Amphiphilic Copolymer-based Pesticide Nanoformulations for Better Crop Protection: Advances and Future Need

Page: [369 - 385] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Amphiphilic copolymers (ACPs) are widely recognized due to their self-organizing micellar characteristics in an aqueous medium and their extensive application potential in bioactive molecule delivery. However, their use in agriculture is still limited with some scattered research studies, especially on the delivery of pesticides for crop protection. Hence, the present study comprehensively summarizes these research findings mainly focusing on synthesis, selfassembly, and release properties of pesticide nanoformulations prepared using poly(ethylene glycol) (PEG)-based ACPs. PEG-based ACPs are synthesized using linker molecules through a simple esterification reaction in the presence of an acid catalyst or an enzyme. However, multistep reactions are noticed in the synthesis of ACPs employing biopolymers, like chitosan-based ACPs. On spontaneous emulsification, ACPs develop nanomicelles (~10-300 nm), and their micellar characteristics are highly dependent on the nature of the blocks. The polymeric micellar barrier of ACPs also leads to the slow release of entrapped pesticide molecules from these nanomicelles with diffusion as the dominant release mechanism. Hence, the field appraisal of these ACPs-based pesticide nanoformulations has shown reduced pesticide doses as compared to the conventional formulations. However, despite these stated advantages, ACPs-based pesticide nanoformulations are yet to reach their full potential, which might be due to several key researchable gaps, like a lack of ACPs with high pesticide loading capacity, lack of biosafety data, environmental fate details, etc. The use of ACPs is still gaining pace in formulating pesticides and being proven as a smart material for targeted pesticide delivery to attain sustainable agriculture with a promise to reduce environmental hazards due to pesticide application.

Graphical Abstract

[1]
Osman, M.A.E.; Shakil, N.A.; Rana, V.S.; Sarkar, D.J.; Majumder, S.; Kaushik, P.; Singh, B.B.; Kumar, J. Antifungal activity of nano emulsions of neem and citronella oils against phytopathogenic fungi, Rhizoctonia solani and Sclerotium rolfsii. Ind. Crops Prod., 2017, 108, 379-387.
[http://dx.doi.org/10.1016/j.indcrop.2017.06.061]
[2]
Singh, A.; Sarkar, D.J.; Mittal, S.; Dhaka, R.; Maiti, P.; Singh, A.; Raghav, T.; Solanki, D.; Ahmed, N.; Singh, S.B. Zeolite reinforced car-boxymethyl cellulose-Na +-g-cl -poly(AAm) hydrogel composites with pH responsive phosphate release behavior. J. Appl. Polym. Sci., 2019, 136(15), 47332.
[http://dx.doi.org/10.1002/app.47332]
[3]
Sarkar, D.J.; Bera, T.; Singh, A. Release of urea from cellulosic hydrogel coated urea granule: Modeling effect of crosslink density and pH triggering. Polymer-Plastics Technol. Mater., 2019, 58(17), 1914-1926.
[http://dx.doi.org/10.1080/25740881.2019.1587772]
[4]
Haag, R.; Kratz, F. Polymer therapeutics: Concepts and applications. Angew. Chem. Int. Ed., 2006, 45(8), 1198-1215.
[http://dx.doi.org/10.1002/anie.200502113] [PMID: 16444775]
[5]
Husseini, G.A.; Pitt, W.G. Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv. Drug Deliv. Rev., 2008, 60(10), 1137-1152.
[http://dx.doi.org/10.1016/j.addr.2008.03.008] [PMID: 18486269]
[6]
Wei, H.; Cheng, S.X.; Zhang, X.Z.; Zhuo, R.X. Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carri-ers. Prog. Polym. Sci., 2009, 34(9), 893-910.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.05.002]
[7]
Zalipsky, S.; Lee, C. Use of functionalized poly (ethylene glycol)s for modification of polypeptides.Poly (Ethylene Glycol) Chemistry; Springer: Boston, MA, 1992, pp. 347-370.
[http://dx.doi.org/10.1007/978-1-4899-0703-5_21]
[8]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[9]
Alex, R.; Bodmeier, R. Encapsulation of water-soluble drugs by a modified solvent evaporation method. I. Effect of process and formula-tion variables on drug entrapment. J. Microencapsul., 1990, 7(3), 347-355.
[http://dx.doi.org/10.3109/02652049009021845] [PMID: 2384837]
[10]
Cheng, J.; Teply, B.; Sherifi, I.; Sung, J.; Luther, G.; Gu, F.; Levynissenbaum, E.; Radovicmoreno, A.; Langer, R.; Farokhzad, O. Formula-tion of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials, 2007, 28(5), 869-876.
[http://dx.doi.org/10.1016/j.biomaterials.2006.09.047] [PMID: 17055572]
[11]
Wang, X.; Yucel, T.; Lu, Q.; Hu, X.; Kaplan, D.L. Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials, 2010, 31(6), 1025-1035.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.002] [PMID: 19945157]
[12]
Ishizu, K.; Tsubaki, K.; Mori, A.; Uchida, S. Architecture of nanostructured polymers. Prog. Polym. Sci., 2003, 28(1), 27-54.
[http://dx.doi.org/10.1016/S0079-6700(02)00025-4]
[13]
García, M.C.; Quiroz, F. Nanostructured polymers.Nanobiomaterials; Woodhead Publishing, 2018, pp. 339-356.
[http://dx.doi.org/10.1016/B978-0-08-100716-7.00028-3]
[14]
Blanazs, A.; Armes, S.P.; Ryan, A.J. Self‐assembled block copolymer aggregates: From micelles to vesicles and their biological applica-tions. Macromol. Rapid Commun., 2009, 30(4-5), 267-277.
[http://dx.doi.org/10.1002/marc.200800713] [PMID: 21706604]
[15]
Tang, Y.; Heaysman, C.L.; Willis, S.; Lewis, A.L. Physical hydrogels with self-assembled nanostructures as drug delivery systems. Expert Opin. Drug Deliv., 2011, 8(9), 1141-1159.
[http://dx.doi.org/10.1517/17425247.2011.588205] [PMID: 21619469]
[16]
Arico, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater., 2011, 4(5), 366-377.
[17]
Lipic, P.M.; Bates, F.S.; Hillmyer, M.A. Nanostructured thermosets from self-assembled amphiphilic block copolymer/epoxy resin mix-tures. J. Am. Chem. Soc., 1998, 120(35), 8963-8970.
[http://dx.doi.org/10.1021/ja981544s]
[18]
Wooley, K.L. Shell crosslinked polymer assemblies: Nanoscale constructs inspired from biological systems. J. Polym. Sci. A Polym. Chem., 2000, 38(9), 1397-1407.
[http://dx.doi.org/10.1002/(SICI)1099-0518(20000501)38:9<1397:AID-POLA1>3.0.CO;2-N]
[19]
Dai, S.; Ravi, P.; Tam, K.C.; Mao, B.W.; Gan, L.H. Novel pH-responsive amphiphilic diblock copolymers with reversible micellization properties. Langmuir, 2003, 19(12), 5175-5177.
[http://dx.doi.org/10.1021/la0340652]
[20]
Mertoglu, M.; Garnier, S.; Laschewsky, A.; Skrabania, K.; Storsberg, J. Stimuli responsive amphiphilic block copolymers for aqueous media synthesised via reversible addition fragmentation chain transfer polymerisation (RAFT). Polymer, 2005, 46(18), 7726-7740.
[http://dx.doi.org/10.1016/j.polymer.2005.03.101]
[21]
Kim, W.; Thévenot, J.; Ibarboure, E.; Lecommandoux, S.; Chaikof, E.L. Self-assembly of thermally responsive amphiphilic diblock co-polypeptides into spherical micellar nanoparticles. Angew. Chem. Int. Ed., 2010, 49(25), 4257-4260.
[http://dx.doi.org/10.1002/anie.201001356] [PMID: 20446331]
[22]
Adams, M.L.; Lavasanifar, A.; Kwon, G.S. Amphiphilic block copolymers for drug delivery. J. Pharm. Sci., 2003, 92(7), 1343-1355.
[http://dx.doi.org/10.1002/jps.10397] [PMID: 12820139]
[23]
Xing, Q.; Li, N.; Chen, D.; Sha, W.; Jiao, Y.; Qi, X.; Xu, Q.; Lu, J. Light-responsive amphiphilic copolymer coated nanoparticles as nanocarriers and real-time monitors for controlled drug release. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(9), 1182-1189.
[http://dx.doi.org/10.1039/c3tb21269f] [PMID: 32261354]
[24]
Cammas, S.; Kataoka, K. Functional poly[(ethylene oxide)-co-(β-benzyl-L-aspartate)] polymeric micelles: Block copolymer synthesis and micelles formation. Macromol. Chem. Phys., 1995, 196(6), 1899-1905.
[http://dx.doi.org/10.1002/macp.1995.021960609]
[25]
Emoto, K.; Nagasaki, Y.; Kataoka, K. Coating of surfaces with stabilized reactive micelles from poly(ethylene glycol)−poly(DL -lactic acid) block copolymer. Langmuir, 1999, 15(16), 5212-5218.
[http://dx.doi.org/10.1021/la980918s]
[26]
Park, E.K.; Kim, S.Y.; Lee, S.B.; Lee, Y.M. Folate-conjugated methoxy poly(ethylene glycol)/poly(ɛ-caprolactone) amphiphilic block co-polymeric micelles for tumor-targeted drug delivery. J. Control. Release, 2005, 109(1-3), 158-168.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.039] [PMID: 16263189]
[27]
Xue, Y.N.; Huang, Z.Z.; Zhang, J.T.; Liu, M.; Zhang, M.; Huang, S.W.; Zhuo, R.X. Synthesis and self-assembly of amphiphilic poly(acrylic acid-b-dl-lactide) to form micelles for pH-responsive drug delivery. Polymer, 2009, 50(15), 3706-3713.
[http://dx.doi.org/10.1016/j.polymer.2009.05.033]
[28]
Lele, B.; Leroux, J.C. Synthesis of novel amphiphilic star-shaped poly(ɛ-caprolactone)-block-poly(N-(2-hydroxypropyl)methacrylamide) by combination of ring-opening and chain transfer polymerization. Polymer, 2002, 43(21), 5595-5606.
[http://dx.doi.org/10.1016/S0032-3861(02)00435-4]
[29]
Bailey, F.E.; Koleske, J.V. Polyethylene oxide; Academic Press: N.Y., 1976.
[30]
Fuertges, F.; Abuchowski, A. The clinical efficacy of poly(ethylene glycol)-modified proteins. J. Control. Release, 1990, 11(1-3), 139-148.
[http://dx.doi.org/10.1016/0168-3659(90)90127-F]
[31]
Zalipsky, S.; Gilon, C.; Zilkha, A. Attachment of drugs to polyethylene glycols. Eur. Polym. J., 1983, 19(12), 1177-1183.
[http://dx.doi.org/10.1016/0014-3057(83)90016-2]
[32]
Kwon, G.S.; Naito, M.; Kataoka, K.; Yokoyama, M.; Sakurai, Y.; Okano, T. Block copolymer micelles as vehicles for hydrophobic drugs. Colloids Surf. B Biointerfaces, 1994, 2(4), 429-434.
[http://dx.doi.org/10.1016/0927-7765(94)80007-3]
[33]
Zhang, Y.; Zhuo, R. Synthesis and in vitro drug release behavior of amphiphilic triblock copolymer nanoparticles based on poly (ethylene glycol) and polycaprolactone. Biomaterials, 2005, 26(33), 6736-6742.
[http://dx.doi.org/10.1016/j.biomaterials.2005.03.045] [PMID: 15935469]
[34]
Gou, P.F.; Zhu, W.P.; Xu, N.; Shen, Z.Q. Synthesis and characterization of well-defined cyclodextrin-centered seven-arm star poly(ε-caprolactone)s and amphiphilic star poly(ε-caprolactone- b -ethylene glycol)s. J. Polym. Sci. A Polym. Chem., 2008, 46(19), 6455-6465.
[http://dx.doi.org/10.1002/pola.22955]
[35]
Ha, J.C.; Kim, S.Y.; Lee, Y.M. Poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (Pluronic)/poly(ε-caprolactone) (PCL) amphiphilic block copolymeric nanospheres. J. Control. Release, 1999, 62(3), 381-392.
[http://dx.doi.org/10.1016/S0168-3659(99)00167-4] [PMID: 10528075]
[36]
Kumar, R.; Shakil, N.; Chen, M.H.; Parmar, V.; Samuelson, L.; Kumar, J.; Watterson, A. Chemo-enzymatic synthesis and characterization of novel functionalized amphiphilic polymers. J. Macromol. Sci. Part A Pure Appl. Chem., 2002, 39(10), 1137-1149.
[http://dx.doi.org/10.1081/MA-120014841]
[37]
Pandey, M.K.; Tyagi, R.; Gupta, B.; Parmar, V.S.; Kumar, J.; Watterson, A.C. Synthesis and characterization of novel amphiphilic poly-mers as drug delivery nano carriers. J. Macromol. Sci. Part A Pure Appl. Chem., 2008, 45(11), 931-937.
[http://dx.doi.org/10.1080/10601320802380158]
[38]
Gupta, B.; Kumar, V.; Kumar, G.; Khan, A.; Shakil, N.A.; Dhawan, A.; Parmar, V.S.; Kumar, J.; Watterson, A.C. Amphiphilic copolymers having saturated and unsaturated aliphatic side chains as nano carriers for drug delivery applications. J. Macromol. Sci. Part A Pure Appl. Chem., 2011, 48(12), 1009-1015.
[http://dx.doi.org/10.1080/10601325.2011.620427]
[39]
Danprasert, K.; Kumar, R. H-Cheng, M.; Gupta, P.; Shakil, N.A.; Prasad, A.K.; Parmar, V.S.; Kumar, J.; Samuelson, L.A.; Watterson, A.C. Synthesis of novel poly(ethylene glycol) based amphiphilic polymers. Eur. Polym. J., 2003, 39(10), 1983-1990.
[http://dx.doi.org/10.1016/S0014-3057(03)00111-3]
[40]
Loha, K.; Shakil, N.; Kumar, J.; Singh, M.; Adak, T.; Jain, S. Release kinetics of β-Cyfluthrin from its encapsulated formulations in water. J. Environ. Sci. Health B, 2011, 46(3), 201-206.
[http://dx.doi.org/10.1080/03601234.2011.540200] [PMID: 21442535]
[41]
Adak, T.; Kumar, J.; Shakil, N.A.; Walia, S.; Kumar, A.; Watterson, A.C. Synthesis and characterization of novel surfactant molecules based on amphiphilic polymers. J. Macromol. Sci. Part A Pure Appl. Chem., 2011, 48(10), 767-775.
[http://dx.doi.org/10.1080/10601325.2011.603610]
[42]
Sarkar, D.J.; Kumar, J.; Shakil, N.A.; Adak, T.; Watterson, A.C. Synthesis and characterization of amphiphilic peg based aliphatic and aromatic polymers and their self-assembling behavior. J. Macromol. Sci. Part A Pure Appl. Chem., 2012, 49(6), 455-465.
[http://dx.doi.org/10.1080/10601325.2012.676845]
[43]
Shakil, N.A.; Singh, M.K.; Pandey, A.; Kumar, J. Pankaj; Parmar, V.S.; Singh, M.K.; Pandey, R.P.; Watterson, A.C. Development of poly (ethylene glycol) based amphiphilic copolymers for controlled release delivery of carbofuran. J. Macromol. Sci. Part A Pure Appl. Chem., 2010, 47(3), 241-247.
[http://dx.doi.org/10.1080/10601320903527038]
[44]
Sun, C.; Shu, K.; Wang, W.; Ye, Z.; Liu, T.; Gao, Y.; Zheng, H.; He, G.; Yin, Y. Encapsulation and controlled release of hydrophilic pesti-cide in shell cross-linked nanocapsules containing aqueous core. Int. J. Pharm., 2014, 463(1), 108-114.
[http://dx.doi.org/10.1016/j.ijpharm.2013.12.050] [PMID: 24406673]
[45]
Wu, Y.; Zheng, Y.; Yang, W.; Wang, C.; Hu, J.; Fu, S. Synthesis and characterization of a novel amphiphilic chitosan?polylactide graft copolymer. Carbohydr. Polym., 2005, 59(2), 165-171.
[http://dx.doi.org/10.1016/j.carbpol.2004.09.006]
[46]
Zhang, J.; Li, M.; Fan, T.; Xu, Q.; Wu, Y.; Chen, C.; Huang, Q. Construction of novel amphiphilic chitosan copolymer nanoparticles for chlorpyrifos delivery. J. Polym. Res., 2013, 20(3), 107.
[http://dx.doi.org/10.1007/s10965-013-0107-7]
[47]
Lao, S.B.; Zhang, Z.X.; Xu, H.H.; Jiang, G.B. Novel amphiphilic chitosan derivatives: Synthesis, characterization and micellar solubiliza-tion of rotenone. Carbohydr. Polym., 2010, 82(4), 1136-1142.
[http://dx.doi.org/10.1016/j.carbpol.2010.06.044]
[48]
Yang, F.L.; Li, X.G.; Zhu, F.; Lei, C.L. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Agric. Food Chem., 2009, 57(21), 10156-10162.
[http://dx.doi.org/10.1021/jf9023118] [PMID: 19835357]
[49]
Choudhury, S.R.; Pradhan, S.; Goswami, A. Preparation and characterisation of acephate nano-encapsulated complex. Nanosci. Methods, 2012, 1(1), 9-15.
[http://dx.doi.org/10.1080/17458080.2010.533443]
[50]
Rao, K.N.; Srivastava, K.P.; Parmar, B.S. Development of controlled release phorate formulations and their evaluation for pest control and grain yield on sorghum. Pestic. Res. J., 1989, 1(1), 7-11.
[51]
Nuruzzaman, M.; Rahman, M.M.; Liu, Y.; Naidu, R. Nanoencapsulation, nano-guard for pesticides: A new window for safe application. J. Agric. Food Chem., 2016, 64(7), 1447-1483.
[http://dx.doi.org/10.1021/acs.jafc.5b05214] [PMID: 26730488]
[52]
Chung, J.E.; Yokoyama, M.; Aoyagi, T.; Sakurai, Y.; Okano, T. Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. J. Control. Release, 1998, 53(1-3), 119-130.
[http://dx.doi.org/10.1016/S0168-3659(97)00244-7] [PMID: 9741919]
[53]
Yokoyama, M.; Okano, T.; Sakurai, Y.; Kataoka, K. Improved synthesis of adriamycin-conjugated poly (ethylene oxide)-poly (aspartic acid) block copolymer and formation of unimodal micellar structure with controlled amount of physically entrapped adriamycin. J. Control. Release, 1994, 32(3), 269-277.
[http://dx.doi.org/10.1016/0168-3659(94)90237-2]
[54]
Kumar, J.; Shakil, N.A.; Singh, M.K. Pankaj; Singh, M.K.; Pandey, A.; Pandey, R.P. Development of controlled release formulations of azadirachtin-A employing poly(ethylene glycol) based amphiphilic copolymers. J. Environ. Sci. Health B, 2010, 45(4), 310-314.
[http://dx.doi.org/10.1080/03601231003704457] [PMID: 20401782]
[55]
Adak, T.; Kumar, J.; Shakil, N.A.; Walia, S. Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. J. Environ. Sci. Health B, 2012, 47(3), 217-225.
[http://dx.doi.org/10.1080/03601234.2012.634365] [PMID: 22375594]
[56]
Sarkar, D.J.; Kumar, J.; Shakil, N.A.; Walia, S. Release kinetics of controlled release formulations of thiamethoxam employing nano-ranged amphiphilic PEG and diacid based block polymers in soil. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng., 2012, 47(11), 1701-1712.
[http://dx.doi.org/10.1080/10934529.2012.687294] [PMID: 22702832]
[57]
Li, M.; Huang, Q.; Wu, Y. A novel chitosan-poly(lactide) copolymer and its submicron particles as imidacloprid carriers. Pest Manag. Sci., 2011, 67(7), 831-836.
[http://dx.doi.org/10.1002/ps.2120] [PMID: 21370387]
[58]
Kumar, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Hassan, A.A.; Kim, K.H. Nano-based smart pesticide formulations: Emerging opportu-nities for agriculture. J. Control. Release, 2019, 294, 131-153.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.012] [PMID: 30552953]
[59]
Kumar, J.; Nisar, K.; Shakil, N.A.; Walia, S.; Parsad, R. Controlled release formulations of metribuzin: Release kinetics in water and soil. J. Environ. Sci. Health B, 2010, 45(4), 330-335.
[http://dx.doi.org/10.1080/03601231003704424] [PMID: 20401785]
[60]
Kumar, J.; Nisar, K.; Shakil, N.A.; Sharma, R. Residue and bio-efficacy evaluation of controlled release formulations of metribuzin against weeds in wheat. Bull. Environ. Contam. Toxicol., 2010, 85(3), 357-361.
[http://dx.doi.org/10.1007/s00128-010-0091-0] [PMID: 20676605]
[61]
Kumar, J.; Shakil, N.A.; Khan, M.A.; Malik, K.; Walia, S. Development of controlled release formulations of carbofuran and imidacloprid and their bioefficacy evaluation against aphid, Aphis gossypii and leafhopper, Amrasca biguttula biguttula Ishida on potato crop. J. Environ. Sci. Health B, 2011, 46(8), 678-682.
[PMID: 21806462]
[62]
Sarkar, D.J.; Singh, A. Base triggered release of insecticide from bentonite reinforced citric acid crosslinked carboxymethyl cellulose hy-drogel composites. Carbohydr. Polym., 2017, 156, 303-311.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.045] [PMID: 27842827]
[63]
Sarkar, D.J.; Singh, A. pH-triggered release of boron and thiamethoxam from boric acid crosslinked carboxymethyl cellulose hydrogel based formulations. Polym-Plast. Technol. Mater, 2019, 58(1), 83-96.
[64]
Memarizadeh, N.; Ghadamyari, M.; Adeli, M.; Talebi, K. Preparation, characterization and efficiency of nanoencapsulated imidacloprid under laboratory conditions. Ecotoxicol. Environ. Saf., 2014, 107, 77-83.
[http://dx.doi.org/10.1016/j.ecoenv.2014.05.009] [PMID: 24907455]
[65]
Liu, P.; Situ, J.Q.; Li, W.S.; Shan, C.L.; You, J.; Yuan, H.; Hu, F.Q.; Du, Y.Z. High tolerated paclitaxel nano-formulation delivered by poly (lactic-co-glycolic acid)-g-dextran micelles to efficient cancer therapy. Nanomedicine, 2015, 11(4), 855-866.
[http://dx.doi.org/10.1016/j.nano.2015.02.002] [PMID: 25725489]
[66]
Praphakar, R.A.; Munusamy, M.A.; Rajan, M. Development of extended-voyaging anti-oxidant linked amphiphilic polymeric nanomicelles for anti-tuberculosis drug delivery. Int. J. Pharm., 2017, 524(1-2), 168-177.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.089] [PMID: 28377319]
[67]
Hou, K.T.; Liu, T.I.; Chiu, H.C.; Chiang, W.H. DOX/ICG-carrying γ-PGA-g-PLGA-based polymeric nanoassemblies for acid-triggered rapid DOX release combined with NIR-activated photothermal effect. Eur. Polym. J., 2019, 110, 283-292.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.11.038]
[68]
Pankaj; Shakil, N.A.; Kumar, J.; Singh, M.K.; Singh, K. Bioefficacy evaluation of controlled release formulations based on amphiphilic nano-polymer of carbofuran against Meloidogyne incognita infecting tomato. J. Environ. Sci. Health B, 2012, 47(6), 520-528.
[http://dx.doi.org/10.1080/03601234.2012.665667] [PMID: 22494375]
[69]
Roy, C.A.; Kumar, J.; Shakil, N.A.; Walia, S.; Srivastava, C.; Jha, A.N. Evaluation of repellency and oviposition deterrency of anothocya-nin and azadirachtin based coloured polymeric seed coats against storage pest of Soybean. Ann. Plant Prot. Sci., 2012, 20(1), 42-46.
[70]
Kaushik, P.; Shakil, N.A.; Kumar, J.; Singh, M.K.; Singh, M.K.; Yadav, S.K. Development of controlled release formulations of thiram employing amphiphilic polymers and their bioefficacy evaluation in seed quality enhancement studies. J. Environ. Sci. Health B, 2013, 48(8), 677-685.
[http://dx.doi.org/10.1080/03601234.2013.778614] [PMID: 23638895]
[71]
Sarkar, D.J.; Kumar, J.; Shakil, N.A.; Walia, S. Quality enhancement of soybean seed coated with nano-formulated thiamethoxam and its retention study. Pestic. Res. J., 2012, 24(1), 55-64.
[72]
Adak, T.; Kumar, J.; Shakil, N.A.; Pandey, S. Role of nano-range amphiphilic polymers in seed quality enhancement of soybean and im-idacloprid retention capacity on seed coatings. J. Sci. Food Agric., 2016, 96(13), 4351-4357.
[http://dx.doi.org/10.1002/jsfa.7643] [PMID: 26804312]
[73]
Koli, P.; Shakil, N.A.; Kumar, J.; Singh, B.B.; Watterson, A.C. Synthesis and characterization of novel encapsulating materials based on functionalized amphiphilic block copolymers. J. Macromol. Sci. Part A Pure Appl. Chem., 2014, 51(9), 729-736.
[http://dx.doi.org/10.1080/10601325.2014.936282]
[74]
Majumder, S.; Shakil, N.A.; Singh, B.B.; Watterson, A.C. Synthesis and characterization of functionalized amphiphilic polymers for utili-zation as surfactants. J. Macromol. Sci. Part A Pure Appl. Chem., 2016, 53(2), 75-81.
[http://dx.doi.org/10.1080/10601325.2016.1120174]
[75]
Bai, H.; Peng, R.; Wang, D.; Sawyer, M.; Fu, T.; Cui, C.; Tan, W. A minireview on multiparameter-activated nanodevices for cancer imag-ing and therapy. Nanoscale, 2020, 12(42), 21571-21582.
[http://dx.doi.org/10.1039/D0NR04080K] [PMID: 33108432]
[76]
Hu, S.H.; Kuo, K.T.; Tung, W.L.; Liu, D.M.; Chen, S.Y. A multifunctional nanodevice capable of imaging, magnetically controlling, and in situ monitoring drug release. Adv. Funct. Mater., 2009, 19(21), 3396-3403.
[http://dx.doi.org/10.1002/adfm.200900465]
[77]
Butcher, N.J.; Mortimer, G.M.; Minchin, R.F. Unravelling the stealth effect. Nat. Nanotechnol., 2016, 11(4), 310-311.
[http://dx.doi.org/10.1038/nnano.2016.6] [PMID: 26878145]
[78]
Pradhan, S.; Roy, I.; Lodh, G.; Patra, P.; Choudhury, S.R.; Samanta, A.; Goswami, A. Entomotoxicity and biosafety assessment of PEGylated acephate nanoparticles: A biologically safe alternative to neurotoxic pesticides. J. Environ. Sci. Health B, 2013, 48(7), 559-569.
[http://dx.doi.org/10.1080/03601234.2013.774891] [PMID: 23581688]
[79]
Servin, A.D.; Morales, M.I.; Castillo-Michel, H.; Hernandez-Viezcas, J.A.; Munoz, B.; Zhao, L.; Nunez, J.E.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Synchrotron verification of TiO2 accumulation in cucumber fruit: A possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ. Sci. Technol., 2013, 47(20), 11592-11598.
[http://dx.doi.org/10.1021/es403368j] [PMID: 24040965]
[80]
Adak, T.; Kumar, J.; Dey, D.; Shakil, N.A.; Walia, S. Residue and bio-efficacy evaluation of controlled release formulations of imidaclo-prid against pests in soybean (G lycine max). J. Environ. Sci. Health B, 2012, 47(3), 226-231.
[http://dx.doi.org/10.1080/03601234.2012.634368] [PMID: 22375595]
[81]
DBT Guidelines for evaluation of nano-based agri-input and food products in India; , 2020. Available from : dbtindia.gov.in/sites/default/files/Guidlines%20Document.pdff (accessed on 16.04.2021.)
[82]
Amenta, V.; Aschberger, K.; Arena, M.; Bouwmeester, H.; Botelho Moniz, F.; Brandhoff, P.; Gottardo, S.; Marvin, H.J.P.; Mech, A. Qui-ros Pesudo, L.; Rauscher, H.; Schoonjans, R.; Vettori, M.V.; Weigel, S.; Peters, R.J. Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regul. Toxicol. Pharmacol., 2015, 73(1), 463-476.
[http://dx.doi.org/10.1016/j.yrtph.2015.06.016] [PMID: 26169479]
[83]
Kumar, R.; Tyagi, R.; Shakil, N.A.; Parmar, V.S.; Kumar, J.; Watterson, A.C. Self‐Assembly of PEG and diester copolymers: Effect of PEG length, linker, concentration and temperature. J. Macromol. Sci. Part A Pure Appl. Chem., 2005, 42(11), 1523-1528.
[http://dx.doi.org/10.1080/10601320500229087]
[84]
Kumari, A.; Kumar, J.; Shakil, N.A.; Singh, B.B.; Watterson, A.C. Synthesis and characterization of amphiphilic PEG based polymers and their self-assembling behavior. J. Macromol. Sci. Part A Pure Appl. Chem., 2015, 52(6), 417-424.
[http://dx.doi.org/10.1080/10601325.2015.1029367]
[85]
Esmaeili, A.; Saremnia, B. Preparation of extract-loaded nanocapsules from Onopordon leptolepis DC. Ind. Crops Prod., 2012, 37(1), 259-263.
[http://dx.doi.org/10.1016/j.indcrop.2011.12.010]
[86]
Singh, B.B.; Shakil, N.A.; Kumar, J.; Walia, S.; Kar, A. Development of slow release formulations of β-carotene employing amphiphilic polymers and their release kinetics study in water and different pH conditions. J. Food Sci. Technol., 2015, 52(12), 8068-8076.
[http://dx.doi.org/10.1007/s13197-015-1925-x] [PMID: 26604379]
[87]
Kaushik, P.; Shakil, N.A.; Kumar, J.; Watterson, A.C. Synthesis and characterization of novel poly (ethylene glycol) based amphiphilic polymers. J. Macromol. Sci. Part A Pure Appl. Chem., 2012, 49(2), 111-115.
[http://dx.doi.org/10.1080/10601325.2012.633435]