdal, M.; Bay-Jensen, A. The NC1 fragment of type X collagen measured in serum as a potential biomarker of osteoarthritis. Osteoarthr Cartil, 2021, 29(1), S152-S153.
[http://dx.doi.org/10.1016/j.joca.2021.02.214]
[169]
Leitinger, B.; Kwan, A.P.L. The discoidin domain receptor DDR2 is a receptor for type X collagen. Matrix Biol., 2006, 25(6), 355-364.
[http://dx.doi.org/10.1016/j.matbio.2006.05.006] [PMID: 16806867]
[170]
Qiu, Y.; Poppleton, E.; Mekkat, A.; Yu, H.; Banerjee, S.; Wiley, S.E.; Dixon, J.E.; Kaplan, D.L.; Lin, Y.S.; Brodsky, B. Enzymatic phosphorylation of Ser in a type I collagen peptide. Biophys. J., 2018, 115(12), 2327-2335.
[http://dx.doi.org/10.1016/j.bpj.2018.11.012] [PMID: 30527445]
[171]
Alfieri, M.; Barbaro, F.; Consolini, E.; Bassi, E.; Dallatana, D.; Bergonzi, C.; Bianchera, A.; Bettini, R.; Toni, R.; Elviri, L. A targeted mass spectrometry method to screen collagen types I-V in the decellularized 3D extracellular matrix of the adult male rat thyroid. Talanta, 2019, 193, 1-8.
[http://dx.doi.org/10.1016/j.talanta.2018.09.087] [PMID: 30368276]
[172]
Van Gulick, L.; Saby, C.; Jaisson, S.; Okwieka, A.; Gillery, P.; Dervin, E.; Morjani, H.; Beljebbar, A. An integrated approach to investigate age-related modifications of morphological, mechanical and structural properties of type I collagen. Acta Biomater., 2022, 137, 64-78.
[http://dx.doi.org/10.1016/j.actbio.2021.10.020] [PMID: 34673231]
[173]
Cabral, W.A.; Fratzl-Zelman, N.; Weis, M.; Perosky, J.E.; Alimasa, A.; Harris, R.; Kang, H.; Makareeva, E.; Barnes, A.M.; Roschger, P.; Leikin, S.; Klaushofer, K.; Forlino, A.; Backlund, P.S.; Eyre, D.R.; Kozloff, K.M.; Marini, J.C. Substitution of murine type I collagen A1 3-hydroxylation site alters matrix structure but does not recapitulate osteogenesis imperfecta bone dysplasia. Matrix Biol., 2020, 90, 20-39.
[http://dx.doi.org/10.1016/j.matbio.2020.02.003] [PMID: 32112888]
[174]
Wei, Z.; Rolle, M.W.; Camesano, T.A. LL37 and collagen-binding domain-mediated LL37 binding with type I collagen: Quantification via QCM-D. Colloids Surf. B Biointerfaces, 2022, 220, 112852.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112852] [PMID: 36179608]
[175]
Gwiazda, M.; Kaushik, A.; Chlanda, A.; Kijeńska-Gawrońska, E.; Jagiełło, J.; Kowiorski, K.; Lipińska, L.; Święszkowski, W.; Bhardwaj, S.K. A flexible immunosensor based on the electrochemically rGO with Au SAM using half-antibody for collagen type I sensing. Appl. Surface Sci. Adv., 2022, 9, 100258.
[http://dx.doi.org/10.1016/j.apsadv.2022.100258]
[176]
Tschaikowsky, M.; Brander, S.; Barth, V.; Thomann, R.; Rolauffs, B.; Balzer, B.N.; Hugel, T. The articular cartilage surface is impaired by a loss of thick collagen fibers and formation of type I collagen in early osteoarthritis. Acta Biomater., 2022, 146, 274-283.
[http://dx.doi.org/10.1016/j.actbio.2022.04.036] [PMID: 35487427]
[177]
Zhao, G.; Zhang, G.; Bai, X.; Yin, F.; Ru, A.; Yu, X.; Zhao, L.; Zhu, C. Effects of NaCl-assisted regulation on the emulsifying properties of heat-induced type I collagen. Food Res. Int., 2022, 159, 111599.
[http://dx.doi.org/10.1016/j.foodres.2022.111599] [PMID: 35940762]
[178]
Salvatore, L.; Gallo, N.; Aiello, D.; Lunetti, P.; Barca, A.; Blasi, L.; Madaghiele, M.; Bettini, S.; Giancane, G.; Hasan, M.; Borovkov, V.; Natali, M.L.; Campa, L.; Valli, L.; Capobianco, L.; Napoli, A.; Sannino, A. An insight on type I collagen from horse tendon for the manufacture of implantable devices. Int. J. Biol. Macromol., 2020, 154, 291-306.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.082] [PMID: 32173436]
[179]
Ferraro, V.; Gaillard-Martinie, B.; Sayd, T.; Chambon, C.; Anton, M.; Santé-Lhoutellier, V. Collagen type I from bovine bone. Effect of animal age, bone anatomy and drying methodology on extraction yield, self-assembly, thermal behaviour and electrokinetic potential. Int. J. Biol. Macromol., 2017, 97, 55-66.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.068] [PMID: 28038914]
[180]
Peng, Y.; Song, X.; Zheng, Y.; Wang, X.; Lai, W. Circular RNA profiling reveals that circCOL3A1-859267 regulate type I collagen expression in photoaged human dermal fibroblasts. Biochem. Biophys. Res. Commun., 2017, 486(2), 277-284.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.028] [PMID: 28286269]
[181]
Chavarry, N.G.M.; Perrone, D.; Farias, M.L.F.; dos Santos, B.C.; Domingos, A.C.; Schanaider, A.; Feres-Filho, E.J. Alendronate improves bone density and type I collagen accumulation but increases the amount of pentosidine in the healing dental alveolus of ovariectomized rabbits. Bone, 2019, 120, 9-19.
[http://dx.doi.org/10.1016/j.bone.2018.09.022] [PMID: 30282057]
[182]
Ahmed, R.; Getachew, A.T.; Cho, Y.J.; Chun, B.S. Application of bacterial collagenolytic proteases for the extraction of type I collagen from the skin of bigeye tuna (Thunnus obesus). Lebensm. Wiss. Technol., 2018, 89, 44-51.
[http://dx.doi.org/10.1016/j.lwt.2017.10.024]
[183]
Zhang, J.; Jeevithan, E.; Bao, B.; Wang, S.; Gao, K.; Zhang, C.; Wu, W. Structural characterization, in-vivo acute systemic toxicity assessment and in-vitro intestinal absorption properties of tilapia (Oreochromis niloticus) skin acid and pepsin solublilized type I collagen. Process Biochem., 2016, 51(12), 2017-2025.
[http://dx.doi.org/10.1016/j.procbio.2016.08.009]
[184]
Chen, Y.; Yang, S.; Tavormina, J.; Tampe, D.; Zeisberg, M.; Wang, H.; Mahadevan, K.K.; Wu, C.J.; Sugimoto, H.; Chang, C.C.; Jenq, R.R.; McAndrews, K.M.; Kalluri, R. Oncogenic collagen I homotrimers from cancer cells bind to α3β1 integrin and impact tumor microbiome and immunity to promote pancreatic cancer. Cancer Cell, 2022, 40(8), 818-834.e9.
[http://dx.doi.org/10.1016/j.ccell.2022.06.011] [PMID: 35868307]
[185]
Rong, H.; Lin, F.; Ning, L.; Wu, K.; Chen, B.; Zheng, J.; Limbu, S.M.; Wen, X. Cloning, tissue distribution and mRNA expression of type I collagen alpha 1 gene from Chu’s croaker (Nibea coibor). Gene, 2022, 824, 146441.
[http://dx.doi.org/10.1016/j.gene.2022.146441] [PMID: 35339641]
[186]
Makuszewska, M.; Bonda, T.; Cieślińska, M.; Bialuk, I.; Winnicka, M.M.; Skotnicka, B.; Hassmann-Poznańska, E. Expression of collagens type I and V in healing rat’s tympanic membrane. Int. J. Pediatr. Otorhinolaryngol., 2019, 118, 79-83.
[http://dx.doi.org/10.1016/j.ijporl.2018.12.020] [PMID: 30590281]
[187]
Boraschi-Diaz, I.; Mort, J.S.; Brömme, D.; Senis, Y.A.; Mazharian, A.; Komarova, S.V. Collagen type I degradation fragments act through the collagen receptor LAIR-1 to provide a negative feedback for osteoclast formation. Bone, 2018, 117, 23-30.
[http://dx.doi.org/10.1016/j.bone.2018.09.006] [PMID: 30217615]
[188]
Ji, X.L.; Li, H.M.; Li, L.X. A constitutive relation for the tissue composed of type-I collagen fibers under uniaxial tension. J. Mech. Behav. Biomed. Mater., 2019, 97, 222-228.
[http://dx.doi.org/10.1016/j.jmbbm.2019.05.029] [PMID: 31132658]
[189]
Nong, Z. Neil, C.; Lei, M.; Gros, R.; Watson, A.; Rizkalla, A.; Mequanint, K.; Li, S.; Frontini, M.J.; Feng, Q.; Pickering, J.G. Type I collagen cleavage is essential for effective fibrotic repair after myocardial infraction. Am. J. Pathol., 2021, 179(5), 2189-2198.
[http://dx.doi.org/10.1016/j.ajpath.2011.07.017] [PMID: 21907695]
[190]
Pérez-Martínez, C.; Pérez-Cárceles, M.D.; Legaz, I.; Prieto-Bonete, G.; Luna, A. Quantification of nitrogenous bases, DNA and Collagen type I for the estimation of the postmortem interval in bone remains. Forensic Sci. Int., 2017, 281, 106-112.
[http://dx.doi.org/10.1016/j.forsciint.2017.10.039] [PMID: 29125988]
[191]
Guilbert, M.; Said, G.; Happillon, T.; Untereiner, V.; Garnotel, R.; Jeannesson, P.; Sockalingum, G.D. Probing non-enzymatic glycation of type I collagen: A novel approach using Raman and infrared biophotonic methods. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(6), 3525-3531.
[http://dx.doi.org/10.1016/j.bbagen.2013.01.016] [PMID: 23380466]
[192]
Yue, C.; Ding, C.; Su, J.; Cheng, B. Effect of copper and zinc ions on type I collagen self-assembly. Int. J. Polym. Anal. Character, 2022, 27(6), 394-408.
[http://dx.doi.org/10.1080/1023666X.2022.2093569]
[193]
Dąbrowska-Gralak, M.; Sadło, J.; Głuszewski, W.; Łyczko, K.; Przybytniak, G.; Lewandowska, H. The combined effect of humidity and electron beam irradiation on collagen type I - implications for collagen-based devices. Mater. Today Commun., 2022, 31, 103255.
[http://dx.doi.org/10.1016/j.mtcomm.2022.103255]
[194]
Yamaguchi, T.; Kato, Y.; Okuda, T.; Rokushima, M.; Izawa, T.; Kuwamura, M.; Yamate, J. Visualization of specific collagen-producing cells by Col1-GFP transgenic mice revealed novel type I collagen-producing cells other than fibroblasts in systemic organs/tissues. Biochem. Biophys. Res. Commun., 2018, 505(1), 267-273.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.082] [PMID: 30245134]
[195]
Meng, D.; Tanaka, H.; Kobayashi, T.; Hatayama, H.; Zhang, X.; Ura, K.; Yunoki, S.; Takagi, Y. The effect of alkaline pretreatment on the biochemical characteristics and fibril-forming abilities of types I and II collagen extracted from bester sturgeon by-products. Int. J. Biol. Macromol., 2019, 131, 572-580.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.091] [PMID: 30880060]
[196]
Meng, D.; Li, W.; Ura, K.; Takagi, Y. Effects of phosphate ion concentration on in-vitro fibrillogenesis of sturgeon type I collagen. Int. J. Biol. Macromol., 2020, 148, 182-191.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.128] [PMID: 31953179]
[197]
Katsuyama, Y.; Yamawaki, Y.; Sato, Y.; Muraoka, S.; Yoshida, M.; Okano, Y.; Masaki, H. Decreased mitochondrial function in UVA-irradiated dermal fibroblasts causes the insufficient formation of type I collagen and fibrillin-1 fibers. J. Dermatol. Sci., 2022, 108(1), 22-29.
[http://dx.doi.org/10.1016/j.jdermsci.2022.10.002] [PMID: 36243587]
[198]
Gao, Y.; Ma, K.; Kang, Y.; Liu, W.; Liu, X.; Long, X.; Hayashi, T.; Hattori, S.; Mizuno, K.; Fujisaki, H.; Ikejima, T. Type I collagen reduces lipid accumulation during adipogenesis of preadipocytes 3T3-L1 via the YAP-mTOR-autophagy axis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2022, 1867(9), 159181.
[http://dx.doi.org/10.1016/j.bbalip.2022.159181] [PMID: 35595017]
[199]
Stefanovic, L.; Gordon, B.H.; Silvers, R.; Stefanovic, B. Characterization of sequence-specific binding of LARP6 to the 5/stem-loop of type I collagen mRNAs and implications for rational design of antifibrotic drugs. J. Mol. Biol., 2022, 434(2), 167394.
[http://dx.doi.org/10.1016/j.jmb.2021.167394] [PMID: 34896113]
[200]
Yu, E.; Ma, L.; Ji, H.; Li, Z.; Wang, G.; Xie, J.; Yu, D.; Kaneko, G.; Tian, J.; Zhang, K.; Gong, W. Smad4-dependent regulation of type I collagen expression in the muscle of grass carp fed with faba bean. Gene, 2019, 685, 32-41.
[http://dx.doi.org/10.1016/j.gene.2018.10.074] [PMID: 30393189]
[201]
Zhao, Y.; Bai, L.; Zhang, Y.; Yao, R.; Sun, Y.; Hang, R.; Chen, X.; Wang, H.; Yao, X.; Xiao, Y.; Hang, R. Type I collagen decorated nanoporous network on titanium implant surface promotes osseointegration through mediating immunomodulation, angiogenesis, and osteogenesis. Biomaterials, 2022, 288, 121684.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121684] [PMID: 35995624]
[202]
Chen, Y.; Kim, J.; Yang, S.; Wang, H.; Wu, C.J.; Sugimoto, H.; LeBleu, V.S.; Kalluri, R. Type I collagen deletion in αSMA+ myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer. Cancer Cell, 2021, 39(4), 548-565.e6.
[http://dx.doi.org/10.1016/j.ccell.2021.02.007] [PMID: 33667385]
[203]
Yamazaki, S.; Su, Y.; Maruyama, A.; Makinoshima, H.; Suzuki, J.; Tsuboi, M.; Goto, K.; Ochiai, A.; Ishii, G. Uptake of collagen type I via macropinocytosis cause mTOR activation and anti-cancer drug resistance. Biochem. Biophys. Res. Commun., 2020, 526(1), 191-198.
[http://dx.doi.org/10.1016/j.bbrc.2020.03.067] [PMID: 32201076]
[204]
Nicol, L.; Morar, P.; Wang, Y.; Henriksen, K.; Sun, S.; Karsdal, M.; Smith, R.; Nagamani, S.C.S.; Shapiro, J.; Lee, B.; Orwoll, E. Alterations in non-type I collagen biomarkers in osteogenesis imperfecta. Bone, 2019, 120, 70-74.
[http://dx.doi.org/10.1016/j.bone.2018.09.024] [PMID: 30290234]
[205]
Ramadass, S.K.; Nazir, L.S.; Thangam, R.; Perumal, R.K.; Manjubala, I.; Madhan, B.; Seetharaman, S. Type I collagen peptides and nitric oxide releasing electrospun silk fibroin scaffold: A multifunctional approach for the treatment of ischemic chronic wounds. Colloids Surf. B Biointerfaces, 2019, 175, 636-643.
[http://dx.doi.org/10.1016/j.colsurfb.2018.12.025] [PMID: 30583219]
[206]
Verrecchia, F.; Mauviel, A. TGF-β and TNF-α Antagonistic cytokines controlling type I collagen gene expression. Cell. Signal., 2004, 16(8), 873-880.
[http://dx.doi.org/10.1016/j.cellsig.2004.02.007] [PMID: 15157666]
[207]
Bai, Y.; Zhang, J.; Xu, J.; Cui, L.; Zhang, H.; Zhang, S. Alteration of type I collagen in the radial artery of patients with end-stage renal disease. Am. J. Med. Sci., 2015, 349(4), 292-297.
[http://dx.doi.org/10.1097/MAJ.0000000000000408] [PMID: 25782334]
[208]
Zhang, X.; Chen, Y.R.; Zhao, Y.L.; Liu, W.W.; Hayashi, T.; Mizuno, K.; Hattori, S.; Fujisaki, H.; Ogura, T.; Onodera, S.; Ikejima, T. Type I collagen or gelatin stimulates mouse peritoneal macrophages to aggregate and produce pro-inflammatory molecules through upregulated ROS levels. Int. Immunopharmacol., 2019, 76, 105845.
[http://dx.doi.org/10.1016/j.intimp.2019.105845] [PMID: 31470266]
[209]
Akiyama, Y.; Ito, M.; Toriumi, T.; Hiratsuka, T.; Arai, Y.; Tanaka, S.; Futenma, T.; Akiyama, Y.; Yamaguchi, K.; Azuma, A.; Hata, K.; Natsume, N.; Honda, M. Bone formation potential of collagen type I-based recombinant peptide particles in rat calvaria defects. Regen. Ther., 2021, 16, 12-22.
[http://dx.doi.org/10.1016/j.reth.2020.12.001] [PMID: 33426238]
[210]
Dubey, K.; Kar, K. Type I collagen prevents amyloid aggregation of hen egg white lysozyme. Biochem. Biophys. Res. Commun., 2014, 448(4), 480-484.
[http://dx.doi.org/10.1016/j.bbrc.2014.04.135] [PMID: 24802405]
[211]
Bagavandoss, P. Temporal expression of tenascin-C and type I collagen in response to gonadotropins in the immature rat ovary. Acta Histochem., 2014, 116(7), 1125-1133.
[http://dx.doi.org/10.1016/j.acthis.2014.05.007] [PMID: 24998028]
[212]
Cai, L.; Fritz, D.; Stefanovic, L.; Stefanovic, B. Nonmuscle myosin-dependent synthesis of type I collagen. J. Mol. Biol., 2010, 401(4), 564-578.
[http://dx.doi.org/10.1016/j.jmb.2010.06.057] [PMID: 20603131]
[213]
Russo, C.; Lazzaro, V.; Gazzaruso, C.; Maurotti, S.; Ferro, Y.; Pingitore, P.; Fumo, F.; Coppola, A.; Gallotti, P.; Zambianchi, V.; Fodaro, M.; Galliera, E.; Marazzi, M.G.; Corsi Romanelli, M.M.; Giannini, S.; Romeo, S.; Pujia, A.; Montalcini, T. Proinsulin C-peptide modulates the expression of ERK1/2, type I collagen and RANKL in human osteoblast-like cells (Saos-2). Mol. Cell. Endocrinol., 2017, 442, 134-141.
[http://dx.doi.org/10.1016/j.mce.2016.12.012] [PMID: 28007656]
[214]
Ao, H.Y.; Xie, Y.T.; Yang, S.B.; Wu, X.D.; Li, K.; Zheng, X.B.; Tang, T.T. Covalently immobilised type I collagen facilitates osteoconduction and osseointegration of titanium coated implants. J. Orthop. Translat., 2016, 5, 16-25.
[http://dx.doi.org/10.1016/j.jot.2015.08.005] [PMID: 30035071]
[215]
Yan, X.; Hao, X.; Nie, Q.; Feng, C.; Wang, H.; Sun, Z.; Niu, R.; Wang, J. Effects of fluoride on the ultrastructure and expression of Type I collagen in rat hard tissue. Chemosphere, 2015, 128, 36-41.
[http://dx.doi.org/10.1016/j.chemosphere.2014.12.090] [PMID: 25655816]
[216]
Alonso, M.; Claros, S.; Becerra, J.; Andrades, J. The effect of type I collagen on osteochondrogenic differentiation in adipose-derived stromal cells in vivo. Cytotherapy, 2008, 10(6), 597-610.
[http://dx.doi.org/10.1080/14653240802242084] [PMID: 18836915]
[217]
Fabiś J.; Szemraj, J.; Strek, M.; Fabiś A.; Dutkiewicz, Z.; Zwierzchowski, T.J. Is resection of the tendon edge necessary to enhance the healing process? An evaluation of the expression of collagen type I, IL-1β IFN-γ IL-4, and IL-13 in the distal 1 cm of a torn supraspinatus tendon: Part II. J. Shoulder Elbow Surg., 2014, 23(12), 1779-1785.
[http://dx.doi.org/10.1016/j.jse.2014.08.023] [PMID: 25440131]
[218]
Abad-Javier, M.E.; Cajero-Juárez, M.; Nuñez-Anita, R.E.; Contreras-García, M.E. Effect of collagen type I and vitamin D3 functionalization of biomimetic bioglass scaffolds on hydroxyapatite condensation. J. Eur. Ceram. Soc., 2019, 39(12), 3505-3512.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2019.02.050]
[219]
Lee, J.; Jung, E.; Yu, H.; Kim, Y.; Ha, J.; Kim, Y.S.; Park, D. Mechanisms of carvacrol-induced expression of type I collagen gene. J. Dermatol. Sci., 2008, 52(3), 160-169.
[http://dx.doi.org/10.1016/j.jdermsci.2008.06.007] [PMID: 18701258]
[220]
Watanabe, T.; Yasue, A.; Tanaka, E. Hypoxia-inducible factor-1ɑ is required for transforming growth factor-β1-induced type I collagen, periostin and ɑ-smooth muscle actin expression in human periodontal ligament cells. Arch. Oral Biol., 2014, 59(6), 595-600.
[http://dx.doi.org/10.1016/j.archoralbio.2014.03.003] [PMID: 24690594]
[221]
Steinmann, B.U.; Abe, S.; Martin, G.R. Modulation of type I and type III collagen production in normal and mutant human skin fibroblasts by cell density, prostaglandin E2 and epidermal growth factor. Coll. Relat. Res., 1982, 2(3), 185-195.
[http://dx.doi.org/10.1016/S0174-173X(82)80013-7] [PMID: 6295694]
[222]
De Smet, K.; Beken, S.; Depreter, M.; Roels, F.; Vercruysse, A.; Rogiers, V. Effect of epidermal growth factor in collagen gel cultures of rat hepatocytes. Toxicol. In Vitro, 1999, 13(4-5), 579-585.
[http://dx.doi.org/10.1016/S0887-2333(99)00041-7] [PMID: 20654519]
[223]
Engl, T.; Boost, K.A.; Leckel, K.; Beecken, W.D.; Jonas, D.; Oppermann, E.; Auth, M.K.H.; Schaudt, A.; Bechstein, W.O.; Blaheta, R.A. Phosphorylation of hepatocyte growth factor receptor and epidermal growth factor receptor of human hepatocytes can be maintained in a (3D) collagen sandwich culture system. Toxicol. In Vitro, 2004, 18(4), 527-532.
[http://dx.doi.org/10.1016/j.tiv.2004.01.010] [PMID: 15130610]
[224]
Casali, T.G.; Christina de Castro Paiva, K.; Rodrigues, M.N.; Santana Silva, C.E.; Avarese de Figueiredo, A.; de Bessa, J., Jr; Bastos, A.N.; Marques Nogueira Castañon, M.C.; Bastos Netto, J.M. Topical estradiol increases epidermal thickness and dermal collagen of foreskin prior to hypospadia surgery – Randomized double blinded controlled trial. J. Pediatr. Urol., 2019, 15(4), 346-352.
[http://dx.doi.org/10.1016/j.jpurol.2019.05.014] [PMID: 31253485]
[225]
De Smet, K.; Loyer, P.; Gilot, D.; Vercruysse, A.; Rogiers, V.; Guguen-Guillouzo, C. Effects of epidermal growth factor on CYP inducibility by xenobiotics, DNA replication, and caspase activations in collagen I gel sandwich cultures of rat hepatocytes. Biochem. Pharmacol., 2001, 61(10), 1293-1303.
[http://dx.doi.org/10.1016/S0006-2952(01)00612-8] [PMID: 11322933]
[226]
Fujii, K.; Imamura, S. Epidermal growth factor (EGF)-induced enhancement of human squamous carcinoma cell migration on type I collagen involves selective upregulation of α2β1 integrin expression. J. Dermatol. Sci., 1993, 6(1), 35. [Removed hyperlink field].
[http://dx.doi.org/10.1016/0923-1811(93)90922-C]
[227]
Mimura, Y.; Ihn, H.; Jinnin, M.; Asano, Y.; Yamane, K.; Tamaki, K. Epidermal growth factor affects the synthesis and degradation of type I collagen in cultured human dermal fibroblasts. Matrix Biol., 2006, 25(4), 202-212.
[http://dx.doi.org/10.1016/j.matbio.2005.12.002] [PMID: 16413767]
[228]
Grande, J.P.; Melder, D.C.; Zinsmeister, A.R. Modulation of collagen gene expression by cytokines: Stimulatory effect of transforming growth factor-β1, with divergent effect of epidermal growth factor and tumor necrosis factor-ɑ on type I and collagen type IV. J. Lab. Clin. Med., 1997, 130(5), 476-486.
[http://dx.doi.org/10.1016/S0022-2143(97)90124-4] [PMID: 9390635]
[229]
Fujii, K.; Dousaka-Nakajima, N.; Imamura, S. Epidermal growth factor enhancement of HSC-1 human cutaneous squamous carcinoma cell adhesion and migration on type I collagen involves selective up-regulation of alpha 2 β 1 integrin expression. Exp. Cell Res., 1995, 216(1), 261-272.
[http://dx.doi.org/10.1006/excr.1995.1032] [PMID: 7529189]
[230]
Ågren, M.S.; Schnabel, R.; Christensen, L.H.; Mirastschijski, U. Tumor necrosis factor-α-accelerated degradation of type I collagen in human skin is associated with elevated matrix metalloproteinase (MMP)-1 and MMP-3 ex vivo. Eur. J. Cell Biol., 2015, 94(1), 12-21.
[http://dx.doi.org/10.1016/j.ejcb.2014.10.001] [PMID: 25457675]
[231]
Yen, C.L.; Li, Y.J.; Wu, H.H.; Weng, C.H.; Lee, C.C.; Chen, Y.C.; Chang, M.Y.; Yen, T.H.; Hsu, H.H.; Hung, C.C.; Yang, C.W.; Tian, Y.C. Stimulation of transforming growth factor-beta-1 and contact with type I collagen cooperatively facilitate irreversible transdifferentiation in proximal tubular cells. Biomed. J., 2016, 39(1), 39-49.
[http://dx.doi.org/10.1016/j.bj.2015.08.004] [PMID: 27105597]
[232]
Kurata, S.; Hata, R. Epidermal growth factor inhibits transcription of type I collagen genes and production of type I collagen in cultured human skin fibroblasts in the presence and absence of L-ascorbic acid 2-phosphate, a long-acting vitamin C derivative. J. Biol. Chem., 1991, 266(15), 9997-10003.
[http://dx.doi.org/10.1016/S0021-9258(18)92918-2] [PMID: 2033086]
[233]
Creely, J.J.; DiMari, S.J.; Howe, A.M.; Hyde, C.P.; Haralson, M.A. Effects of epidermal growth factor on collagen synthesis by an epithelioid cell line derived from normal rat kidney. Am. J. Pathol., 1990, 136(6), 1247-1257.
[http://dx.doi.org/10.1165/ajrcmb/4.5.455] [PMID: 2356857]
[234]
Kim, D.; Kim, S.Y.; Mun, S.K.; Rhee, S.; Kim, B.J. Epidermal growth factor improves the migration and contractility of aged fibroblasts cultured on 3D collagen matrices. Int. J. Mol. Med., 2015, 35(4), 1017-1025.
[http://dx.doi.org/10.3892/ijmm.2015.2088] [PMID: 25647660]
[235]
Silver, M.H.; Murray, J.C.; Pratt, R.M. Epidermal growth factor stimulates type-V collagen synthesis in cultured murine palatal shelves. Differentiation, 1984, 27(1-3), 205-208.
[http://dx.doi.org/10.1111/j.1432-0436.1984.tb01430.x] [PMID: 6334002]
[236]
Li, W.; Kobayashi, T.; Meng, D.; Miyamoto, N.; Tsutsumi, N.; Ura, K.; Takagi, Y. Free radical scavenging activity of type II collagen peptides and chondroitin sulfate oligosaccharides from by-products of mottled skate processing. Food Biosci., 2021, 41, 100991.
[http://dx.doi.org/10.1016/j.fbio.2021.100991]
[237]
Cao, H.; Xu, S.Y. Purification and characterization of type II collagen from chick sternal cartilage. Food Chem., 2008, 108(2), 439-445.
[http://dx.doi.org/10.1016/j.foodchem.2007.09.022] [PMID: 26059120]
[238]
Park, M.S.; Kim, Y.H.; Lee, J.W. FAK mediates signal crosstalk between type II collagen and TGF-beta 1 cascades in chondrocytic cells. Matrix Biol., 2010, 29(2), 135-142.
[http://dx.doi.org/10.1016/j.matbio.2009.10.001] [PMID: 19840848]
[239]
Takahashi, T.; Naito, S.; Onoda, J.; Yamauchi, A.; Nakamura, E.; Kishino, J.; Kawai, T.; Matsukawa, S.; Toyosaki-Maeda, T.; Tanimura, M.; Fukui, N.; Numata, Y.; Yamane, S. Development of a novel immunoassay for the measurement of type II collagen neoepitope generated by collagenase cleavage. Clin. Chim. Acta, 2012, 413(19-20), 1591-1599.
[http://dx.doi.org/10.1016/j.cca.2012.03.022] [PMID: 22507082]
[240]
Noé, B.; Poole, A.R.; Mort, J.S.; Richard, H.; Beauchamp, G.; Laverty, S. C2K77 ELISA detects cleavage of type II collagen by cathepsin K in equine articular cartilage. Osteoarthr Cartil, 2017, 25(12), 2119-2126.
[http://dx.doi.org/10.1016/j.joca.2017.08.011] [PMID: 28882751]
[241]
Mort, J.S.; Beaudry, F.; Théroux, K.; Emmott, A.A.; Richard, H.; Fisher, W.D.; Lee, E.R.; Poole, A.R.; Laverty, S. Early cathepsin K degradation of type II collagen in vitro and in vivo in articular cartilage. Osteoarthr Cartil, 2016, 24(8), 1461-1469.
[http://dx.doi.org/10.1016/j.joca.2016.03.016] [PMID: 27049030]
[242]
Nelson, M.; Li, S.; Page, S.J.; Shi, X.; Lee, P.D.; Stevens, M.M.; Hanna, J.V.; Jones, J.R. 3D printed silica-gelatin hybrid scaffolds of specific channel sizes promote collagen Type II, Sox9 and Aggrecan production from chondrocytes. Mater. Sci. Eng. C, 2021, 123, 111964.
[http://dx.doi.org/10.1016/j.msec.2021.111964] [PMID: 33812592]
[243]
Groen, S.S.; Sinkeviciute, D.; Thudium, C.S.; Önnerfjord, P.; Karsdal, M.; Bay-Jensen, A.C.; Nielsen, S.H. A novel serological pharmacodynamic biomarker assessing type II collagen degradation in osteoarthritis patients. Osteoarthr Cartil, 2021, 29(1), S91.
[http://dx.doi.org/10.1016/j.joca.2021.02.124]
[244]
Martyniak, K.; Lokshina, A.; Cruz, M.A.; Karimzadeh, M.; Kemp, R.; Kean, T.J. Biomaterial composition and stiffness as decisive properties of 3D bioprinted constructs for type II collagen stimulation. Acta Biomater., 2022, 152, 221-234.
[http://dx.doi.org/10.1016/j.actbio.2022.08.058] [PMID: 36049623]
[245]
Szarek, P.; Pierce, D.M. A specialized protocol for mechanical testing of isolated networks of type II collagen. J. Mech. Behav. Biomed. Mater., 2022, 136, 105466.
[http://dx.doi.org/10.1016/j.jmbbm.2022.105466] [PMID: 36183667]
[246]
Yasuda, T.; Tchetina, E.; Ohsawa, K.; Roughley, P.J.; Wu, W.; Mousa, A.; Ionescu, M.; Pidoux, I.; Poole, A.R. Peptides of type II collagen can induce the cleavage of type II collagen and aggrecan in articular cartilage. Matrix Biol., 2006, 25(7), 419-429.
[http://dx.doi.org/10.1016/j.matbio.2006.06.004] [PMID: 16919430]
[247]
Maepa, M.; Razwinani, M.; Motaung, S. Effects of resveratrol on collagen type II protein in the superficial and middle zone chondrocytes of porcine articular cartilage. J. Ethnopharmacol., 2016, 178, 25-33.
[http://dx.doi.org/10.1016/j.jep.2015.11.047] [PMID: 26647105]
[248]
Xu, R.; Zheng, L.; Su, G.; Luo, D.; Lai, C.; Zhao, M. Protein solubility, secondary structure and microstructure changes in two types of undenatured type II collagen under different gastrointestinal digestion conditions. Food Chem., 2021, 343, 128555.
[http://dx.doi.org/10.1016/j.foodchem.2020.128555] [PMID: 33243558]
[249]
Engstrøm, A.; Gillesberg, F.S.; Bay Jensen, A.C.; Karsdal, M.A.; Thudium, C.S. Dynamic compression inhibits cytokine-mediated type II collagen degradation. Osteoarthr Cartil, 2022, 4(4), 100292.
[http://dx.doi.org/10.1016/j.ocarto.2022.100292] [PMID: 36474783]
[250]
Stabile, M.; Lacitignola, L.; Samarelli, R.; Fiorentino, M.; Crovace, A.; Staffieri, F. Evaluation of clinical efficacy of undenatured type II collagen supplementation compared to cimicoxib and their association in dogs affected by natural occurring osteoarthritis. Res. Vet. Sci., 2022, 151, 27-35.
[http://dx.doi.org/10.1016/j.rvsc.2022.06.030] [PMID: 35853328]
[251]
Liu, Y.N.; Jiang, Z.C.; Li, S.Y.; Li, Z.Z.; Wang, H.; Liu, Y.; Liao, Y.C.; Han, J.; Chen, J.H. Integrin α2β1 is involved in T-2 toxin-induced decrease of type II collagen in C28/I2 chondrocytes. Toxicon, 2020, 186, 12-18.
[http://dx.doi.org/10.1016/j.toxicon.2020.07.016] [PMID: 32698025]
[252]
Lambert, C.; Borderie, D.; Dubuc, J.E.; Rannou, F.; Henrotin, Y. Type II collagen peptide Coll2-1 is an actor of synovitis. Osteoarthr Cartil, 2019, 27(11), 1680-1691.
[http://dx.doi.org/10.1016/j.joca.2019.07.009] [PMID: 31325494]
[253]
Conrozier, T.; Ferrand, F.; Poole, A.R.; Verret, C.; Mathieu, P.; Ionescu, M.; Vincent, F.; Piperno, M.; Spiegel, A.; Vignon, E. Differences in biomarkers of type II collagen in atrophic and hypertrophic osteoarthritis of the hip: Implications for the differing pathobiologies. Osteoarthr Cartil, 2007, 15(4), 462-467.
[http://dx.doi.org/10.1016/j.joca.2006.09.002] [PMID: 17055306]
[254]
Gillesberg, F.; Engstrøm, A.; Groen, S.S.; Bay-Jensen, A.C.; Thudium, C.S. Compressive loading modulates the effect of insulin-like growth factor-1 in type II collagen processing in bovine cartilage explants. Osteoarthr Cartil, 2021, 29(1), S146-S147.
[http://dx.doi.org/10.1016/j.joca.2021.02.208]
[255]
Nham, G.T.H.; Zhang, X.; Asou, Y.; Shinomura, T. Expression of type II collagen and aggrecan genes is regulated through distinct epigenetic modifications of their multiple enhancer elements. Gene, 2019, 704, 134-141.
[http://dx.doi.org/10.1016/j.gene.2019.04.034] [PMID: 30981839]
[256]
Ohno, T.; Tanisaka, K.; Hiraoka, Y.; Ushida, T.; Tamaki, T.; Tateishi, T. Effect of type I and type II collagen sponges as 3D scaffolds for hyaline cartilage-like tissue regeneration on phenotypic control of seeded chondrocytes in vitro. Mater. Sci. Eng. C, 2004, 24(3), 407-411.
[http://dx.doi.org/10.1016/j.msec.2003.11.011]
[257]
Kuzan, A.; Chwiłkowska, A.; Pezowicz, C.; Witkiewicz, W.; Gamian, A.; Maksymowicz, K.; Kobielarz, M. The content of collagen type II in human arteries is correlated with the stage of atherosclerosis and calcification foci. Cardiovasc. Pathol., 2017, 28, 21-27.
[http://dx.doi.org/10.1016/j.carpath.2017.02.003] [PMID: 28284062]
[258]
Yasuda, T. Activation of p38 mitogen-activated protein kinase is inhibited by hyaluronan via intercellular adhesion molecule-1 in articular chondrocytes stimulated with type II collagen peptide. J. Pharmacol. Sci., 2012, 118(1), 25-32.
[http://dx.doi.org/10.1254/jphs.11044FP]
[259]
Greene, C.A.; Green, C.R.; Dickinson, M.E.; Johnson, V.; Sherwin, T. Keratocytes are induced to produce collagen type II: A new strategy for in vivo corneal matrix regeneration. Exp. Cell Res., 2016, 347(1), 241-249.
[http://dx.doi.org/10.1016/j.yexcr.2016.08.010] [PMID: 27539660]
[260]
Ueda, K.; Shimizu, O.; Oka, S.; Saito, M.; Hide, M.; Matsumoto, M. Distribution of tenascin-C, fibronectin and collagen types III and IV during regeneration of rat submandibular gland. Int. J. Oral Maxillofac. Surg., 2009, 38(1), 79-84.
[http://dx.doi.org/10.1016/j.ijom.2008.11.004] [PMID: 19097859]
[261]
Yu, Z.; Visse, R.; Inouye, M.; Nagase, H.; Brodsky, B. Defining requirements for collagenase cleavage in collagen type III using a bacterial collagen system. J. Biol. Chem., 2012, 287(27), 22988-22997.
[http://dx.doi.org/10.1074/jbc.M112.348979] [PMID: 22573319]
[262]
Boudko, S.P.; Engel, J.; Okuyama, K.; Mizuno, K.; Bächinger, H.P.; Schumacher, M.A. Crystal structure of human type III collagen Gly991-Gly1032 cystine knot-containing peptide shows both 7/2 and 10/3 triple helical symmetries. J. Biol. Chem., 2008, 283(47), 32580-32589.
[http://dx.doi.org/10.1074/jbc.M805394200] [PMID: 18805790]
[263]
Nikolov, A.; Tzekova, M.; Kostov, K.; Popovski, N. Circulating serum markers of collagen type III synthesis in high atherogenic risk patients with heart failure and coronary artery disease. Atherosclerosis, 2020, 315, e257.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.10.811]
[264]
Tanaka, E.; Miyawaki, Y.; Tanaka, M.; Watanabe, M.; Lee, K.; del Pozo, R.; Tanne, K. Effects of tensile forces on the expression of type III collagen in rat interparietal suture. Arch. Oral Biol., 2000, 45(12), 1049-1057.
[http://dx.doi.org/10.1016/S0003-9969(00)00083-2] [PMID: 11084144]
[265]
Barascuk, N.; Vassiliadis, E.; Larsen, L.; Wang, J.; Zheng, Q.; Xing, R.; Cao, Y.; Crespo, C.; Lapret, I.; Sabatini, M.; Villeneuve, N.; Vilaine, J.P.; Rasmussen, L.M.; Register, T.C.; Karsdal, M.A. Development and validation of an enzyme-linked immunosorbent assay for the quantification of a specific MMP-9 mediated degradation fragment of type III collagen—A novel biomarker of atherosclerotic plaque remodeling. Clin. Biochem., 2011, 44(10-11), 900-906.
[http://dx.doi.org/10.1016/j.clinbiochem.2011.04.004] [PMID: 21549691]
[266]
Terui, G.; Goto, T.; Katsuta, M.; Aoki, I.; Ito, H. Effect of pioglitazone on left ventricular diastolic function and fibrosis of type III collagen in type 2 diabetic patients. J. Cardiol., 2009, 54(1), 52-58.
[http://dx.doi.org/10.1016/j.jjcc.2009.03.004] [PMID: 19632520]
[267]
Taddese, S.; Jung, M.C.; Ihling, C.; Heinz, A.; Neubert, R.H.H.; Schmelzer, C.E.H. MMP-12 catalytic domain recognizes and cleaves at multiple sites in human skin collagen type I and type III. Biochim. Biophys. Acta. Proteins Proteom., 2010, 1804(4), 731-739.
[http://dx.doi.org/10.1016/j.bbapap.2009.11.014] [PMID: 19932771]
[268]
Uchinaka, A.; Yoshida, M.; Tanaka, K.; Hamada, Y.; Mori, S.; Maeno, Y.; Miyagawa, S.; Sawa, Y.; Nagata, K.; Yamamoto, H.; Kawaguchi, N. Overexpression of collagen type III in injured myocardium prevents cardiac systolic dysfunction by changing the balance of collagen distribution. J. Thorac. Cardiovasc. Surg., 2018, 156(1), 217-226.e3.
[http://dx.doi.org/10.1016/j.jtcvs.2018.01.097] [PMID: 29551535]
[269]
Wang, Y.; Resnick, M.B.; Lu, S.; Hui, Y.; Brodsky, A.S.; Yang, D.; Yakirevich, E.; Wang, L. Collagen type III α1 as a useful diagnostic immunohistochemical marker for fibroepithelial lesions of the breast. Hum. Pathol., 2016, 57, 176-181.
[http://dx.doi.org/10.1016/j.humpath.2016.07.017] [PMID: 27498063]
[270]
Barascuk, N.; Veidal, S.S.; Larsen, L.; Larsen, D.V.; Larsen, M.R.; Wang, J.; Zheng, Q.; Xing, R.; Cao, Y.; Rasmussen, L.M.; Karsdal, M.A. A novel assay for extracellular matrix remodeling associated with liver fibrosis: An enzyme-linked immunosorbent assay (ELISA) for a MMP-9 proteolytically revealed neo-epitope of type III collagen. Clin. Biochem., 2010, 43(10-11), 899-904.
[http://dx.doi.org/10.1016/j.clinbiochem.2010.03.012] [PMID: 20380828]
[271]
Williams, K.E.; Olsen, D.R. Matrix metalloproteinase-1 cleavage site recognition and binding in full-length human type III collagen. Matrix Biol., 2009, 28(6), 373-379.
[http://dx.doi.org/10.1016/j.matbio.2009.04.009] [PMID: 19398000]
[272]
Zhu, J.; Cole, F.; Woo-Rasberry, V.; Fang, X.R.; Chiang, T.M. Type I and type III collagen–platelet interaction: Inhibition by type specific receptor peptides. Thromb. Res., 2007, 119(1), 111-119.
[http://dx.doi.org/10.1016/j.thromres.2005.11.012] [PMID: 16472843]
[273]
Miyauchi, J.T.; Pagan, C.A.; Kudose, S. Collagen type III glomerulopathy in a tumour nephrectomy specimen: Beware of a coincidental medical kidney disease. Pathology, 2022.
[http://dx.doi.org/10.1016/j.pathol.2022.06.006] [PMID: 36100492]
[274]
Yang, Y.; Ritchie, A.C.; Everitt, N.M. Using type III recombinant human collagen to construct a series of highly porous scaffolds for tissue regeneration. Coll. Surf. Biointer., 2021, 208, 112139.
[275]
Dhondt, S.; Guillemyn, B.; Syx, D.; Symoens, S.; Rycke, R.D.; Vanhoutte, L.; Toussaint, W.; Lambrecht, B.N.; Paepe, A.D. Type III collagen affects dermal and vascular collagen fibrillogenesis and tissue integrity in a mutant Col3a1 transgenic mouse model. Matrix Biol., 2018, 70, 72-83.
[http://dx.doi.org/10.1016/j.matbio.2018.03.008]
[276]
Wilson, A.V.; Costigliolo, F.; Farris, A.B.; Rengen, R.; Arend, L.J. Collagen type III glomerulopathy. Kidney Int. Rep., 2021, 6(6), 1738-1742.
[http://dx.doi.org/10.1016/j.ekir.2021.03.887] [PMID: 34169215]
[277]
Abdel Jaleel, G.A.; Saleh, D.O.; Al-Awdan, S.W.; Hassan, A.; Asaad, G.F. Impact of type III collagen on monosodium iodoacetate-induced osteoarthritis in rats. Heliyon, 2020, 6(6), e04083.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04083] [PMID: 32548322]
[278]
Makuszewska, M.; Bonda, T.; Cieślińska, M.; Bialuk, I.; Winnicka, M.M.; Niemczyk, K. Expression of collagen type III in healing tympanic membrane. Int. J. Pediatr. Otorhinolaryngol., 2020, 136, 110196.
[http://dx.doi.org/10.1016/j.ijporl.2020.110196] [PMID: 32622252]
[279]
Wang, C.; Brisson, B.K.; Terajima, M.; Li, Q.; Hoxha, K.; Han, B.; Goldberg, A.M.; Sherry Liu, X.; Marcolongo, M.S.; Enomoto-Iwamoto, M.; Yamauchi, M.; Volk, S.W.; Han, L. Type III collagen is a key regulator of the collagen fibrillar structure and biomechanics of articular cartilage and meniscus. Matrix Biol., 2020, 85-86, 47-67.
[http://dx.doi.org/10.1016/j.matbio.2019.10.001] [PMID: 31655293]
[280]
Hosseininia, S.; Weis, M.A.; Rai, J.; Kim, L.; Funk, S.; Dahlberg, L.E.; Eyre, D.R. Evidence for enhanced collagen type III deposition focally in the territorial matrix of osteoarthritic hip articular cartilage. Osteoarthr Cartil, 2016, 24(6), 1029-1035.
[http://dx.doi.org/10.1016/j.joca.2016.01.001] [PMID: 26790721]
[281]
Hua, C.; Zhu, Y.; Xu, W.; Ye, S.; Zhang, R.; Lu, L.; Jiang, S. Characterization by high-resolution crystal structure analysis of a triple-helix region of human collagen type III with potent cell adhesion activity. Biochem. Biophys. Res. Commun., 2019, 508(4), 1018-1023.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.018] [PMID: 30545625]
[282]
Pires, V.; Pêcher, J.; Da Nascimento, S.; Maurice, P.; Bonnefoy, A.; Dassonville, A.; Amant, C.; Fauvel-Lafève, F.; Legrand, C.; Rochette, J.; Sonnet, P. Type III collagen mimetic peptides designed with anti- or pro-aggregant activities on human platelets. Eur. J. Med. Chem., 2007, 42(5), 694-701.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.018] [PMID: 17316914]
[283]
Maehata, Y.; Takamizawa, S.; Ozawa, S.; Izukuri, K.; Kato, Y.; Sato, S.; Lee, M.C.; Kimura, A.; Hata, R.I. Type III collagen is essential for growth acceleration of human osteoblastic cells by ascorbic acid 2-phosphate, a long-acting vitamin C derivative. Matrix Biol., 2007, 26(5), 371-381.
[http://dx.doi.org/10.1016/j.matbio.2007.01.005] [PMID: 17306970]
[284]
Eriksen, H.A.; Pajala, A.; Leppilahti, J.; Risteli, J. Increased content of type III collagen at the rupture site of human Achilles tendon. J. Orthop. Res., 2002, 20(6), 1352-1357.
[http://dx.doi.org/10.1016/S0736-0266(02)00064-5] [PMID: 12472252]
[285]
Chintala, S.K.; Sawaya, R.; Gokaslan, Z.L.; Rao, J.S. The effect of type III collagen on migration and invasion of human glioblastoma cell lines in vitro. Cancer Lett., 1996, 102(1-2), 57-63.
[http://dx.doi.org/10.1016/0304-3835(96)04163-8] [PMID: 8603379]
[286]
Tahir, T.; Febrianti, N.; Wahyuni, S.; Rabia Syam, Y. Evaluation of acute wound healing potential of red dragon fruit (Hylocereus Polyrhizus) extract cream on type III collagen and Epidermal Growth Factor (EGF) levels: An animal study. Medicina Clínica Práctica, 2020, 3(1), 100091.
[http://dx.doi.org/10.1016/j.mcpsp.2020.100091]
[287]
Apú, N.; da Silva, A.R.; Kalogeropoulos, K.; Herrera, C.; Camacho, E.; Rucavado, A.; Gutiérrez, J.M.; Escalante, T. Interaction of snake venom metalloproteinases with type IV collagen: Role of the different domains in target biding. Toxicon, 2020, 177(1), S51.
[http://dx.doi.org/10.1016/j.toxicon.2019.12.109]
[288]
Boosani, C.S.; Sudhakar, A. Cloning, purification, and characterization of a non-collagenous anti-angiogenic protein domain from human α1 type IV collagen expressed in Sf9 cells. Protein Expr. Purif., 2006, 49(2), 211-218.
[http://dx.doi.org/10.1016/j.pep.2006.03.007] [PMID: 16631378]
[289]
Morita, M.; Sugihara, H.; Tokunaka, K.; Tomura, A.; Saiga, K.; Sato, T.; Imamura, Y.; Hayashi, T. Preparation and partial characterization of monoclonal antibodies specific for the nascent non-triple helical form of the type IV collagen alpha 1 chain. Biochem. Biophys. Rep., 2017, 9, 128-132.
[http://dx.doi.org/10.1016/j.bbrep.2016.11.013] [PMID: 28955997]
[290]
Zeisberg, M.; Ericksen, M.B.; Hamano, Y.; Neilson, E.G.; Ziyadeh, F.; Kalluri, R. Differential expression of type IV collagen isoforms in rat glomerular endothelial and mesangial cells. Biochem. Biophys. Res. Commun., 2002, 295(2), 401-407.
[http://dx.doi.org/10.1016/S0006-291X(02)00693-9] [PMID: 12150963]
[291]
Mundel, T.M.; Kalluri, R. Type IV collagen-derived angiogenesis inhibitors. Microvasc. Res., 2007, 74(2-3), 85-89.
[http://dx.doi.org/10.1016/j.mvr.2007.05.005] [PMID: 17602710]
[292]
Nakamura, T.; Yoshida, H.; Ota, Y.; Endo, Y.; Sayo, T.; Hanai, U.; Imagawa, K.; Sasaki, M.; Takahashi, Y. SPARC promotes production of type IV and VII collagen and their skin basement membrane accumulation. J. Dermatol. Sci., 2022, 107(2), 109-112.
[http://dx.doi.org/10.1016/j.jdermsci.2022.07.007] [PMID: 35906114]
[293]
Rayan, C.M.; Abercrombie, M.P.; Linsenmayer, T.F.; Fitch, J.M.; Tomasek, J.J. Distribution of type IV collagen during avian limb bud development. J. Hand Surg. , 1999, 24(3), 619-627.
[http://dx.doi.org/10.1053/jhsu.1999.0619]
[294]
Shulman, C.; Liang, E.; Kamura, M.; Udwan, K.; Yao, T.; Cattran, D.; Reich, H.; Hladunewich, M.; Pei, Y.; Savige, J.; Paterson, A.D.; Suico, M.A.; Kai, H.; Barua, M. Type IV collagen variants in CKD: Performance of computational predictions for identifying pathogenic variants. Kidney Med., 2021, 3(2), 257-266.
[http://dx.doi.org/10.1016/j.xkme.2020.12.007] [PMID: 33851121]
[295]
Adler, S.G.; Feld, S.; Striker, L.; Striker, G.; LaPage, J.; Esposito, C.; Aboulhosn, J.; Barba, L.; Cha, D.R.; Nast, C.C. Glomerular type IV collagen in patients with diabetic nephropathy with and without additional glomerular disease. Kidney Int., 2000, 57(5), 2084-2092.
[http://dx.doi.org/10.1046/j.1523-1755.2000.00058.x] [PMID: 10792628]
[296]
McLeod, O.; Dunér, P.; Samnegård, A.; Tornvall, P.; Nilsson, J.; Hamsten, A.; Bengtsson, E. Autoantibodies against basement membrane collagen type IV are associated with myocardial infarction. Int. J. Cardiol. Heart Vasc., 2015, 6, 42-47.
[http://dx.doi.org/10.1016/j.ijcha.2014.12.003] [PMID: 28785625]
[297]
Tahara, A.; Tsukada, J.; Tomura, Y.; Suzuki, T.; Yatsu, T.; Shibasaki, M. Effect of vasopressin on type IV collagen production in human mesangial cells. Regul. Pept., 2008, 147(1-3), 60-66.
[http://dx.doi.org/10.1016/j.regpep.2008.01.002] [PMID: 18258315]
[298]
Kusunoki, T.; Nishida, S.; Kimoto-Kinoshita, S.; Murata, K.; Satou, T.; Tomura, T. Type IV collagenase and immunostaining of type IV collagen in human thyroid tumors. Auris Nasus Larynx, 2000, 27(2), 161-165.
[http://dx.doi.org/10.1016/S0385-8146(99)00070-X] [PMID: 10733145]
[299]
Stawikowski, M.J.; Aukszi, B.; Stawikowska, R.; Cudic, M.; Fields, G.B. Glycosylation modulates melanoma cell α2β1 and α3β1 integrin interactions with type IV collagen. J. Biol. Chem., 2014, 289(31), 21591-21604.
[http://dx.doi.org/10.1074/jbc.M114.572073] [PMID: 24958723]
[300]
Sadarzanska-Terzieva, B.; Tzvetanov, P.; Hegde, V.; Al-Hashel, J.Y.; Rousseff, R.Т.; Haralanov, L.; Stamenov, B.; Atanassova, M.; Marinova, I.; Marinova, A.; Rousseva, A. Abnormally high levels of anti-collagen type IV IgG antibodies in the serum of patients with a clinically isolated syndrome correlate with an increased risk of conversion to MS. Clin. Neurol. Neurosurg., 2015, 133, 30-33.
[http://dx.doi.org/10.1016/j.clineuro.2015.03.011] [PMID: 25837238]
[301]
Okada, M.; Yamawaki, H. A current perspective of canstatin, a fragment of type IV collagen alpha 2 chain. J. Pharmacol. Sci., 2019, 139(2), 59-64.
[http://dx.doi.org/10.1016/j.jphs.2018.12.001] [PMID: 30580971]
[302]
Zeng, Z.S.; Cohen, A.M.; Guillem, J.G. Loss of basement membrane type IV collagen is associated with increased expression of metalloproteinases 2 and 9 (MMP-2 and MMP-9) during human colorectal tumorigenesis. Carcinogenesis, 1999, 20(5), 749-755.
[http://dx.doi.org/10.1093/carcin/20.5.749] [PMID: 10334190]
[303]
Kalluri, R. Basement membranes: Structure, assembly and role in tumour angiogenesis. Nat. Rev. Cancer, 2003, 3(6), 422-433.
[http://dx.doi.org/10.1038/nrc1094] [PMID: 12778132]
[304]
Sipilä, L.; Ruotsalainen, H.; Sormunen, R.; Baker, N.L.; Lamandé, S.R.; Vapola, M.; Wang, C.; Sado, Y.; Aszodi, A.; Myllylä, R. Secretion and assembly of type IV and VI collagens depend on glycosylation of hydroxylysines. J. Biol. Chem., 2007, 282(46), 33381-33388.
[http://dx.doi.org/10.1074/jbc.M704198200] [PMID: 17873278]
[305]
Katavetin, P.; Katavetin, P.; Susantitaphong, P.; Townamchai, N.; Tiranathanagul, K.; Tungsanga, K.; Eiam-Ong, S. Urinary type IV collagen excretion predicts subsequent declining renal function in type 2 diabetic patients with proteinuria. Diabetes Res. Clin. Pract., 2010, 89(2), e33-e35.
[http://dx.doi.org/10.1016/j.diabres.2010.05.007] [PMID: 20542586]
[306]
Qiu, Y.; Hoshida, Y.; Kato, N.; Moriyama, M.; Otsuka, M.; Taniguchi, H.; Kawabe, T.; Omata, M. A simple combination of serum type IV collagen and prothrombin time to diagnose cirrhosis in patients with chronic active hepatitis C. Hepatol. Res., 2004, 30(4), 214-220.
[http://dx.doi.org/10.1016/j.hepres.2004.10.006] [PMID: 15589129]
[307]
Nyström, H.; Naredi, P.; Hafström, L.; Sund, M. Type IV collagen as a tumour marker for colorectal liver metastases. Eur. J. Surg. Oncol., 2011, 37(7), 611-617.
[http://dx.doi.org/10.1016/j.ejso.2011.04.010] [PMID: 21620632]
[308]
Qi, M.Y.; Kai-Chen; Liu, H.R.; Su, Y.; Yu, S.Q. Protective effect of Icariin on the early stage of experimental diabetic nephropathy induced by streptozotocin via modulating transforming growth factor β1 and type IV collagen expression in rats. J. Ethnopharmacol., 2011, 138(3), 731-736.
[http://dx.doi.org/10.1016/j.jep.2011.10.015] [PMID: 22027446]
[309]
Wilson, S.E.; Shiju, T.M.; Sampaio, L.P.; Hilgert, G.S.L. Corneal fibroblast collagen type IV negative feedback modulation of TGF beta: A fibrosis modulating system likely active in other organs. Matrix Biol., 2022, 109, 162-172.
[http://dx.doi.org/10.1016/j.matbio.2022.04.002] [PMID: 35421526]
[310]
Ito, A.; Yamamoto, M.; Ikeda, K.; Sato, M.; Kawabe, Y.; Kamihira, M. Effects of type IV collagen on myogenic characteristics of IGF-I gene-engineered myoblasts. J. Biosci. Bioeng., 2015, 119(5), 596-603.
[http://dx.doi.org/10.1016/j.jbiosc.2014.10.008] [PMID: 25454061]
[311]
Heo, Y.; Shin, Y.M.; Lee, Y.B.; Lim, Y.M.; Shin, H. Effect of immobilized collagen type IV on biological properties of endothelial cells for the enhanced endothelialization of synthetic vascular graft materials. Colloids Surf. B Biointerfaces, 2015, 134, 196-203.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.003] [PMID: 26196092]
[312]
Kobayashi, T.; Uchiyama, M. Characterization of assembly of recombinant type IV collagen α3, α4, and α5 chains in transfected cell strains. Kidney Int., 2003, 64(6), 1986-1996.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00323.x] [PMID: 14633121]
[313]
Chen, Y.; Satoh, T.; Sasatomi, E.; Miyazaki, K.; Tokunaga, O. Critical role of type IV collagens in the growth of bile duct carcinoma. in vivo and in vitro studies. Pathol. Res. Pract., 2001, 197(9), 585-596.
[http://dx.doi.org/10.1078/0344-0338-00132] [PMID: 11569922]
[314]
Iida, M.; Yamamoto, M.; Ishiguro, Y.S.; Yamazaki, M.; Ueda, N.; Honjo, H.; Kamiya, K. Urinary type IV collagen is related to left ventricular diastolic function and brain natriuretic peptide in hypertensive patients with prediabetes. J. Diabetes Complica., 2014, 28(6), 824-830.
[http://dx.doi.org/10.1016/j.jdiacomp.2014.08.005] [PMID: 25217792]
[315]
Ito, Y.; Iwashita, J.; Murata, J. Type IV collagen reduces mucin 5AC secretion in three-dimensional cultured human primary airway epithelial cells. Biochem. Biophys. Rep., 2019, 20, 100707.
[http://dx.doi.org/10.1016/j.bbrep.2019.100707] [PMID: 31737795]
[316]
Dunér, P.; Gonçalves, I.; Grufman, H.; Edsfeldt, A.; To, F.; Nitulescu, M.; Nilsson, J.; Bengtsson, E. Increased aldehyde modification of collagen type IV in symptomatic plaques – A possible cause of endothelial dysfunction. Atherosclerosis, 2015, 240(1), 26-32.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.02.043] [PMID: 25746374]
[317]
Balancin, M.L.; Teodoro, W.R.; Baldavira, C.M.; Prieto, T.G.; Farhat, C.; Velosa, A.P.; Souza, P.D.C.; Yaegashi, L.B. AbSaber, A.M.; Takagaki, T.Y.; Capelozzi, V.L. Different histological patterns of type-V collagen levels confer a matrices-privileges tissue microenvironment for invasion in malignant tumors with prognostic value. Pathol. Res. Pract., 2020, 216(12), 153277.
[http://dx.doi.org/10.1016/j.prp.2020.153277] [PMID: 33223279]
[318]
Veidal, S.S.; Larsen, D.V.; Chen, X.; Sun, S.; Zheng, Q.; Bay-Jensen, A.C.; Leeming, D.J.; Nawrocki, A.; Larsen, M.R.; Schett, G.; Karsdal, M.A. MMP mediated type V collagen degradation (C5M) is elevated in ankylosing spondylitis. Clin. Biochem., 2012, 45(7-8), 541-546.
[http://dx.doi.org/10.1016/j.clinbiochem.2012.02.007] [PMID: 22382088]
[319]
Souza, P.; Rizzardi, F.; Noleto, G.; Atanazio, M.; Bianchi, O.; Parra, E.R.; Teodoro, W.R.; Carrasco, S.; Velosa, A.P.P.; Fernezlian, S.; Ab’Saber, A.M.; Antonângelo, L.; Takagaki, T.; Schainberg, C.G.; Yoshinari, N.H.; Capelozzi, V.L. Refractory remodeling of the microenvironment by abnormal type V collagen, apoptosis, and immune response in non-small cell lung cancer. Hum. Pathol., 2010, 41(2), 239-248.
[http://dx.doi.org/10.1016/j.humpath.2009.07.018] [PMID: 19828174]
[320]
Parra, E.R.; Bielecki, L.C.; Ribeiro, J.M.F.P.; de Andrade Balsalobre, F.; Teodoro, W.R.; Capelozzi, V.L. Association between decreases in type V collagen and apoptosis in mouse lung chemical carcinogenesis: A preliminary model to study cancer cell behavior. Clinics, 2010, 65(4), 425-432.
[http://dx.doi.org/10.1590/S1807-59322010000400012] [PMID: 20454501]
[321]
Hsu, H.H.; Murasawa, Y.; Qi, P.; Nishimura, Y.; Wang, P.C. Type V collagen fibrils in mouse metanephroi. Biochem. Biophys. Res. Commun., 2013, 441(3), 649-654.
[http://dx.doi.org/10.1016/j.bbrc.2013.10.097] [PMID: 24404584]
[322]
Ijima, H.; Ogata, R.; Murasawa, Y.; Wang, P.C. Albumin production activity of primary rat hepatocytes is improved on type V collagen. J. Biosci. Bioeng., 2010, 109(2), 179-181.
[http://dx.doi.org/10.1016/j.jbiosc.2009.07.017] [PMID: 20129104]
[323]
Franke, K.; Sapudom, J.; Kalbitzer, L.; Anderegg, U.; Pompe, T. Topologically defined composites of collagen types I and V as in vitro cell culture scaffolds. Acta Biomater., 2014, 10(6), 2693-2702.
[http://dx.doi.org/10.1016/j.actbio.2014.02.036] [PMID: 24590159]
[324]
Furuto, D.K.; Gay, R.E.; Stewart, T.E.; Miller, E.J.; Gay, S. Immunolocalization of types V and XI collagen in cartilage using monoclonal antibodies. Matrix, 1991, 11(2), 144-149.
[http://dx.doi.org/10.1016/S0934-8832(11)80218-0] [PMID: 1712894]
[325]
Ziats, N.P.; Anderson, J.M. Human vascular endothelial cell attachment and growth inhibition by type V collagen. J. Vasc. Surg., 1993, 17(4), 710-718.
[http://dx.doi.org/10.1016/0741-5214(93)90115-3] [PMID: 8464090]
[326]
Tsuzaki, M.; Yamauchi, M.; Mechanic, G.L. Bovine dental pulp collagens: Characterization of types III and V collagen. Arch. Oral Biol., 1990, 35(3), 195-200.
[http://dx.doi.org/10.1016/0003-9969(90)90055-F] [PMID: 2112377]
[327]
Zaffiri, L.; Shah, R.J.; Stearman, R.S.; Rothhaar, K.; Emtiazjoo, A.M.; Yoshimoto, M.; Fisher, A.J.; Mickler, E.A.; Gartenhaus, M.D.; Cohort, L.T.O.G.; Diamond, J.M.; Geraci, M.W.; Christie, J.D.; Wilkes, D.S. Collagen type-V is a danger signal associated with primary graft dysfunction in lung transplantation. Transpl. Immunol., 2019, 56, 101224.
[http://dx.doi.org/10.1016/j.trim.2019.101224] [PMID: 31325493]
[328]
Iwahashi, M.; Muragaki, Y. Increased type I and V collagen expression in uterine leiomyomas during the menstrual cycle. Fertil. Steril., 2011, 95(6), 2137-2139.
[http://dx.doi.org/10.1016/j.fertnstert.2010.12.028] [PMID: 21215393]
[329]
Berchtold, S.; Grunwald, B.; Kruger, A.; Reithmeier, A.; Hahl, T.; Cheng, T.; Feuchtinger, A.; Born, D.; Erkan, M.; Kleeff, J.; Esposito, I. Collagen type V promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Cancer Lett., 2015, 356(Part B), 721-732.
[http://dx.doi.org/10.1016/j.canlet.2014.10.020]
[330]
Braun, R.K.; Martin, A.; Shah, S.; Iwashima, M.; Medina, M.; Byrne, K.; Sethupathi, P.; Wigfield, C.H.; Brand, D.D.; Love, R.B. Inhibition of bleomycin-induced pulmonary fibrosis through pretreatment with collagen type V. J. Heart Lung Transplant., 2010, 29(8), 873-880.
[http://dx.doi.org/10.1016/j.healun.2010.03.012] [PMID: 20471860]
[331]
Breuls, R.G.M.; Klumpers, D.D.; Everts, V.; Smit, T.H. Collagen type V modulates fibroblast behavior dependent on substrate stiffness. Biochem. Biophys. Res. Commun., 2009, 380(2), 425-429.
[http://dx.doi.org/10.1016/j.bbrc.2009.01.110] [PMID: 19280692]
[332]
Kerkvliet, E.H.M.; Jansen, I.C.; Schoenmaker, T.; Beertsen, W.; Everts, V. Collagen type I, III and V differently modulate synthesis and activation of matrix metalloproteinases by cultured rabbit periosteal fibroblasts. Matrix Biol., 2003, 22(3), 217-227.
[http://dx.doi.org/10.1016/S0945-053X(03)00035-0] [PMID: 12853032]
[333]
Toumpoulis, I.K.; Oxford, J.T.; Cowan, D.B.; Anagnostopoulos, C.E.; Rokkas, C.K.; Chamogeorgakis, T.P.; Angouras, D.C.; Shemin, R.J.; Navab, M.; Ericsson, M.; Federman, M.; Levitsky, S.; McCully, J.D. Differential expression of collagen type V and XI alpha-1 in human ascending thoracic aortic aneurysms. Ann. Thorac. Surg., 2009, 88(2), 506-513.
[http://dx.doi.org/10.1016/j.athoracsur.2009.04.030] [PMID: 19632402]
[334]
Bronckers, A.L.J.J.; Gay, S.; Lyaruu, D.M.; Gay, R.E.; Miller, E.J. Localization of type V collagen with monoclonal antibodies in developing dental and peridental tissues of the rat and hamster. Coll. Relat. Res., 1986, 6(1), 1-13.
[http://dx.doi.org/10.1016/S0174-173X(86)80029-2] [PMID: 3720272]
[335]
Burrows, N.P.; Nicholls, A.C.; Yates, J.R.W.; Gatward, G.; Sarathachandra, P.; Richards, A.; Pope, F.M. The gene encoding collagen alpha1(V)(COL5A1) is linked to mixed Ehlers-Danlos syndrome type I/II. J. Invest. Dermatol., 1996, 106(6), 1273-1276.
[http://dx.doi.org/10.1111/1523-1747.ep12348978] [PMID: 8752669]
[336]
Adachi, E.; Hayashi, T.; Hashimoto, P.H. Immunoelectron microscopical evidence that type V collagen is a fibrillar collagen: Importance for an aggregating capability of the preparation for reconstituting banding fibrils. Matrix, 1989, 9(3), 232-237.
[http://dx.doi.org/10.1016/S0934-8832(89)80055-1] [PMID: 2779483]
[337]
Underwood, P.A.; Bean, P.A.; Whitelock, J.M. Inhibition of endothelial cell adhesion and proliferation by extracellular matrix from vascular smooth muscle cells: Role of type V collagen. Atherosclerosis, 1998, 141(1), 141-152.
[http://dx.doi.org/10.1016/S0021-9150(98)00164-6] [PMID: 9863547]
[338]
Yaoi, Y.; Hashimoto, K.; Takahara, K.; Kato, I. Insulin binds to type V collagen with retention of mitogenic activity. Exp. Cell Res., 1991, 194(2), 180-185.
[http://dx.doi.org/10.1016/0014-4827(91)90351-T] [PMID: 1709100]
[339]
Xu, X.; Wang, Z.; Zan, T. A case of Ehlers–Danlos syndrome presenting with widened atrophic scars of forehead, elbow, knee, and pretibial area. Medicine (Baltimore), 2019, 98(37), e17138.
[http://dx.doi.org/10.1097/MD.0000000000017138] [PMID: 31517854]
[340]
Gallorini, M.; Carradori, S. Understanding collagen interactions and their targeted regulation by novel drugs. Expert Opin. Drug Discov., 2021, 16(11), 1239-1260.
[http://dx.doi.org/10.1080/17460441.2021.1933426] [PMID: 34034595]
[341]
An, B.; Lin, Y.S.; Brodsky, B. Collagen interactions: Drug design and delivery. Adv. Drug Deliv. Rev., 2016, 97(97), 69-84.
[http://dx.doi.org/10.1016/j.addr.2015.11.013] [PMID: 26631222]
[342]
Douglas, T.; Heinemann, S.; Mietrach, C.; Hempel, U.; Bierbaum, S.; Scharnweber, D.; Worch, H. Interactions of collagen types I and II with chondroitin sulfates A-C and their effect on osteoblast adhesion. Biomacromolecules, 2007, 8(4), 1085-1092.
[http://dx.doi.org/10.1021/bm0609644] [PMID: 17378603]
[343]
Chiang, T.M.; Seyer, J.M.; Kang, A.H. Collagen-platelet interaction: Separate receptor sites for types I and III collagen. Thromb. Res., 1993, 71(6), 443-456.
[http://dx.doi.org/10.1016/0049-3848(93)90118-8] [PMID: 8134904]
[344]
Okano-Kosugi, H.; Matsushita, O.; Asada, S.; Herr, A.B.; Kitagawa, K.; Koide, T. Development of a high-throughput screening system for the compounds that inhibit collagen–protein interactions. Anal. Biochem., 2009, 394(1), 125-131.
[http://dx.doi.org/10.1016/j.ab.2009.07.017] [PMID: 19615329]
[345]
Huang, C.J.; Chien, Y.L.; Ling, T.Y.; Cho, H.C.; Yu, J.; Chang, Y.C. The influence of collagen film nanostructure on pulmonary stem cells and collagen–stromal cell interactions. Biomaterials, 2010, 31(32), 8271-8280.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.038] [PMID: 20673998]
[346]
Mady, M.M. Biophysical studies on collagen-lipid interaction. J. Biosci. Bioeng., 2007, 104(2), 144-148.
[http://dx.doi.org/10.1263/jbb.104.144] [PMID: 17884660]
[347]
Kandamchira, A.; Kanungo, I.; Fathima, N.N. Dielectric behaviour and conformational stability of collagen on interaction with DNA. Int. J. Biol. Macromol., 2012, 51(4), 635-639.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.06.039] [PMID: 22771927]
[348]
Deshpande, A.S.; Fang, P.A.; Simmer, J.P.; Margolis, H.C.; Beniash, E. Amelogenin-collagen interactions regulate calcium phosphate mineralization in vitro. J. Biol. Chem., 2010, 285(25), 19277-19287.
[http://dx.doi.org/10.1074/jbc.M109.079939] [PMID: 20404336]
[349]
Vidal, C.M.P.; Zhu, W.; Manohar, S.; Aydin, B.; Keiderling, T.A.; Messersmith, P.B.; Bedran-Russo, A.K. Collagen-collagen interactions mediated by plant-derived proanthocyanidins: A spectroscopic and atomic force microscopy study. Acta Biomater., 2016, 41, 110-118.
[http://dx.doi.org/10.1016/j.actbio.2016.05.026] [PMID: 27208639]
[350]
Hassani, A.; Khoshfetrat, A.B.; Rahbarghazi, R.; Sakai, S. Collagen and nano-hydroxyapatite interactions in alginate-based microcapsule provide an appropriate osteogenic microenvironment for modular bone tissue formation. Carbohydr. Polym., 2022, 277, 118807.
[http://dx.doi.org/10.1016/j.carbpol.2021.118807] [PMID: 34893227]
[351]
Chen, E.A.; Lin, Y.S. Using synthetic peptides and recombinant collagen to understand DDR–collagen interactions. Biochim. Biophys. Acta Mol. Cell Res., 2019, 1866(11), 118458.
[http://dx.doi.org/10.1016/j.bbamcr.2019.03.005] [PMID: 30880148]
[352]
Zhang, H.; Chen, X.; Xue, P.; Ma, X.; Li, J.; Zhang, J. FN1 promotes chondrocyte differentiation and collagen production via TGF-β/PI3K/Akt pathway in mice with femoral fracture. Gene, 2021, 769, 145253.
[http://dx.doi.org/10.1016/j.gene.2020.145253] [PMID: 33098939]
[353]
Tang, J.B.; Xu, Y.; Ding, F.; Wang, X.T. Expression of genes for collagen production and NF-κB gene activation of in vivo healing flexor tendons. J. Hand Surg. Am., 2004, 29(4), 564-570.
[http://dx.doi.org/10.1016/j.jhsa.2003.12.019] [PMID: 15249077]
[354]
Jimi, S.; Saku, K.; Uesugi, N.; Sakata, N.; Takebayashi, S. Oxidized low density lipoprotein stimulates collagen production in cultured arterial smooth muscle cells. Atherosclerosis, 1995, 116(1), 15-26.
[355]
Zhou, R.; Wang, C.; Wen, C.; Wang, D. miR-21 promotes collagen production in keloid via Smad7. Burns, 2017, 43(3), 555-561.
[http://dx.doi.org/10.1016/j.burns.2016.09.013] [PMID: 27717618]
[356]
Marin, S.; Godet, I.; Nidadavolu, L.S.; Tian, J.; Dickinson, L.E.; Walston, J.D.; Gilkes, D.M.; Abadir, P.M. Valsartan and sacubitril combination treatment enhances collagen production in older adult human skin cells. Exp. Gerontol., 2022, 165, 111835.
[http://dx.doi.org/10.1016/j.exger.2022.111835] [PMID: 35598697]
[357]
Ono-Ohmachi, A.; Ueno, H.M.; Morita, Y.; Kato, K. Collagen production ability of milk basic protein is dependent on stimulatory effect of transforming growth factor-β1 and β2. Int. Dairy J., 2019, 97, 71-75.
[http://dx.doi.org/10.1016/j.idairyj.2019.05.019]
[358]
Lee, M.J.; Agrahari, G.; Kim, H.Y.; An, E.J.; Chun, K.H.; Kang, H.; Kim, Y.S.; Bang, C.W.; Tak, L.J.; Kim, T.Y. Extracellular superoxide dismutase prevents skin aging by promoting collagen production through the activation of AMPK and Nrf2?HO-1 cascades. J. Invest. Dermatol., 2021, 141(10), 2344-2353.e7.
[http://dx.doi.org/10.1016/j.jid.2021.02.757] [PMID: 33836179]
[359]
Verma, S.K.; Yaghoobi, H.; Slaine, P.; Baldwin, S.J.; Rainey, J.K.; Kreplak, L.; Frampton, J.P. Multi-pin contact drawing enables production of anisotropic collagen fiber substrates for alignment of fibroblasts and monocytes. Colloids Surf. B Biointerfaces, 2022, 215, 112525.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112525] [PMID: 35500531]
[360]
Ohguchi, K.; Banno, Y.; Akao, Y.; Nozawa, Y. Involvement of phospholipase D1 in collagen type I production of human dermal fibroblasts. Biochem. Biophys. Res. Commun., 2006, 348(4), 1398-1402.
[http://dx.doi.org/10.1016/j.bbrc.2006.08.002] [PMID: 16919239]
[361]
Lu, J.; Liu, L.; Zhu, Y.; Zhang, Y.; Wu, Y.; Wang, G.; Zhang, D.; Xu, J.; Xie, X.; Ke, R.; Han, D.; Li, S.; Feng, W.; Xie, M.; Liu, Y.; Fang, P.; Shi, H.; He, P.; Liu, Y.; Sun, X.; Li, M. PPAR-γ inhibits IL-13-induced collagen production in mouse airway fibroblasts. Eur. J. Pharmacol., 2014, 737, 133-139.
[http://dx.doi.org/10.1016/j.ejphar.2014.05.008] [PMID: 24858619]
[362]
Nigdelioglu, R.; Hamanaka, R.B.; Meliton, A.Y.; O’Leary, E.; Witt, L.J.; Cho, T.; Sun, K.; Bonham, C.; Wu, D.; Woods, P.S.; Husain, A.N.; Wolfgeher, D.; Dulin, N.O.; Chandel, N.S.; Mutlu, G.M. Transforming growth factor (TGF)-β promotes de novo serine synthesis for collagen production. J. Biol. Chem., 2016, 291(53), 27239-27251.
[http://dx.doi.org/10.1074/jbc.M116.756247] [PMID: 27836973]
[363]
Lu, J.; Shi, J.; Li, M.; Gui, B.; Fu, R.; Yao, G.; Duan, Z.; Lv, Z.; Yang, Y.; Chen, Z.; Jia, L.; Tian, L. Activation of AMPK by metformin inhibits TGF-β-induced collagen production in mouse renal fibroblasts. Life Sci., 2015, 127, 59-65.
[http://dx.doi.org/10.1016/j.lfs.2015.01.042] [PMID: 25744403]
[364]
Saito, T.; Hara, M.; Kumamaru, H.; Kobayakawa, K.; Yokota, K.; Kijima, K.; Yoshizaki, S.; Harimaya, K.; Matsumoto, Y.; Kawaguchi, K.; Hayashida, M.; Inagaki, Y.; Shiba, K.; Nakashima, Y.; Okada, S. Macrophage infiltration is causative factor for ligamentum flavum hypertrophy through the activation of collagen production in fibroblasts. Am. J. Pathol., 2017, 187(12), 2831-2840.
[http://dx.doi.org/10.1016/j.ajpath.2017.08.020] [PMID: 28935572]
[365]
Lin, P.S.; Chang, H.H.; Yeh, C.Y.; Chang, M.C.; Chan, C.P.; Kuo, H.Y.; Liu, H.C.; Liao, W.C.; Jeng, P.Y.; Yeung, S.Y.; Jeng, J.H. Transforming growth factor beta 1 increases collagen content, and stimulates procollagen I and tissue inhibitor of metalloproteinase-1 production of dental pulp cells: Role of MEK/ERK and activin receptor-like kinase-5/Smad signaling. J. Formos. Med. Assoc., 2017, 116(5), 351-358.
[http://dx.doi.org/10.1016/j.jfma.2016.07.014] [PMID: 27720345]
[366]
Kim, H.J.; Song, S.B.; Choi, J.M.; Kim, K.M.; Cho, B.K.; Cho, D.H.; Park, H.J. IL-18 downregulates collagen production in human dermal fibroblasts via the ERK pathway. J. Invest. Dermatol., 2010, 130(3), 706-715.
[http://dx.doi.org/10.1038/jid.2009.302] [PMID: 19865096]
[367]
Maemoto, T.; Kitai, Y.; Takahashi, R.; Shoji, H.; Yamada, S.; Takei, S.; Ito, D.; Muromoto, R.; Kashiwakura, J.; Handa, H.; Hashimoto, A.; Hashimoto, S.; Ose, T.; Oritani, K.; Matsuda, T. A peptide derived from adaptor protein STAP-2 inhibits tumor progression by downregulating epidermal growth factor receptor signaling. J. Biol. Chem., 2023, 299(1), 102724.
[http://dx.doi.org/10.1016/j.jbc.2022.102724] [PMID: 36410436]
[368]
Wisniewski, D.J.; Liyasova, M.S.; Korrapati, S.; Zhang, X.; Ratnayake, S.; Chen, Q.; Gilbert, S.F.; Catalano, A.; Voeller, D.; Meerzaman, D.; Guha, U.; Porat-Shliom, N.; Annunziata, C.M.; Lipkowitz, S. Flotillin-2 regulates epidermal growth factor receptor activation, degradation by Cbl-mediated ubiquitination, and cancer growth. J. Biol. Chem., 2023, 299(1), 102766.
[http://dx.doi.org/10.1016/j.jbc.2022.102766] [PMID: 36470425]
[369]
Lindsey, S.; Langhans, S.A. Epidermal growth factor signaling in transformed cells. Int. Rev. Cell Mol. Biol., 2015, 314, 1-41.
[http://dx.doi.org/10.1016/bs.ircmb.2014.10.001] [PMID: 25619714]
[370]
Pascarelli, S.; Merzhakupova, D.; Uechi, G.I.; Laurino, P. Binding of single-mutant epidermal growth factor (EGF) ligands alters the stability of the EGF receptor dimer and promotes growth signaling. J. Biol. Chem., 2021, 297(1), 100872.
[http://dx.doi.org/10.1016/j.jbc.2021.100872] [PMID: 34126069]
[371]
Wong, R.W.C.; Guillaud, L. The role of epidermal growth factor and its receptors in mammalian CNS. Cytokine Growth Factor Rev., 2004, 15(2-3), 147-156.
[http://dx.doi.org/10.1016/j.cytogfr.2004.01.004] [PMID: 15110798]
[372]
Ledeganck, K.J.; den Brinker, M.; Peeters, E.; Verschueren, A.; De Winter, B.Y.; France, A.; Dotremont, H.; Trouet, D. The next generation: Urinary epidermal growth factor is associated with an early decline in kidney function in children and adolescents with type 1 diabetes mellitus. Diabetes Res. Clin. Pract., 2021, 178, 108945.
[http://dx.doi.org/10.1016/j.diabres.2021.108945] [PMID: 34245799]
[373]
Cheng, Y.X.; Xu, W.B.; Dong, W.R.; Zhang, Y.M.; Li, B.W.; Chen, D.Y.; Xiao, Y.; Guo, X.L.; Shu, M.A. Identification and functional analysis of epidermal growth factor receptor (EGFR) from Scylla paramamosain: The first evidence of two EGFR genes in animal and their involvement in immune defense against pathogen infection. Mol. Immunol., 2022, 151, 143-157.
[http://dx.doi.org/10.1016/j.molimm.2022.08.004] [PMID: 36150275]
[374]
Cai, W.Q.; Zeng, L.S.; Wang, L.F.; Wang, Y.Y.; Cheng, J.T.; Zhang, Y.; Han, Z.W.; Zhou, Y.; Huang, S.L.; Wang, X.W.; Peng, X.C.; Xiang, Y.; Ma, Z.; Cui, S.Z.; Xin, H.W. The latest battles between EGFR monoclonal antibodies and resistant tumor cells. Front. Oncol., 2020, 10, 1249.
[http://dx.doi.org/10.3389/fonc.2020.01249] [PMID: 32793499]
[375]
Kitamura, A.; Ishii, K.; Okafuji, K.; Kojima, F.; Bando, T. Epidermal growth factor receptor (EGFR) mutation testing is useful for primary lung cancer diagnosis and appropriate surgical resection: A case series. Respir. Investig., 2022, 60(1), 171-175.
[http://dx.doi.org/10.1016/j.resinv.2021.08.008] [PMID: 34544656]
[376]
Deming, L.; Ziwei, L.; Xueqiang, G.; Cunshuan, X. Restoration of CpG methylation in the Egf promoter region during rat liver regeneration. Cell J., 2015, 17(3), 576-581.
[http://dx.doi.org/10.22074/cellj.20155.20] [PMID: 26464832]
[377]
Tao, K.; Bai, X.Z.; Zhang, Z.F.; Shi, J.H.; Hu, X.L.; Tang, C.W.; Hu, D.H.; Han, J.T. Construction of the tissue engineering seed cell (HaCaT–EGF) and analysis of its biological characteristics. Asian Pac. J. Trop. Med., 2013, 6(11), 893-896.
[http://dx.doi.org/10.1016/S1995-7645(13)60159-5] [PMID: 24083586]
[378]
Rayego-Mateos, S.; Rodrigues-Diez, R.; Morgado-Pascual, J.L.; Valentijn, F.; Valdivielso, J.M.; Goldschmeding, R.; Ruiz-Ortega, M. Role of epidermal growth factor receptor (EGFR) and its ligands in kidney inflammation and damage. Mediat. Inflamm., 2018, 2018, 8739473.
[http://dx.doi.org/10.1155/2018/8739473]
[379]
Ríos-Silva, M.; Huerta, M.; Mendoza-Cano, O.; Murillo-Zamora, E.; Cárdenas, Y.; Bricio-Barrios, J.A.; Diaz, Y.; Ibarra, I.; Trujillo, X. Urinary epidermal growth factor in kidney disease: A systematic review. Nefrologia, 2022.
[http://dx.doi.org/10.1016/j.nefro.2022.10.003]
[380]
Liu, Y.; Li, P.; Jiang, T.; Li, Y.; Wang, Y.; Cheng, Z. Epidermal growth factor receptor in asthma: A promising therapeutic target? Respir. Med., 2023, 207, 107117.
[http://dx.doi.org/10.1016/j.rmed.2023.107117] [PMID: 36626942]
[381]
Wienen, F.; Nilson, R.; Allmendinger, E.; Graumann, D.; Fiedler, E.; Bosse-Doenecke, E.; Kochanek, S.; Krutzke, L. Affilin-based retargeting of adenoviral vectors to the epidermal growth factor receptor. Biomat. Adv., 2023, 144, 213208.
[http://dx.doi.org/10.1016/j.bioadv.2022.213208] [PMID: 36442453]
[382]
Brewitz, L.; Onisko, B.C.; Schofield, C.J. Combined proteomic and biochemical analyses redefine the consensus sequence requirement for epidermal growth factor-like domain hydroxylation. J. Biol. Chem., 2022, 298(8), 102129.
[http://dx.doi.org/10.1016/j.jbc.2022.102129]
[383]
González, L.; Díaz, M.E.; Miquet, J.G.; Sotelo, A.I.; Dominici, F.P. Growth hormone modulation of hepatic epidermal growth factor receptor signaling. Trends Endocrinol. Metab., 2021, 32(6), 403-414.
[http://dx.doi.org/10.1016/j.tem.2021.03.004] [PMID: 33838976]
[384]
Jayaswamy, P.K.; Vijaykrishnaraj, M.; Patil, P.; Alexander, L.M.; Kellarai, A.; Shetty, P. Implicative role of epidermal growth factor receptor and its associated signaling partners in the pathogenesis of Alzheimer’s disease. Ageing Res. Rev., 2023, 83, 101791.
[http://dx.doi.org/10.1016/j.arr.2022.101791] [PMID: 36403890]
[385]
Decker, S.; Taschauer, A.; Geppl, E.; Pirhofer, V.; Schauer, M.; Pöschl, S.; Kopp, F.; Richter, L.; Ecker, G.F.; Sami, H.; Ogris, M. Structure-based peptide ligand design for improved epidermal growth factor receptor targeted gene delivery. Eur. J. Pharm. Biopharm., 2022, 176, 211-221.
[http://dx.doi.org/10.1016/j.ejpb.2022.05.004] [PMID: 35584718]
[386]
Lai-Kwon, J.; Tiu, C.; Pal, A.; Khurana, S.; Minchom, A. Moving beyond epidermal growth factor receptor resistance in metastatic non-small cell lung cancer - a drug development perspective. Crit. Rev. Oncol. Hematol., 2021, 159, 103225.
[http://dx.doi.org/10.1016/j.critrevonc.2021.103225] [PMID: 33482349]
[387]
Orofiamma, L.A.; Vural, D.; Antonescu, C.N. Control of cell metabolism by the epidermal growth factor receptor. Biochim. Biophys. Acta Mol. Cell Res., 2022, 1869(12), 119359.
[http://dx.doi.org/10.1016/j.bbamcr.2022.119359] [PMID: 36089077]
[388]
Sun, W.; Shahrajabian, M.H. Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health. Molecules, 2023, 28(4), 1845.
[http://dx.doi.org/10.3390/molecules28041845] [PMID: 36838831]
[389]
Shahrajabian, M.H.; Petropoulos, S.A.; Sun, W. Survey of the influences of microbial biostimulants on horticultural crops: Case studies and successful paradigms. Horticulturae, 2023, 9(2), 193.
[http://dx.doi.org/10.3390/horticulturae9020193]
[390]
Shahrajabian, M.H.; Sun, W. Assessment of wine quality, traceability and detection of grapes wine, detection of harmful substances in alcohol and liquor composition analysis. Lett. Drug Des. Discov., 2023, •••, 20.
[http://dx.doi.org/10.2174/1570180820666230228115450]
[391]
Sun, W.; Shahrajabian, M.H. Survey on multi-omics and multi-omics data analysis, integration and application. Curr. Pharm. Anal., 2023, 19(4), 267-281.
[http://dx.doi.org/10.2174/1573412919666230406100948]
[392]
Shahrajabian, M.H.; Sun, W. The importance of salicylic acid, humic acid and fulvic acid on crop production. Lett. Drug Des. Discov., 2023, 20(20), 1-16.
[http://dx.doi.org/10.2174/1570180820666230411102209]
[393]
Sun, W.; Shahrajabian, M.H. Various techniques for molecular and rapid detection of infectious and epidemic diseases. Lett. Org. Chem., 2023, 20(9), 779-801.
[http://dx.doi.org/10.2174/1570178620666230331095720]
[394]
Shahrajabian, M.H.; Sun, W.; Cui, H.; Kuang, Y.; Zhang, H. Heterologous expression and function of cholesterol oxidase: A review. Protein Pept. Lett., 2023, 30.
[http://dx.doi.org/10.2174/0929866530666230525162545] [PMID: 37231716]
[395]
Sun, W.; Shahrajabian, M.H. The golden spice for life: Turmeric with the pharmacological benefits of curcuminoids components, including curcumin, bisdemethoxycurcumin, and demethoxycurcumin. Curr. Org. Synth., 2023, 20.
[http://dx.doi.org/10.2174/1570179420666230607124949] [PMID: 37287298]
[396]
Sun, W.; Shahrajabian, M.H. A friendly strategy for an organic life by considering Syrian bean caper (Zygophyllum fabago L.), and parsnip (Pastinaca sativa L.). Curr. Nutr. Food Sci., 2023, 19(9), 1-5.
[http://dx.doi.org/10.2174/1573401319666230207093757]
[397]
Shahrajabian, M.H.; Sun, W. Kashk and doogh: The yogurt-based national persian products. Curr. Nutr. Food Sci., 2023, 19(9), 1-6.
[http://dx.doi.org/10.2174/1573401319666230228115432]