Pyrrolo[2,3-D]Pyrimidines as EGFR and VEGFR Kinase Inhibitors: A Comprehensive SAR Review

Page: [5918 - 5936] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Tyrosine kinases are implicated in a wide array of cellular physiological processes, including cell signaling. The discovery of the BCR-ABL tyrosine kinase inhibitor imatinib and its FDA approval in 2001 paved the way for the development of small molecule chemical entities of diverse structural backgrounds as tyrosine kinase inhibitors for the treatment of various ailments. Two of the most prominent tyrosine kinases as drug targets are the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptor (VEGFR), as evidenced by the clinical success of their many inhibitors in the drug market. Among several other physiological roles, EGFR regulates epithelial tissue development and homeostasis, while VEGFR regulates tumor-induced angiogenesis. The pyrrolo[2,3-d]pyrimidine nucleus represents a deaza-isostere of adenine, the nitrogenous base of ATP. The recent introduction of many pyrrolo[2,3-d]pyrimidines to the drug market as tyrosine kinase inhibitors makes them a hot topic in the medicinal chemistry research area at the present time. This review article comprehensively sheds light on the structure-activity relationship (SAR) of pyrrolo[2,3-d]pyrimidines as EGFR and VEGFR tyrosine kinase inhibitors, aiming to provide help medicinal chemists in the design of future pyrrolopyrimidine kinase inhibitors.

[1]
Cohen, P.; Cross, D.; Jänne, P.A. Kinase drug discovery 20 years after imatinib: Progress and future directions. Nat. Rev. Drug Discov., 2021, 20(7), 551-569.
[http://dx.doi.org/10.1038/s41573-021-00195-4] [PMID: 34002056]
[2]
Ye, H.; Wang, L.; Ma, L.; Ionov, M.; Qiao, G.; Huang, J.; Cheng, L.; Zhang, Y.; Yang, X.; Cao, S.; Lin, X. Protein kinases as therapeutic targets to develop anticancer drugs with natural alkaloids. Frontiers in Bioscience-Landmark, 2021, 26(11), 1349-1361.
[http://dx.doi.org/10.52586/5028] [PMID: 34856772]
[3]
Zarrin, A.A.; Bao, K.; Lupardus, P.; Vucic, D. Kinase inhibition in autoimmunity and inflammation. Nat. Rev. Drug Discov., 2021, 20(1), 39-63.
[http://dx.doi.org/10.1038/s41573-020-0082-8] [PMID: 33077936]
[4]
Amin, F.; Ahmed, A.; Feroz, A.; Khaki, P.S.S.; Khan, M.S.; Tabrez, S.; Zaidi, S.K.; Abdulaal, W.H.; Shamsi, A.; Khan, W.; Bano, B. An update on the association of protein kinases with cardiovascular diseases. Curr. Pharm. Des., 2019, 25(2), 174-183.
[http://dx.doi.org/10.2174/1381612825666190312115140] [PMID: 30864507]
[5]
Roy, S.M.; Grum-Tokars, V.L.; Schavocky, J.P.; Saeed, F.; Staniszewski, A.; Teich, A.F.; Arancio, O.; Bachstetter, A.D.; Webster, S.J.; Van Eldik, L.J.; Minasov, G.; Anderson, W.F.; Pelletier, J.C.; Watterson, D.M. Targeting human central nervous system protein kinases: An isoform selective p38αMAPK inhibitor that attenuates disease progression in Alzheimer’s disease mouse models. ACS Chem. Neurosci., 2015, 6(4), 666-680.
[http://dx.doi.org/10.1021/acschemneuro.5b00002] [PMID: 25676389]
[6]
King, G.L.; Das-Evcimen, N. Role of protein kinase C in diabetic complications. Expert Rev. Endocrinol. Metab., 2010, 5(1), 77-88.
[http://dx.doi.org/10.1586/eem.09.74] [PMID: 30934385]
[7]
Attwood, M.M.; Fabbro, D.; Sokolov, A.V.; Knapp, S.; Schiöth, H.B. Trends in kinase drug discovery: Targets, indications and inhibitor design. Nat. Rev. Drug Discov., 2021, 20(11), 839-861.
[http://dx.doi.org/10.1038/s41573-021-00252-y] [PMID: 34354255]
[8]
Cicenas, J.; Zalyte, E.; Bairoch, A.; Gaudet, P. Kinases and cancer. Cancers (Basel), 2018, 10(3), 63.
[http://dx.doi.org/10.3390/cancers10030063] [PMID: 29494549]
[9]
Lahiry, P.; Torkamani, A.; Schork, N.J.; Hegele, R.A. Kinase mutations in human disease: Interpreting genotypephenotype relationships. Nat. Rev. Genet., 2010, 11(1), 60-74.
[http://dx.doi.org/10.1038/nrg2707] [PMID: 20019687]
[10]
Seok, S.H. Structural insights into protein regulation by phosphorylation and substrate recognition of protein kinases/phosphatases. Life (Basel), 2021, 11(9), 957.
[http://dx.doi.org/10.3390/life11090957] [PMID: 34575106]
[11]
Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase - Role and significance in Cancer. Int. J. Med. Sci., 2004, 1(2), 101-115.
[http://dx.doi.org/10.7150/ijms.1.101] [PMID: 15912202]
[12]
Choura, M.; Rebaï, A. Receptor tyrosine kinases: From biology to pathology. J. Recept. Signal Transduct. Res., 2011, 31(6), 387-394.
[http://dx.doi.org/10.3109/10799893.2011.625425] [PMID: 22040163]
[13]
Saraon, P.; Pathmanathan, S.; Snider, J.; Lyakisheva, A.; Wong, V.; Stagljar, I. Receptor tyrosine kinases and cancer: Oncogenic mechanisms and therapeutic approaches. Oncogene, 2021, 40(24), 4079-4093.
[http://dx.doi.org/10.1038/s41388-021-01841-2] [PMID: 34079087]
[14]
Lee, N.Y.; Hazlett, T.L.; Koland, J.G. Structure and dynamics of the epidermal growth factor receptor C-terminal phosphorylation domain. Protein Sci., 2006, 15(5), 1142-1152.
[http://dx.doi.org/10.1110/ps.052045306] [PMID: 16597832]
[15]
Zhou, Q.; Wu, L.; Hu, P.; An, T.; Zhou, J.; Zhang, L.; Liu, X.Q.; Luo, F.; Zheng, X.; Cheng, Y.; Yang, N.; Li, J.; Feng, J.; Han, B.; Song, Y.; Wang, K.; Zhang, L.; Fang, J.; Zhao, H.; Shu, Y.; Lin, X.Y.; Chen, Z.; Gan, B.; Xu, W.H.; Tang, W.; Zhang, X.; Yang, J.J.; Xu, X.; Wu, Y.L. A novel third-generation EGFR tyrosine kinase inhibitor abivertinib for EGFR T790M-mutant non-small cell lung cancer: A multicenter phase I/II study. Clin. Cancer Res., 2022, 28(6), 1127-1135.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-2595] [PMID: 34740925]
[16]
Kiselyov, A.; Balakin, K.V.; Tkachenko, S.E. VEGF/VEGFR signalling as a target for inhibiting angiogenesis. Expert Opin. Investig. Drugs, 2007, 16(1), 83-107.
[http://dx.doi.org/10.1517/13543784.16.1.83] [PMID: 17155856]
[17]
Kerbel, R.S. Tumor angiogenesis. N. Engl. J. Med., 2008, 358(19), 2039-2049.
[http://dx.doi.org/10.1056/NEJMra0706596] [PMID: 18463380]
[18]
Shahi, P.K.; Pineda, I.F. Tumoral angiogenesis: Review of the literature. Cancer Invest., 2008, 26(1), 104-108.
[http://dx.doi.org/10.1080/07357900701662509] [PMID: 18181052]
[19]
Otrock, Z.; Mahfouz, R.; Makarem, J.; Shamseddine, A. Understanding the biology of angiogenesis: Review of the most important molecular mechanisms. Blood Cells Mol. Dis., 2007, 39(2), 212-220.
[http://dx.doi.org/10.1016/j.bcmd.2007.04.001] [PMID: 17553709]
[20]
Carmeliet, P.; Collen, D. Molecular basis of angiogenesis. Role of VEGF and VE-cadherin. Ann. N. Y. Acad. Sci., 2000, 902(1), 249-264.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06320.x] [PMID: 10865845]
[21]
Cébe-Suarez, S.; Zehnder-Fjällman, A.; Ballmer-Hofer, K. The role of VEGF receptors in angiogenesis; complex partnerships. Cell. Mol. Life Sci., 2006, 63(5), 601-615.
[http://dx.doi.org/10.1007/s00018-005-5426-3] [PMID: 16465447]
[22]
Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. Oncology, 2005, 69(Suppl. 3), 4-10.
[http://dx.doi.org/10.1159/000088478] [PMID: 16301830]
[23]
Ferrara, N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int., 1999, 56(3), 794-814.
[http://dx.doi.org/10.1046/j.1523-1755.1999.00610.x] [PMID: 10469350]
[24]
Hicklin, D.J.; Ellis, L.M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol., 2005, 23(5), 1011-1027.
[http://dx.doi.org/10.1200/JCO.2005.06.081] [PMID: 15585754]
[25]
Ferrara, N. The Role of VEGF in the Regulation of Physiological and Pathological Angiogenesis. Mechanisms of Angiogenesis; Clauss, M.; Breier, G., Eds.; Birkhäuser Basel: Basel, 2005, pp. 209-231.
[http://dx.doi.org/10.1007/3-7643-7311-3_15]
[26]
Liu, Y.; Li, Y.; Wang, Y.; Lin, C.; Zhang, D.; Chen, J.; Ouyang, L.; Wu, F.; Zhang, J.; Chen, L. Recent progress on vascular endothelial growth factor receptor inhibitors with dual targeting capabilities for tumor therapy. J. Hematol. Oncol., 2022, 15(1), 89.
[http://dx.doi.org/10.1186/s13045-022-01310-7] [PMID: 35799213]
[27]
Deininger, M.; Buchdunger, E.; Druker, B.J. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood, 2005, 105(7), 2640-2653.
[http://dx.doi.org/10.1182/blood-2004-08-3097] [PMID: 15618470]
[28]
Lydon, N.B.; Druker, B.J. Lessons learned from the development of imatinib. Leuk. Res., 2004, 28(Suppl. 1), 29-38.
[http://dx.doi.org/10.1016/j.leukres.2003.10.002] [PMID: 15036939]
[29]
Araki, T.; Yashima, H.; Shimizu, K.; Aomori, T.; Hashita, T.; Kaira, K.; Nakamura, T.; Yamamoto, K. Review of the treatment of non-small cell lung cancer with gefitinib. Clin. Med. Insights Oncol., 2012, 6, 407-421.
[http://dx.doi.org/10.4137/CMO.S7340]
[30]
Murphy, M.; Stordal, B. Erlotinib or gefitinib for the treatment of relapsed platinum pretreated non-small cell lung cancer and ovarian cancer: A systematic review. Drug Resist. Updat., 2011, 14(3), 177-190.
[http://dx.doi.org/10.1016/j.drup.2011.02.004] [PMID: 21435938]
[31]
Barlési, F.; Tchouhadjian, C.; Doddoli, C.; Villani, P.; Greillier, L.; Kleisbauer, J.P.; Thomas, P.; Astoul, P. Gefitinib (ZD1839, IressaR) in non-small-cell lung cancer: A review of clinical trials from a daily practice perspective. Fundam. Clin. Pharmacol., 2005, 19(3), 385-393.
[http://dx.doi.org/10.1111/j.1472-8206.2005.00323.x] [PMID: 15910663]
[32]
Yang, Z.; Hackshaw, A.; Feng, Q.; Fu, X.; Zhang, Y.; Mao, C.; Tang, J. Comparison of gefitinib, erlotinib and afatinib in non‐small cell lung cancer: A meta‐analysis. Int. J. Cancer, 2017, 140(12), 2805-2819.
[http://dx.doi.org/10.1002/ijc.30691] [PMID: 28295308]
[33]
Wang, Y.; Schmid-Bindert, G.; Zhou, C. Erlotinib in the treatment of advanced non-small cell lung cancer: An update for clinicians. Ther. Adv. Med. Oncol., 2012, 4(1), 19-29.
[http://dx.doi.org/10.1177/1758834011427927] [PMID: 22229045]
[34]
Yang, J.C.H. Afatinib for the treatment of non-small-cell lung cancer with unusual EGFR mutations: A plain language summary. Future Oncol., 2023, 19(4), 291-297.
[http://dx.doi.org/10.2217/fon-2022-0842] [PMID: 36794564]
[35]
Tu, H.Y.; Wu, Y.L. Afatinib for the first-line treatment of EGFR mutation-positive NSCLC in China: A review of clinical data. Future Oncol., 2020, 16(31), 2569-2586.
[http://dx.doi.org/10.2217/fon-2020-0320] [PMID: 32927981]
[36]
Roskoski, R., Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2023 update. Pharmacol. Res., 2023, 187, 106552.
[http://dx.doi.org/10.1016/j.phrs.2022.106552] [PMID: 36403719]
[37]
Jiang, W.; Cai, G.; Hu, P.C.; Wang, Y. Personalized medicine in non-small cell lung cancer: A review from a pharmacogenomics perspective. Acta Pharm. Sin. B, 2018, 8(4), 530-538.
[http://dx.doi.org/10.1016/j.apsb.2018.04.005] [PMID: 30109178]
[38]
Altunel, E.; Roghani, R.S.; Chen, K.Y.; Kim, S.Y.; McCall, S.; Ware, K.E.; Shen, X.; Somarelli, J.A.; Hsu, D.S. Development of a precision medicine pipeline to identify personalized treatments for colorectal cancer. BMC Cancer, 2020, 20(1), 592.
[http://dx.doi.org/10.1186/s12885-020-07090-y] [PMID: 32580713]
[39]
Solassol, I.; Pinguet, F.; Quantin, X. FDA- and EMA-approved tyrosine kinase inhibitors in advanced EGFR-mutated non-small cell lung cancer: Safety, tolerability, plasma concentration monitoring, and management. Biomolecules, 2019, 9(11), 668.
[http://dx.doi.org/10.3390/biom9110668] [PMID: 31671561]
[40]
Westover, D.; Zugazagoitia, J.; Cho, B.C.; Lovly, C.M.; Paz-Ares, L. Mechanisms of acquired resistance to firstand second-generation EGFR tyrosine kinase inhibitors. Ann. Oncol., 2018, 29(Suppl. 1), i10-i19.
[http://dx.doi.org/10.1093/annonc/mdx703] [PMID: 29462254]
[41]
Kim, Y.; Ko, J.; Cui, Z.; Abolhoda, A.; Ahn, J.S.; Ou, S.H.; Ahn, M.J.; Park, K. The EGFR T790M mutation in acquired resistance to an irreversible second-generation EGFR inhibitor. Mol. Cancer Ther., 2012, 11(3), 784-791.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0750] [PMID: 22228822]
[42]
Takeda, M.; Nakagawa, K. First- and second-generation EGFR-TKIs are all replaced to osimertinib in chemo-naive EGFR mutation-positive non-small cell lung cancer? Int. J. Mol. Sci., 2019, 20(1), 146.
[http://dx.doi.org/10.3390/ijms20010146] [PMID: 30609789]
[43]
Sun, D.; Zhu, Y.; Zhu, J.; Tao, J.; Wei, X.; Wo, Y.; Hou, H. Primary resistance to first-generation EGFR-TKIs induced by MDM2 amplification in NSCLC. Mol. Med., 2020, 26(1), 66.
[http://dx.doi.org/10.1186/s10020-020-00193-z] [PMID: 32611363]
[44]
Karachaliou, N.; Fernandez-Bruno, M.; Paulina Bracht, J.; Rosell, R. EGFR first- and second-generation TKIs—there is still place for them in EGFR-mutant NSCLC patients. Transl. Cancer Res., 2019, 8(Suppl. 1), S23-s47.
[45]
Colinet, B.; Van Meerbeeck, J.P.; Cuppens, T.; Vansteenkiste, J.F. Osimertinib in patients with advanced/metastatic epidermal growth factor receptor T790M mutation-positive non-small cell lung cancer - the Belgian ASTRIS data. Acta Clin. Belg., 2021, 76(3), 224-231.
[http://dx.doi.org/10.1080/17843286.2019.1708125] [PMID: 31935159]
[46]
Schmid, S.; Li, J.J.N.; Leighl, N.B. Mechanisms of osimertinib resistance and emerging treatment options. Lung Cancer, 2020, 147, 123-129.
[http://dx.doi.org/10.1016/j.lungcan.2020.07.014] [PMID: 32693293]
[47]
Zalaquett, Z.; Catherine Rita Hachem, M.; Kassis, Y.; Hachem, S.; Eid, R.; Raphael Kourie, H.; Planchard, D. Acquired resistance mechanisms to osimertinib: The constant battle. Cancer Treat. Rev., 2023, 116, 102557.
[http://dx.doi.org/10.1016/j.ctrv.2023.102557] [PMID: 37060646]
[48]
Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer, 2019, 121(9), 725-737.
[http://dx.doi.org/10.1038/s41416-019-0573-8] [PMID: 31564718]
[49]
Roper, N.; Brown, A.L.; Wei, J.S.; Pack, S.; Trindade, C.; Kim, C.; Restifo, O.; Gao, S.; Sindiri, S.; Mehrabadi, F.; El Meskini, R.; Ohler, Z.W.; Maity, T.K.; Venugopalan, A.; Cultraro, C.M.; Akoth, E.; Padiernos, E.; Chen, H.; Kesarwala, A.; Smart, D.K.; Nilubol, N.; Rajan, A.; Piotrowska, Z.; Xi, L.; Raffeld, M.; Panchenko, A.R.; Sahinalp, C.; Hewitt, S.; Hoang, C.D.; Khan, J.; Guha, U. Clonal evolution and heterogeneity of osimertinib acquired resistance mechanisms in EGFR mutant lung cancer. Cell Rep. Med., 2020, 1(1), 100007.
[http://dx.doi.org/10.1016/j.xcrm.2020.100007] [PMID: 32483558]
[50]
Roskoski, R. Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2021 update. Pharmacol. Res., 2021, 165, 105463.
[http://dx.doi.org/10.1016/j.phrs.2021.105463] [PMID: 33513356]
[51]
Yousefian, M.; Ghodsi, R. Structure-activity relationship studies of indolin‐2‐one derivatives as vascular endothelial growth factor receptor inhibitors and anticancer agents. Arch. Pharm. (Weinheim), 2020, 353(12), 2000022.
[http://dx.doi.org/10.1002/ardp.202000022] [PMID: 32885522]
[52]
Keating, G.M. Sorafenib: A review in hepatocellular carcinoma. Target. Oncol., 2017, 12(2), 243-253.
[http://dx.doi.org/10.1007/s11523-017-0484-7] [PMID: 28299600]
[53]
Dhillon, S. Regorafenib: A review in metastatic colorectal cancer. Drugs, 2018, 78(11), 1133-1144.
[http://dx.doi.org/10.1007/s40265-018-0938-y] [PMID: 29943375]
[54]
Heo, Y.A.; Syed, Y.Y. Regorafenib: A review in hepatocellular carcinoma. Drugs, 2018, 78(9), 951-958.
[http://dx.doi.org/10.1007/s40265-018-0932-4] [PMID: 29915898]
[55]
Al-Salama, Z.T.; Syed, Y.Y.; Scott, L.J. Lenvatinib: A review in hepatocellular carcinoma. Drugs, 2019, 79(6), 665-674.
[http://dx.doi.org/10.1007/s40265-019-01116-x] [PMID: 30993651]
[56]
Frampton, J.E. Lenvatinib: A review in refractory thyroid cancer. Target. Oncol., 2016, 11(1), 115-122.
[http://dx.doi.org/10.1007/s11523-015-0416-3] [PMID: 26867945]
[57]
Hatanaka, T.; Naganuma, A.; Kakizaki, S. Lenvatinib for hepatocellular carcinoma: A literature review. Pharmaceuticals (Basel), 2021, 14(1), 36.
[http://dx.doi.org/10.3390/ph14010036] [PMID: 33418941]
[58]
Scott, E.N.; Meinhardt, G.; Jacques, C.; Laurent, D.; Thomas, A.L. Vatalanib: The clinical development of a tyrosine kinase inhibitor of angiogenesis in solid tumours. Expert Opin. Investig. Drugs, 2007, 16(3), 367-379.
[http://dx.doi.org/10.1517/13543784.16.3.367] [PMID: 17302531]
[59]
Musumeci, F.; Sanna, M.; Grossi, G.; Brullo, C.; Fallacara, A.L.; Schenone, S. Pyrrolo[2,3-d]pyrimidines as kinase inhibitors. Curr. Med. Chem., 2017, 24(19), 2059-2085.
[PMID: 28266267]
[60]
Adel, M.; Abouzid, K.A.M. New fluorinated diarylureas linked to pyrrolo[2,3-d]pyrimidine scaffold as VEGFR-2 inhibitors: Molecular docking and biological evaluation. Bioorg. Chem., 2022, 127, 106006.
[http://dx.doi.org/10.1016/j.bioorg.2022.106006] [PMID: 35820328]
[61]
Adel, M.; Serya, R.A.T.; Lasheen, D.S.; Abouzid, K.A.M. Identification of new pyrrolo[2,3-d]pyrimidines as potent VEGFR-2 tyrosine kinase inhibitors: Design, synthesis, biological evaluation and molecular modeling. Bioorg. Chem., 2018, 81, 612-629.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.001] [PMID: 30248512]
[62]
Sivaiah, G.; Raveesha, R.; Benaka Prasad, S.B.; Yogesh Kumar, K.; Raghu, M.S.; Alharti, F.A.; Prashanth, M.K.; Jeon, B.H. Synthesis, biological evaluation and molecular docking studies of novel pyrrolo[2,3-d]pyrimidin-2-amine derivatives as EGFR inhibitors. J. Mol. Struct., 2023, 1275, 134728.
[http://dx.doi.org/10.1016/j.molstruc.2022.134728]
[63]
Liang, X.; Tang, S.; Liu, X.; Liu, Y.; Xu, Q.; Wang, X.; Saidahmatov, A.; Li, C.; Wang, J.; Zhou, Y.; Zhang, Y.; Geng, M.; Huang, M.; Liu, H. Discovery of novel pyrrolo[2,3-d]pyrimidine-based derivatives as potent JAK/HDAC dual inhibitors for the treatment of refractory solid tumors. J. Med. Chem., 2022, 65(2), 1243-1264.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02111] [PMID: 33586434]
[64]
Xie, W.; Yang, S.; Liang, L.; Wang, M.; Zuo, W.; Lei, Y.; Zhang, Y.; Tang, W.; Lu, T.; Chen, Y.; Jiang, Y. Discovery of 2-amino-7-sulfonyl-7 H-pyrrolo[2,3-d]pyrimidine derivatives as potent reversible FGFR inhibitors with gatekeeper mutation tolerance: design, synthesis, and biological evaluation. J. Med. Chem., 2022, 65(24), 16570-16588.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01420] [PMID: 36480917]
[65]
Yuan, X.; Chen, Y.; Zhang, W.; He, J.; Lei, L.; Tang, M.; Liu, J.; Li, M.; Dou, C.; Yang, T.; Yang, L.; Yang, S.; Wei, Y.; Peng, A.; Niu, T.; Xiang, M.; Ye, H.; Chen, L. Identification of pyrrolo[2,3-d]pyrimidine-based derivatives as potent and orally effective fms-like tyrosine receptor kinase 3 (FLT3) inhibitors for treating acute myelogenous leukemia. J. Med. Chem., 2019, 62(8), 4158-4173.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00223] [PMID: 30939008]
[66]
Traxler, P.M.; Furet, P.; Mett, H.; Buchdunger, E.; Meyer, T.; Lydon, N. 4-(Phenylamino)pyrrolopyrimidines: Potent and selective, ATP site directed inhibitors of the EGF-receptor protein tyrosine kinase. J. Med. Chem., 1996, 39(12), 2285-2292.
[http://dx.doi.org/10.1021/jm960118j] [PMID: 8691423]
[67]
Thorarensen, A.; Dowty, M.E.; Banker, M.E.; Juba, B.; Jussif, J.; Lin, T.; Vincent, F.; Czerwinski, R.M.; Casimiro-Garcia, A.; Unwalla, R.; Trujillo, J.I.; Liang, S.; Balbo, P.; Che, Y.; Gilbert, A.M.; Brown, M.F.; Hayward, M.; Montgomery, J.; Leung, L.; Yang, X.; Soucy, S.; Hegen, M.; Coe, J.; Langille, J.; Vajdos, F.; Chrencik, J.; Telliez, J.B. Design of a janus kinase 3 (JAK3) specific inhibitor 1-((2 S, 5 R)-5-((7H-Pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-methylpiperidin-1-yl)prop-2-en-1-one (PF-06651600) Allowing for the interrogation of JAK3 signaling in humans. J. Med. Chem., 2017, 60(5), 1971-1993.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01694] [PMID: 28139931]
[68]
Noji, S.; Hara, Y.; Miura, T.; Yamanaka, H.; Maeda, K.; Hori, A.; Yamamoto, H.; Obika, S.; Inoue, M.; Hase, Y.; Orita, T.; Doi, S.; Adachi, T.; Tanimoto, A.; Oki, C.; Kimoto, Y.; Ogawa, Y.; Negoro, T.; Hashimoto, H.; Shiozaki, M. Discovery of a janus kinase inhibitor bearing a highly three-dimensional spiro scaffold: JTE-052 (delgocitinib) as a new dermatological agent to treat inflammatory skin disorders. J. Med. Chem., 2020, 63(13), 7163-7185.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00450] [PMID: 32511913]
[69]
Vazquez, M.L.; Kaila, N.; Strohbach, J.W.; Trzupek, J.D.; Brown, M.F.; Flanagan, M.E.; Mitton-Fry, M.J.; Johnson, T.A.; TenBrink, R.E.; Arnold, E.P.; Basak, A.; Heasley, S.E.; Kwon, S.; Langille, J.; Parikh, M.D.; Griffin, S.H.; Casavant, J.M.; Duclos, B.A.; Fenwick, A.E.; Harris, T.M.; Han, S.; Caspers, N.; Dowty, M.E.; Yang, X.; Banker, M.E.; Hegen, M.; Symanowicz, P.T.; Li, L.; Wang, L.; Lin, T.H.; Jussif, J.; Clark, J.D.; Telliez, J.B.; Robinson, R.P.; Unwalla, R. Identification of N-cis -3-[Methyl(7 H-pyrrolo[2,3- d]pyrimidin-4-yl)amino]cyclobutylpropane-1-sulfonamide (PF-04965842): A selective JAK1 clinical candidate for the treatment of autoimmune diseases. J. Med. Chem., 2018, 61(3), 1130-1152.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01598] [PMID: 29298069]
[70]
Liang, X.; Wang, C.; Wang, B.; Liu, J.; Qi, S.; Wang, A.; Liu, Q.; Deng, M.; Wang, L.; Liu, J.; Liu, Q. Discovery of Pyrrolo[2,3-d]pyrimidine derivatives as potent and selective colony stimulating factor 1 receptor kinase inhibitors. Eur. J. Med. Chem., 2022, 243, 114782.
[http://dx.doi.org/10.1016/j.ejmech.2022.114782] [PMID: 36179404]
[71]
Mao, W.; Wu, H.; Guo, Q.; Zheng, X.; Wei, C.; Liao, Y.; Shen, L.; Mi, J.; Li, J.; Chen, S.; Qian, W. Synthesis and evaluation of hydrazinyl-containing pyrrolo[2,3-d]pyrimidine series as potent, selective and oral JAK1 inhibitors for the treatment of rheumatoid arthritis. Bioorg. Med. Chem. Lett., 2022, 74, 128905.
[http://dx.doi.org/10.1016/j.bmcl.2022.128905] [PMID: 35870730]
[72]
Tan, H.; Liu, Y.; Gong, C.; Zhang, J.; Huang, J.; Zhang, Q. Synthesis and evaluation of FAK inhibitors with a 5-fluoro-7H-pyrrolo[2,3-d]pyrimidine scaffold as anti-hepatocellular carcinoma agents. Eur. J. Med. Chem., 2021, 223, 113670.
[http://dx.doi.org/10.1016/j.ejmech.2021.113670] [PMID: 34214842]
[73]
Perrone, M.; Giuliani, F.; Sanna, V.; Bruno, S.; Melaccio, A.; Santoro, A.N.; Laface, C.; Maselli, F.M.; Iaia, M.L.; Guarini, C.; Fancellu, A.; Fedele, P. Advances in pharmacotherapies that target the cell cycle for treatment of breast cancer: Where are we at today? Expert Opin. Pharmacother., 2023, 24(8), 887-900.
[http://dx.doi.org/10.1080/14656566.2023.2201373] [PMID: 37038927]
[74]
Tefferi, A. Primary myelofibrosis: 2023 update on diagnosis, risk‐stratification, and management. Am. J. Hematol., 2023, 98(5), 801-821.
[http://dx.doi.org/10.1002/ajh.26857] [PMID: 36680511]
[75]
Langbour, C.; Rene, J.; Goupille, P.; Alegria, C.G. Efficacy of Janus kinase inhibitors in rheumatoid arthritis. Inflamm. Res., 2023, 72(5), 1121-1132.
[http://dx.doi.org/10.1007/s00011-023-01717-z] [PMID: 37087519]
[76]
Muddebihal, A.; Khurana, A.; Sardana, K. JAK inhibitors in dermatology: The road travelled and path ahead, a narrative review. Expert Rev. Clin. Pharmacol., 2023, 16(4), 279-295.
[http://dx.doi.org/10.1080/17512433.2023.2193682] [PMID: 36946306]
[77]
Moussa, A.; Eisman, S.; Kazmi, A.; Poa, J.; Chitreddy, V.; Rathnayake, D.; Joseph, S.; Sinclair, R.D.; Bhoyrul, B. Treatment of moderate-to-severe alopecia areata in adolescents with baricitinib: A retrospective review of 29 patients. J. Am. Acad. Dermatol., 2023, 88(5), 1194-1196.
[http://dx.doi.org/10.1016/j.jaad.2022.12.033] [PMID: 36623557]
[78]
Lamb, Y.N. Osimertinib: A review in previously untreated, EGFR mutation-positive, advanced NSCLC. Target. Oncol., 2021, 16(5), 687-695.
[http://dx.doi.org/10.1007/s11523-021-00839-w] [PMID: 34564820]
[79]
Thomas, R.; Weihua, Z. Rethink of EGFR in cancer with its kinase independent function on board. Front. Oncol., 2019, 9, 800.
[http://dx.doi.org/10.3389/fonc.2019.00800] [PMID: 31508364]
[80]
Dong, R.F.; Zhu, M.L.; Liu, M.M.; Xu, Y.T.; Yuan, L.L.; Bian, J.; Xia, Y.Z.; Kong, L.Y. EGFR mutation mediates resistance to EGFR tyrosine kinase inhibitors in NSCLC: From molecular mechanisms to clinical research. Pharmacol. Res., 2021, 167, 105583.
[http://dx.doi.org/10.1016/j.phrs.2021.105583] [PMID: 33775864]
[81]
Kujtan, L.; Subramanian, J. Epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small cell lung cancer. Expert Rev. Anticancer Ther., 2019, 19(7), 547-559.
[http://dx.doi.org/10.1080/14737140.2019.1596030] [PMID: 30913927]
[82]
Yang, Z.; Yang, H.; Ai, Y.; Zhang, L.; Li, Z.; Wan, S.; Xu, X.; Zhang, H.; Wu, S.; Zhang, J.; Zhang, T. Computational studies of potent covalent inhibitors on wild type or T790M/L858R mutant epidermal growth factor receptor. Eur. J. Pharm. Sci., 2020, 152, 105463.
[http://dx.doi.org/10.1016/j.ejps.2020.105463] [PMID: 32668314]
[83]
Shao, J.; Liu, S.; Liu, X.; Pan, Y.; Chen, W. Design, synthesis and SAR study of 2-aminopyrimidines with diverse Michael addition acceptors for chemically tuning the potency against EGFRL858R/T790M. Bioorg. Med. Chem., 2020, 28(19), 115680.
[http://dx.doi.org/10.1016/j.bmc.2020.115680] [PMID: 32912431]
[84]
Song, Z.; Ge, Y.; Wang, C.; Huang, S.; Shu, X.; Liu, K.; Zhou, Y.; Ma, X. Challenges and perspectives on the development of small-molecule EGFR inhibitors against T790M-mediated resistance in non-small-cell lung cancer. J. Med. Chem., 2016, 59(14), 6580-6594.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00840] [PMID: 26882288]
[85]
Wu, S.G.; Shih, J.Y. Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol. Cancer, 2018, 17(1), 38.
[http://dx.doi.org/10.1186/s12943-018-0777-1] [PMID: 29455650]
[86]
Suda, K.; Rivard, C.J.; Mitsudomi, T.; Hirsch, F.R. Overcoming resistance to EGFR tyrosine kinase inhibitors in lung cancer, focusing on non-T790M mechanisms. Expert Rev. Anticancer Ther., 2017, 17(9), 779-786.
[http://dx.doi.org/10.1080/14737140.2017.1355243] [PMID: 28701107]
[87]
Noda, S.; Kanda, S. Addressing epidermal growth factor receptor tyrosine kinase inhibitor resistance in non-small cell lung cancer. Expert Rev. Respir. Med., 2016, 10(5), 547-556.
[http://dx.doi.org/10.1586/17476348.2016.1164603] [PMID: 26959310]
[88]
Nelson, V.; Ziehr, J.; Agulnik, M.; Johnson, M. Afatinib: Emerging next-generation tyrosine kinase inhibitor for NSCLC. OncoTargets Ther., 2013, 6, 135-143.
[PMID: 23493883]
[89]
Galvani, E.; Alfieri, R.; Giovannetti, E.; Cavazzoni, A.; La Monica, S.; Galetti, M.; Fumarola, C.; Bonelli, M.; Mor, M.; Tiseo, M.; Peters, G.J.; Petronini, P.G.; Ardizzoni, A. Epidermal growth factor receptor tyrosine kinase inhibitors: Current status and future perspectives in the development of novel irreversible inhibitors for the treatment of mutant non-small cell lung cancer. Curr. Pharm. Des., 2013, 19(5), 818-832.
[http://dx.doi.org/10.2174/138161213804547222] [PMID: 22973953]
[90]
Li, Y.; Mao, T.; Wang, J.; Zheng, H.; Hu, Z.; Cao, P.; Yang, S.; Zhu, L.; Guo, S.; Zhao, X.; Tian, Y.; Shen, H.; Lin, F. Toward the next generation EGFR inhibitors: An overview of osimertinib resistance mediated by EGFR mutations in non-small cell lung cancer. Cell Commun. Signal., 2023, 21(1), 71.
[http://dx.doi.org/10.1186/s12964-023-01082-8] [PMID: 37041601]
[91]
Li, M.C.; Coumar, M.S.; Lin, S.Y.; Lin, Y.S.; Huang, G.L.; Chen, C.H.; Lien, T.W.; Wu, Y.W.; Chen, Y.T.; Chen, C.P.; Huang, Y.C.; Yeh, K.C.; Yang, C.M.; Kalita, B.; Pan, S.L.; Hsu, T.A.; Yeh, T.K.; Chen, C.T.; Hsieh, H.P. Development of furanopyrimidine-based orally active third-generation EGFR inhibitors for the treatment of non-small cell lung cancer. J. Med. Chem., 2023, 66(4), 2566-2588.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01434] [PMID: 36749735]
[92]
Chen, L.; Fu, W.; Zheng, L.; Liu, Z.; Liang, G. Recent progress of small-molecule epidermal growth factor receptor (EGFR) inhibitors against C797S resistance in non-small-cell lung cancer. J. Med. Chem., 2018, 61(10), 4290-4300.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01310] [PMID: 29136465]
[93]
Heppner, D.E.; Wittlinger, F.; Beyett, T.S.; Shaurova, T.; Urul, D.A.; Buckley, B.; Pham, C.D.; Schaeffner, I.K.; Yang, B.; Ogboo, B.C.; May, E.W.; Schaefer, E.M.; Eck, M.J.; Laufer, S.A.; Hershberger, P.A. Structural basis for inhibition of mutant EGFR with Lazertinib (YH25448). ACS Med. Chem. Lett., 2022, 13(12), 1856-1863.
[http://dx.doi.org/10.1021/acsmedchemlett.2c00213] [PMID: 36518696]
[94]
Shaikh, M.; Shinde, Y.; Pawara, R.; Noolvi, M.; Surana, S.; Ahmad, I.; Patel, H. Emerging approaches to overcome acquired drug resistance obstacles to osimertinib in non-small-cell lung cancer. J. Med. Chem., 2022, 65(2), 1008-1046.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00876] [PMID: 34323489]
[95]
An, B.; Liu, J.; Fan, Y.; Nie, W.; Yang, C.; Yao, H.; Li, W.; Zhang, Y.; Li, X.; Tian, G. Novel third-generation pyrimidines-based EGFR tyrosine kinase inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer. Bioorg. Chem., 2022, 122, 105743.
[http://dx.doi.org/10.1016/j.bioorg.2022.105743] [PMID: 35313239]
[96]
Shi, C.; Zhang, C.; Fu, Z.; Liu, J.; Zhou, Y.; Cheng, B.; Wang, C.; Li, S.; Zhang, Y. Antitumor activity of aumolertinib, a third-generation EGFR tyrosine kinase inhibitor, in non-small-cell lung cancer harboring uncommon EGFR mutations. Acta Pharm. Sin. B, 2023, 13(6), 2613-2627.
[http://dx.doi.org/10.1016/j.apsb.2023.03.007] [PMID: 37425047]
[97]
Nagasaka, M.; Zhu, V.W.; Lim, S.M.; Greco, M.; Wu, F.; Ou, S.H.I. Beyond osimertinib: The development of third-generation EGFR tyrosine kinase inhibitors for advanced EGFR+ NSCLC. J. Thorac. Oncol., 2021, 16(5), 740-763.
[http://dx.doi.org/10.1016/j.jtho.2020.11.028] [PMID: 33338652]
[98]
Cheng, H.; Nair, S.K.; Murray, B.W. Recent progress on third generation covalent EGFR inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(8), 1861-1868.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.067] [PMID: 26968253]
[99]
Yun, C.H.; Mengwasser, K.E.; Toms, A.V.; Woo, M.S.; Greulich, H.; Wong, K.K.; Meyerson, M.; Eck, M.J. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. USA, 2008, 105(6), 2070-2075.
[http://dx.doi.org/10.1073/pnas.0709662105] [PMID: 18227510]
[100]
Suda, K.; Onozato, R.; Yatabe, Y.; Mitsudomi, T. EGFR T790M mutation: A double role in lung cancer cell survival? J. Thorac. Oncol., 2009, 4(1), 1-4.
[http://dx.doi.org/10.1097/JTO.0b013e3181913c9f] [PMID: 19096299]
[101]
Cheng, H.; Nair, S.K.; Murray, B.W.; Almaden, C.; Bailey, S.; Baxi, S.; Behenna, D.; Cho-Schultz, S.; Dalvie, D.; Dinh, D.M.; Edwards, M.P.; Feng, J.L.; Ferre, R.A.; Gajiwala, K.S.; Hemkens, M.D.; Jackson-Fisher, A.; Jalaie, M.; Johnson, T.O.; Kania, R.S.; Kephart, S.; Lafontaine, J.; Lunney, B.; Liu, K.K.C.; Liu, Z.; Matthews, J.; Nagata, A.; Niessen, S.; Ornelas, M.A.; Orr, S.T.M.; Pairish, M.; Planken, S.; Ren, S.; Richter, D.; Ryan, K.; Sach, N.; Shen, H.; Smeal, T.; Solowiej, J.; Sutton, S.; Tran, K.; Tseng, E.; Vernier, W.; Walls, M.; Wang, S.; Weinrich, S.L.; Xin, S.; Xu, H.; Yin, M.J.; Zientek, M.; Zhou, R.; Kath, J.C. Discovery of 1-(3 R, 4 R)-3-[(5-Chloro-2-[(1-methyl-1 H -pyrazol-4-yl)amino]-7 H -pyrrolo[2,3- d]pyrimidin-4-yloxy)methyl]-4-methoxypyrrolidin-1-ylprop-2-en-1-one (PF-06459988), a potent, WT sparing, irreversible inhibitor of T790M-containing EGFR mutants. J. Med. Chem., 2016, 59(5), 2005-2024.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01633] [PMID: 26756222]
[102]
Planken, S.; Behenna, D.C.; Nair, S.K.; Johnson, T.O.; Nagata, A.; Almaden, C.; Bailey, S.; Ballard, T.E.; Bernier, L.; Cheng, H.; Cho-Schultz, S.; Dalvie, D.; Deal, J.G.; Dinh, D.M.; Edwards, M.P.; Ferre, R.A.; Gajiwala, K.S.; Hemkens, M.; Kania, R.S.; Kath, J.C.; Matthews, J.; Murray, B.W.; Niessen, S.; Orr, S.T.M.; Pairish, M.; Sach, N.W.; Shen, H.; Shi, M.; Solowiej, J.; Tran, K.; Tseng, E.; Vicini, P.; Wang, Y.; Weinrich, S.L.; Zhou, R.; Zientek, M.; Liu, L.; Luo, Y.; Xin, S.; Zhang, C.; Lafontaine, J. Discovery of N -((3 R, 4 R)-4-Fluoro-1-(6-((3-methoxy-1-methyl-1 H -pyrazol-4-yl)amino)-9-methyl-9 H -purin-2-yl)pyrrolidine-3-yl)acrylamide (PF-06747775) through structure-based drug design: A high affinity irreversible inhibitor targeting oncogenic EGFR mutants with selectivity over wild-type EGFR. J. Med. Chem., 2017, 60(7), 3002-3019.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01894] [PMID: 28287730]
[103]
Lategahn, J.; Keul, M.; Klövekorn, P.; Tumbrink, H.L.; Niggenaber, J.; Müller, M.P.; Hodson, L.; Flaßhoff, M.; Hardick, J.; Grabe, T.; Engel, J.; Schultz-Fademrecht, C.; Baumann, M.; Ketzer, J.; Mühlenberg, T.; Hiller, W.; Günther, G.; Unger, A.; Müller, H.; Heimsoeth, A.; Golz, C.; Blank-Landeshammer, B.; Kollipara, L.; Zahedi, R.P.; Strohmann, C.; Hengstler, J.G.; van Otterlo, W.A.L.; Bauer, S.; Rauh, D. Inhibition of osimertinib-resistant epidermal growth factor receptor EGFR-T790M/C797S. Chem. Sci. (Camb.), 2019, 10(46), 10789-10801.
[http://dx.doi.org/10.1039/C9SC03445E] [PMID: 31857889]
[104]
Xia, Z.; Huang, R.; Zhou, X.; Chai, Y.; Chen, H.; Ma, L.; Yu, Q.; Li, Y.; Li, W.; He, Y. The synthesis and bioactivity of pyrrolo[2,3-d]pyrimidine derivatives as tyrosine kinase inhibitors for NSCLC cells with EGFR mutations. Eur. J. Med. Chem., 2021, 224, 113711.
[http://dx.doi.org/10.1016/j.ejmech.2021.113711] [PMID: 34315040]
[105]
Kurup, S.; McAllister, B.; Liskova, P.; Mistry, T.; Fanizza, A.; Stanford, D.; Slawska, J.; Keller, U.; Hoellein, A. Design, synthesis and biological activity of N4 -phenylsubstituted-7 H -pyrrolo[2,3- d]pyrimidin-4-amines as dual inhibitors of aurora kinase A and epidermal growth factor receptor kinase. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 74-84.
[http://dx.doi.org/10.1080/14756366.2017.1376666] [PMID: 29115879]
[106]
Gangjee, A.; Yang, J.; Ihnat, M.A.; Kamat, S. Antiangiogenic and antitumor agents. Bioorg. Med. Chem., 2003, 11(23), 5155-5170.
[http://dx.doi.org/10.1016/j.bmc.2003.08.034] [PMID: 14604679]
[107]
Gangjee, A.; Zhao, Y.; Raghavan, S.; Ihnat, M.A.; Disch, B.C. Design, synthesis and evaluation of 2-amino-4-m-bromoanilino-6-arylmethyl-7H-pyrrolo[2,3-d]pyrimidines as tyrosine kinase inhibitors and antiangiogenic agents1. Bioorg. Med. Chem., 2010, 18(14), 5261-5273.
[http://dx.doi.org/10.1016/j.bmc.2010.05.049] [PMID: 20558072]
[108]
Gangjee, A.; Namjoshi, O.A.; Ihnat, M.A.; Buchanan, A. The contribution of a 2-amino group on receptor tyrosine kinase inhibition and antiangiogenic activity in 4-anilinosubstituted pyrrolo[2,3-d]pyrimidines. Bioorg. Med. Chem. Lett., 2010, 20(10), 3177-3181.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.064] [PMID: 20403693]
[109]
Gangjee, A.; Namjoshi, O.A.; Yu, J.; Ihnat, M.A.; Thorpe, J.E.; Warnke, L.A. Design, synthesis and biological evaluation of substituted pyrrolo[2,3-d]pyrimidines as multiple receptor tyrosine kinase inhibitors and antiangiogenic agents. Bioorg. Med. Chem., 2008, 16(10), 5514-5528.
[http://dx.doi.org/10.1016/j.bmc.2008.04.019] [PMID: 18467105]
[110]
Gangjee, A.; Namjoshi, O.A.; Yu, J.; Ihnat, M.A.; Thorpe, J.E.; Bailey-Downs, L.C. N2-Trimethylacetyl substituted and unsubstituted-N4-phenylsubstituted-6-(2-pyridin-2-ylethyl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamines: Design, cellular receptor tyrosine kinase inhibitory activities and in vivo evaluation as antiangiogenic, antimetastatic and antitumor agents. Bioorg. Med. Chem., 2013, 21(5), 1312-1323.
[http://dx.doi.org/10.1016/j.bmc.2012.12.045] [PMID: 23375090]
[111]
Beckers, T.; Sellmer, A.; Eichhorn, E.; Pongratz, H.; Schächtele, C.; Totzke, F.; Kelter, G.; Krumbach, R.; Fiebig, H.H.; Böhmer, F.D.; Mahboobi, S. Novel inhibitors of epidermal growth factor receptor: (4-(Arylamino)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)(1H-indol-2-yl)methanones and (1H-indol-2-yl)(4-(phenylamino)thieno[2,3-d]pyrimidin-6-yl)methanones. Bioorg. Med. Chem., 2012, 20(1), 125-136.
[http://dx.doi.org/10.1016/j.bmc.2011.11.023] [PMID: 22169601]
[112]
Reiersølmoen, A.C.; Aarhus, T.I.; Eckelt, S.; Nørsett, K.G.; Sundby, E.; Hoff, B.H. Potent and selective EGFR inhibitors based on 5-aryl-7H-pyrrolopyrimidin-4-amines. Bioorg. Chem., 2019, 88, 102918.
[http://dx.doi.org/10.1016/j.bioorg.2019.102918] [PMID: 30999245]
[113]
Kaspersen, S.J.; Han, J.; Nørsett, K.G.; Rydså, L.; Kjøbli, E.; Bugge, S.; Bjørkøy, G.; Sundby, E.; Hoff, B.H. Identification of new 4-N-substituted 6-aryl-7H-pyrrolo[2,3-d]pyrimidine-4-amines as highly potent EGFR-TK inhibitors with Src-family activity. Eur. J. Pharm. Sci., 2014, 59, 69-82.
[http://dx.doi.org/10.1016/j.ejps.2014.04.011] [PMID: 24769040]
[114]
Fischer, T.; Krüger, T.; Najjar, A.; Totzke, F.; Schächtele, C.; Sippl, W.; Ritter, C.; Hilgeroth, A. Discovery of novel substituted benzo-anellated 4-benzylamino pyrrolopyrimidines as dual EGFR and VEGFR2 inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(12), 2708-2712.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.053] [PMID: 28478927]