Current Medicinal Chemistry

Author(s): Ioannis D. Karantas, Androulla N. Miliotou* and Panoraia I. Siafaka*

DOI: 10.2174/0929867331666230809143758

DownloadDownload PDF Flyer Cite As
An Updated Review For Hyperuricemia and Gout Management; Special Focus on the Available Drug Delivery Systems and Clinical Trials

Page: [5856 - 5883] Pages: 28

  • * (Excluding Mailing and Handling)

Abstract

Background: Hyperuricemia belongs to metabolic syndromes where increased uric acid levels are identified in the blood serum. Such a syndrome could be responsible for kidney stone formation, gout, hypertension, and chronic kidney diseases. It has been reported that cardiovascular risks have been linked with hyperuricemia. Gout is of the most frequent manifestations due to hyperuricemia; its management involves various pharmacological available options and dietary changes. Throughout the literature, various dosage forms are studied as alternative options to the present drug delivery systems.

Objective: To update and summarize the current information for gout and hyperuricemia management.

Methods: Authors have performed a thorough literature research from 2010-2023 using keywords such as hyperuricemia, gout, diagnosis, guidelines, drug delivery and clinical trials. The databases used were PubMed, ScienceDirect. According to our inclusion criteria, all studies which include the previous terms, as well as drugs or other molecules that can be applied for gout and/or hyperuricemia management, were added.

Results: In this article, authors have summarized the pathogenesis, diagnosis and updated guidelines for gout and hyperuricemia management. Moreover, the authors have reviewed and discussed current drug delivery systems found in the literature, including drugs targeting the above disorders. Finally, the available clinical trials assessing the efficacy of newer drugs or combinations of the past ones, are being discussed.

Conclusion: The available drugs and dosage forms are limited, and therefore, scientific society should focus on the development of more efficient drug delivery systems for hyperuricemia and gout management.

Keywords: Hyperuricemia, gout, gout management, metabolic syndromes, drug delivery, clinical trials.

[1]
Gustafsson, D.; Unwin, R. The pathophysiology of hyperuricaemia and its possible relationship to cardiovascular disease, morbidity and mortality. BMC Nephrol., 2013, 14(1), 164.
[http://dx.doi.org/10.1186/1471-2369-14-164] [PMID: 23895142]
[2]
Desideri, G.; Castaldo, G.; Lombardi, A.; Mussap, M.; Testa, A.; Pontremoli, R.; Punzi, L.; Borghi, C. Is it time to revise the normal range of serum uric acid levels? Eur. Rev. Med. Pharmacol. Sci., 2014, 18(9), 1295-1306.
[PMID: 24867507]
[3]
George, C.; Minter, D.A. Hyperuricemia. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2022.
[4]
Skoczyńska, M.; Chowaniec, M.; Szymczak, A.; Langner-Hetmańczuk, A.; Maciążek-Chyra, B.; Wiland, P. Pathophysiology of hyperuricemia and its clinical significance – a narrative review. Reumatologia, 2020, 58(5), 312-323.
[http://dx.doi.org/10.5114/reum.2020.100140] [PMID: 33227090]
[5]
Yokose, C.; McCormick, N.; Choi, H.K. The role of diet in hyperuricemia and gout. Curr. Opin. Rheumatol., 2021, 33(2), 135-144.
[http://dx.doi.org/10.1097/BOR.0000000000000779] [PMID: 33399399]
[6]
Yanai, H.; Adachi, H.; Hakoshima, M.; Katsuyama, H. Molecular biological and clinical understanding of the pathophysiology and treatments of hyperuricemia and its association with metabolic syndrome, cardiovascular diseases and chronic kidney disease. Int. J. Mol. Sci., 2021, 22(17), 9221.
[http://dx.doi.org/10.3390/ijms22179221] [PMID: 34502127]
[7]
Mahadita, G.W.; Suwitra, K. The role of hyperuricemia in the pathogenesis and progressivity of chronic kidney disease. Open Access Maced. J. Med. Sci., 2021, 9, 428-435.
[http://dx.doi.org/10.3889/oamjms.2021.7100]
[8]
Benn, C.L.; Dua, P.; Gurrell, R.; Loudon, P.; Pike, A.; Storer, R.I.; Vangjeli, C. Physiology of hyperuricemia and urate-lowering treatments. Front. Med., 2018, 5, 160.
[http://dx.doi.org/10.3389/fmed.2018.00160] [PMID: 29904633]
[9]
Yu, W.; Cheng, J.D. Uric acid and cardiovascular disease: an update from molecular mechanism to clinical perspective. Front. Pharmacol., 2020, 11, 582680.
[http://dx.doi.org/10.3389/fphar.2020.582680] [PMID: 33304270]
[10]
Chen, C.; Lü, J.M.; Yao, Q. Hyperuricemia-related diseases and xanthine oxidoreductase (XOR) inhibitors: An overview. Med. Sci. Monit., 2016, 22, 2501-2512.
[http://dx.doi.org/10.12659/MSM.899852] [PMID: 27423335]
[11]
Dehlin, M.; Jacobsson, L.; Roddy, E. Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol., 2020, 16(7), 380-390.
[http://dx.doi.org/10.1038/s41584-020-0441-1] [PMID: 32541923]
[12]
Suresh, E.; Das, P. Recent advances in management of gout. QJM, 2012, 105(5), 407-417.
[http://dx.doi.org/10.1093/qjmed/hcr242] [PMID: 22198943]
[13]
Bove, M.; Cicero, A.F.G.; Veronesi, M.; Borghi, C. An evidence-based review on urate-lowering treatments: Implications for optimal treatment of chronic hyperuricemia. Vasc. Health Risk Manag., 2017, 13, 23-28.
[http://dx.doi.org/10.2147/VHRM.S115080] [PMID: 28223818]
[14]
Singh, S.; Parashar, P.; Kanoujia, J.; Singh, I.; Saha, S.; Saraf, S.A. Transdermal potential and anti-gout efficacy of Febuxostat from niosomal gel. J. Drug Deliv. Sci. Technol., 2017, 39, 348-361.
[http://dx.doi.org/10.1016/j.jddst.2017.04.020]
[15]
Kim, H.S.; Lee, C.M.; Yun, Y.H.; Kim, Y.S.; Yoon, S. Synthesis and drug release properties of melanin added functional allopurinol incorporated starch-based biomaterials. Int. J. Biol. Macromol., 2022, 209, 1477-1485.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.04.116]
[16]
Avena-Woods, C.; Hilas, O. Febuxostat (Uloric), a new treatment option for gout. P&T, 2010, 35(2), 82-85.
[17]
Becker, M.A.; Baraf, H.S.B.; Yood, R.A.; Dillon, A.; Vázquez-Mellado, J.; Ottery, F.D.; Khanna, D.; Sundy, J.S. Long-term safety of pegloticase in chronic gout refractory to conventional treatment. Ann. Rheum. Dis., 2013, 72(9), 1469-1474.
[http://dx.doi.org/10.1136/annrheumdis-2012-201795]
[18]
FDA. FDA-Biologic License Application (BLA): 125293, Available from: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=BasicSearch.process (Accessed on: 2023-03-02).
[19]
FDA. FDA-New Drug Application (NDA): 207988, Available from: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=207988 (Accessed on: 2023-03-02).
[20]
Kimura, Y.; Tsukui, D.; Kono, H. Uric acid in inflammation and the pathogenesis of atherosclerosis. Int. J. Mol. Sci., 2021, 22(22), 12394.
[http://dx.doi.org/10.3390/ijms222212394] [PMID: 34830282]
[21]
Park, J.H.; Jo, Y.I.; Lee, J.H. Renal effects of uric acid: Hyperuricemia and hypouricemia. Korean J. Intern. Med., 2020, 35(6), 1291-1304.
[http://dx.doi.org/10.3904/kjim.2020.410] [PMID: 32872730]
[22]
Vargas-Santos, A.B.; Taylor, W.J.; Neogi, T. Gout classification criteria: Update and implications. Curr. Rheumatol. Rep., 2016, 18(7), 46.
[http://dx.doi.org/10.1007/s11926-016-0594-8] [PMID: 27342957]
[23]
Eckenstaler, R.; Benndorf, R.A. The role of ABCG2 in the pathogenesis of primary hyperuricemia and gout—an update. Int. J. Mol. Sci., 2021, 22(13), 6678.
[http://dx.doi.org/10.3390/ijms22136678] [PMID: 34206432]
[24]
Torres, R.J.; Puig, J.G. Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome. Orphanet J. Rare Dis., 2007, 2(1), 48.
[http://dx.doi.org/10.1186/1750-1172-2-48] [PMID: 18067674]
[25]
Matuszkiewicz-Rowinska, J.; Malyszko, J. Prevention and treatment of tumor lysis syndrome in the era of onco-nephrology progress. Kidney Blood Press. Res., 2020, 45(5), 645-660.
[http://dx.doi.org/10.1159/000509934] [PMID: 32998135]
[26]
Martillo, M.A.; Nazzal, L.; Crittenden, D.B. The crystallization of monosodium urate. Curr. Rheumatol. Rep., 2014, 16(2), 400.
[http://dx.doi.org/10.1007/s11926-013-0400-9] [PMID: 24357445]
[27]
Singh, H.; Torralba, K.D. Therapeutic challenges in the management of gout in the elderly. Geriatrics, 2008, 63(7), 13-18, 20.
[PMID: 18593209]
[28]
Li, Q.; Li, X.; Wang, J.; Liu, H.; Kwong, J.S.W.; Chen, H.; Li, L.; Chung, S.C.; Shah, A.; Chen, Y.; An, Z.; Sun, X.; Hemingway, H.; Tian, H.; Li, S. Diagnosis and treatment for hyperuricemia and gout: A systematic review of clinical practice guidelines and consensus statements. BMJ Open, 2019, 9(8), e026677.
[http://dx.doi.org/10.1136/bmjopen-2018-026677] [PMID: 31446403]
[29]
Roddy, E.; Doherty, M. Treatment of hyperuricaemia and gout. Clin. Med., 2013, 13(4), 400-403.
[http://dx.doi.org/10.7861/clinmedicine.13-4-400]
[30]
Dalbeth, N.; Lauterio, T.J.; Wolfe, H.R. Mechanism of action of colchicine in the treatment of gout. Clin. Ther., 2014, 36(10), 1465-1479.
[http://dx.doi.org/10.1016/j.clinthera.2014.07.017] [PMID: 25151572]
[31]
Lu, J.; He, Y.; Terkeltaub, R.; Sun, M.; Ran, Z.; Xu, X.; Wang, C.; Li, X.; Hu, S.; Xue, X.; Yan, F.; Zhang, H.; Yin, H.; Shi, Y.; Dalbeth, N.; Li, C. Colchicine prophylaxis is associated with fewer gout flares after COVID-19 vaccination. Ann. Rheum. Dis., 2022, 81(8), 1189-1193.
[http://dx.doi.org/10.1136/annrheumdis-2022-222199] [PMID: 35277390]
[32]
Tao, H.; Mo, Y.; Liu, W.; Wang, H. A review on gout: Looking back and looking ahead. Int. Immunopharmacol., 2023, 117, 109977.
[http://dx.doi.org/10.1016/j.intimp.2023.109977] [PMID: 37012869]
[33]
FitzGerald, J.D.; Dalbeth, N.; Mikuls, T.; Brignardello-Petersen, R.; Guyatt, G.; Abeles, A.M.; Gelber, A.C.; Harrold, L.R.; Khanna, D.; King, C.; Levy, G.; Libbey, C.; Mount, D.; Pillinger, M.H.; Rosenthal, A.; Singh, J.A.; Sims, J.E.; Smith, B.J.; Wenger, N.S.; Bae, S.S.; Danve, A.; Khanna, P.P.; Kim, S.C.; Lenert, A.; Poon, S.; Qasim, A.; Sehra, S.T.; Sharma, T.S.K.; Toprover, M.; Turgunbaev, M.; Zeng, L.; Zhang, M.A.; Turner, A.S.; Neogi, T. 2020 American college of rheumatology guideline for the management of gout. Arthritis Care Res., 2020, 72(6), 744-760.
[http://dx.doi.org/10.1002/acr.24180] [PMID: 32391934]
[34]
Terkeltaub, R. Management of gout and hyperuricemia. In: Rheumatology; Elsevier, 2015; pp. 1575-1582.
[http://dx.doi.org/10.1016/B978-0-323-09138-1.00189-3]
[35]
Stamp, L.K.; Chapman, P.T.; Barclay, M.L.; Horne, A.; Frampton, C.; Tan, P.; Drake, J.; Dalbeth, N. How much allopurinol does it take to get to target urate? Comparison of actual dose with creatinine clearance-based dose. Arthritis Res. Ther., 2018, 20(1), 255.
[http://dx.doi.org/10.1186/s13075-018-1755-0] [PMID: 30446002]
[36]
Saag, K.G.; Becker, M.A.; Whelton, A.; Hunt, B.; Castillo, M.; Kisfalvi, K.; Gunawardhana, L. Efficacy and safety of febuxostat extended and immediate release in patients with gout and renal impairment: A phase III placebo-controlled study. Arthritis Rheumatol., 2019, 71(1), 143-153.
[http://dx.doi.org/10.1002/art.40685] [PMID: 30073793]
[37]
Azevedo, V.F.; Kos, I.A.; Vargas-Santos, A.B.; da Rocha, C.P.G.; dos Santos, P.E. Benzbromarone in the treatment of gout. Adv. Rheumatol., 2019, 59(1), 37.
[http://dx.doi.org/10.1186/s42358-019-0080-x] [PMID: 31391099]
[38]
Zhao, Z.; Liu, J.; Yuan, L.; Yang, Z.; Kuang, P.; Liao, H.; Luo, J.; Feng, H.; Zheng, F.; Chen, Y.; Wu, T.; Guo, J.; Cao, Y.; Yang, Y.; Lin, C.; Zhang, Q.; Chen, J.; Pang, J. Discovery of novel benzbromarone analogs with improved pharmacokinetics and benign toxicity profiles as antihyperuricemic agents. Eur. J. Med. Chem., 2022, 242, 114682.
[http://dx.doi.org/10.1016/j.ejmech.2022.114682] [PMID: 36001935]
[39]
Okur, N.Ü.; Siafaka, P.I.; Polat, D.Ç.; Karadağ, A.E.; Köprülü, R.E.P.; Karantas, I.D.; Mutlu, G.; Çağlar, E.Ş.; Okur, M.E. Phytochemical compounds loaded to nanocarriers as potential therapeutic substances for Alzheimer’s disease-could they be effective? Curr. Pharm. Des., 2022, 28(30), 2437-2460.
[http://dx.doi.org/10.2174/1381612828666220411104128] [PMID: 35410592]
[40]
Rahmi, E.P.; Kumolosasi, E.; Jalil, J.; Husain, K.; Buang, F.; Abd Razak, A.F.; Jamal, J.A. Anti-hyperuricemic and anti-inflammatory effects of Marantodes pumilum as potential treatment for gout. Front. Pharmacol., 2020, 11, 289.
[http://dx.doi.org/10.3389/fphar.2020.00289] [PMID: 32256360]
[41]
Wu, Z.; Xue, Q.; Zhao, Z.; Zhou, P.; Zhou, Q.; Zhang, Z.; Deng, J.; Yang, K.; Fan, H.; Wang, Y.; Wang, Z. Suppressive effect of huzhentongfeng on experimental gouty arthritis: An in vivo and in vitro study. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-15.
[http://dx.doi.org/10.1155/2019/2969364] [PMID: 31871475]
[42]
Ye, N.S. A minireview of analytical methods for the geographical origin analysis of teas (Camellia sinensis). Crit. Rev. Food Sci. Nutr., 2012, 52(9), 775-780.
[http://dx.doi.org/10.1080/10408398.2010.508568] [PMID: 22698268]
[43]
Zhu, C.; Tai, L.L.; Wan, X.; Li, D.; Zhao, Y.Q.; Xu, Y. Comparative effects of green and black tea extracts on lowering serum uric acid in hyperuricemic mice. Pharm. Biol., 2017, 55(1), 2123-2128.
[http://dx.doi.org/10.1080/13880209.2017.1377736] [PMID: 28938867]
[44]
Shi, M.; Lu, Y.; Wu, J.; Zheng, Z.; Lv, C.; Ye, J.; Qin, S.; Zeng, C. Beneficial effects of theaflavins on metabolic syndrome: From molecular evidence to gut microbiome. Int. J. Mol. Sci., 2022, 23(14), 7595.
[http://dx.doi.org/10.3390/ijms23147595] [PMID: 35886943]
[45]
Chen, Y.; Luo, L.; Hu, S.; Gan, R.; Zeng, L. The chemistry, processing, and preclinical anti-hyperuricemia potential of tea: a comprehensive review. Crit. Rev. Food Sci. Nutr., 2022, 3, 1-26.
[http://dx.doi.org/10.1080/10408398.2022.2040417] [PMID: 35236179]
[46]
Afify, H.; Abo-Youssef, A.M.; Abdel-Rahman, H.M.; Allam, S.; Azouz, A.A. The modulatory effects of cinnamaldehyde on uric acid level and IL-6/JAK1/STAT3 signaling as a promising therapeutic strategy against benign prostatic hyperplasia. Toxicol. Appl. Pharmacol., 2020, 402, 115122.
[http://dx.doi.org/10.1016/j.taap.2020.115122] [PMID: 32628957]
[47]
Wang, S.Y.; Yang, C.W.; Liao, J.W.; Zhen, W.W.; Chu, F.H.; Chang, S.T. Essential oil from leaves of Cinnamomum osmophloeum acts as a xanthine oxidase inhibitor and reduces the serum uric acid levels in oxonate-induced mice. Phytomedicine, 2008, 15(11), 940-945.
[http://dx.doi.org/10.1016/j.phymed.2008.06.002] [PMID: 18693097]
[48]
Li, Q.; Lin, H.; Niu, Y.; Liu, Y.; Wang, Z.; Song, L.; Gao, L.; Li, L. Mangiferin promotes intestinal elimination of uric acid by modulating intestinal transporters. Eur. J. Pharmacol., 2020, 888, 173490.
[http://dx.doi.org/10.1016/j.ejphar.2020.173490] [PMID: 32827538]
[49]
Qin, Z.; Wang, S.; Lin, Y.; Zhao, Y.; Yang, S.; Song, J.; Xie, T.; Tian, J.; Wu, S.; Du, G. Antihyperuricemic effect of mangiferin aglycon derivative J99745 by inhibiting xanthine oxidase activity and urate transporter 1 expression in mice. Acta Pharm. Sin. B, 2018, 8(2), 306-315.
[http://dx.doi.org/10.1016/j.apsb.2017.05.004] [PMID: 29719791]
[50]
Li, X.; Jin, W.; Zhang, W.; Zheng, G. The inhibitory kinetics and mechanism of quercetin-3-O-rhamnoside and chlorogenic acid derived from Smilax china L. EtOAc fraction on xanthine oxidase. Int. J. Biol. Macromol., 2022, 213, 447-455.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.05.188] [PMID: 35660039]
[51]
Wu, X.H.; Wang, C.Z.; Wang, S.Q.; Mi, C.; He, Y.; Zhang, J.; Zhang, Y.W.; Anderson, S.; Yuan, C.S. Anti-hyperuricemia effects of allopurinol are improved by Smilax riparia, a traditional Chinese herbal medicine. J. Ethnopharmacol., 2015, 162, 362-368.
[http://dx.doi.org/10.1016/j.jep.2015.01.012] [PMID: 25617746]
[52]
Huang, L.; Deng, J.; Chen, G.; Zhou, M.; Liang, J.; Yan, B.; Shu, J.; Liang, Y.; Huang, H. The anti-hyperuricemic effect of four astilbin stereoisomers in Smilax glabra on hyperuricemic mice. J. Ethnopharmacol., 2019, 238, 111777.
[http://dx.doi.org/10.1016/j.jep.2019.03.004] [PMID: 30851369]
[53]
Wu, X.H.; Ruan, J.L.; Zhang, J.; Wang, S.Q.; Zhang, Y.W. Pallidifloside D, a saponin glycoside constituent from Smilax riparia, resist to hyperuricemia based on URAT1 and GLUT9 in hyperuricemic mice. J. Ethnopharmacol., 2014, 157, 201-205.
[http://dx.doi.org/10.1016/j.jep.2014.09.034] [PMID: 25267580]
[54]
Hou, P.Y.; Mi, C.; He, Y.; Zhang, J.; Wang, S.Q.; Yu, F.; Anderson, S.; Zhang, Y.W.; Wu, X.H. Pallidifloside D from Smilax riparia enhanced allopurinol effects in hyperuricemia mice. Fitoterapia, 2015, 105, 43-48.
[http://dx.doi.org/10.1016/j.fitote.2015.06.002] [PMID: 26051087]
[55]
Endrini, S.; Abu Bakar, F.I.; Abu Bakar, M.F.; Abdullah, N.; Marsiati, H. Phytochemical profiling, in vitro and in vivo xanthine oxidase inhibition and antihyperuricemic activity of Christia vespertilionis leaf. Biocatal. Agric. Biotechnol., 2023, 48, 102645.
[http://dx.doi.org/10.1016/j.bcab.2023.102645]
[56]
Bao, R.; Chen, Q.; Li, Z.; Wang, D.; Wu, Y.; Liu, M.; Zhang, Y.; Wang, T. Eurycomanol alleviates hyperuricemia by promoting uric acid excretion and reducing purine synthesis. Phytomedicine, 2022, 96, 153850.
[http://dx.doi.org/10.1016/j.phymed.2021.153850] [PMID: 34785103]
[58]
Danve, A.; Sehra, S.T.; Neogi, T. Role of diet in hyperuricemia and gout. Best Pract. Res. Clin. Rheumatol., 2021, 35(4), 101723.
[http://dx.doi.org/10.1016/j.berh.2021.101723] [PMID: 34802900]
[59]
García-Arroyo, F.E.; Gonzaga, G.; Muñoz-Jiménez, I.; Blas-Marron, M.G.; Silverio, O.; Tapia, E.; Soto, V.; Ranganathan, N.; Ranganathan, P.; Vyas, U.; Irvin, A.; Ir, D.; Robertson, C.E.; Frank, D.N.; Johnson, R.J.; Sánchez-Lozada, L.G. Probiotic supplements prevented oxonic acid-induced hyperuricemia and renal damage. PLoS One, 2018, 13(8), e0202901.
[http://dx.doi.org/10.1371/journal.pone.0202901] [PMID: 30142173]
[60]
Russell, M.D.; Rutherford, A.I.; Ellis, B.; Norton, S.; Douiri, A.; Gulliford, M.C.; Cope, A.P.; Galloway, J.B. Management of gout following 2016/2017 European (EULAR) and British (BSR) guidelines: An interrupted time-series analysis in the United Kingdom. Lancet Reg. Health Eur., 2022, 18, 100416.
[http://dx.doi.org/10.1016/j.lanepe.2022.100416] [PMID: 35814340]
[61]
Kim, H.S.; Yun, Y.H.; Shim, W.G.; Yoon, S.D. Preparation and evaluation of functional allopurinol imprinted starch based biomaterials for transdermal drug delivery. Int. J. Biol. Macromol., 2021, 175, 217-228.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.004] [PMID: 33548320]
[62]
Abdulaal, W.H.; Alhakamy, N.A.; Hosny, K.M. Preparation and characterization of a thioctic acid nanostructured lipid carrier to enhance the absorption profile and limit the nephrotoxicity associated with allopurinol in the treatment of gout. J. Drug Deliv. Sci. Technol., 2021, 66, 102859.
[http://dx.doi.org/10.1016/j.jddst.2021.102859]
[63]
Ali, Z.; Din, F.; Zahid, F.; Sohail, S.; Imran, B.; Khan, S.; Malik, M.; Zeb, A.; Khan, G.M. Transdermal delivery of allopurinol-loaded nanostructured lipid carrier in the treatment of gout. BMC Pharmacol. Toxicol., 2022, 23(1), 86.
[http://dx.doi.org/10.1186/s40360-022-00625-y] [PMID: 36443818]
[64]
Patel, B.; Thakkar, H. Formulation development of fast dissolving microneedles loaded with cubosomes of febuxostat: In vitro and in vivo evaluation. Pharmaceutics., 2023, 15(1), 224.
[http://dx.doi.org/10.3390/pharmaceutics15010224] [PMID: 36678853]
[65]
Bhatt, S.; Sharma, J.B.; Kamboj, R.; Kumar, M.; Saini, V.; Mandge, S. Design and optimization of febuxostat-loaded nano lipid carriers using full factorial design. Turk. J. Pharm. Sci., 2021, 18(1), 61-67.
[http://dx.doi.org/10.4274/tjps.galenos.2019.32656]
[66]
Ahuja, B.K.; Jena, S.K.; Paidi, S.K.; Bagri, S.; Suresh, S. Formulation, optimization and in vitroin vivo evaluation of febuxostat nanosuspension. Int. J. Pharm., 2015, 478(2), 540-552.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.003] [PMID: 25490182]
[67]
Vohra, A.M.; Patel, C.V.; Kumar, P.; Thakkar, H.P. Development of dual drug loaded solid self microemulsifying drug delivery system: Exploring interfacial interactions using QbD coupled risk based approach. J. Mol. Liq., 2017, 242, 1156-1168.
[http://dx.doi.org/10.1016/j.molliq.2017.08.002]
[68]
Sharma, O.P.; Patel, V.; Mehta, T. Design of experiment approach in development of febuxostat nanocrystal: Application of Soluplus® as stabilizer. Powder Technol., 2016, 302, 396-405.
[http://dx.doi.org/10.1016/j.powtec.2016.09.004]
[69]
Sheng, X.; Tang, J.; Bao, J.; Shi, X.; Su, W. Enhancement of in vitro dissolution and in vivo performance/oral absorption of FEB-poloxamer-TPGS solid dispersion. J. Drug Deliv. Sci. Technol., 2018, 46, 408-415.
[http://dx.doi.org/10.1016/j.jddst.2018.06.005]
[70]
Al-Amodi, Y.A.; Hosny, K.M.; Alharbi, W.S.; Safo, M.K.; El-Say, K.M. Investigating the potential of transmucosal delivery of febuxostat from oral lyophilized tablets loaded with a self-nanoemulsifying delivery system. Pharmaceutics., 2020, 12(6), 534.
[http://dx.doi.org/10.3390/pharmaceutics12060534] [PMID: 32531910]
[71]
Habib, B.A.; Abd El-Samiae, A.S.; El-Houssieny, B.M.; Tag, R. Formulation, characterization, optimization, and in-vivo performance of febuxostat self-nano-emulsifying system loaded sublingual films. Drug Deliv., 2021, 28(1), 1321-1333.
[http://dx.doi.org/10.1080/10717544.2021.1927247] [PMID: 34176376]
[72]
Froelich, A.; Osmałek, T.; Snela, A.; Kunstman, P.; Jadach, B.; Olejniczak, M.; Roszak, G.; Białas, W. Novel microemulsion-based gels for topical delivery of indomethacin: Formulation, physicochemical properties and in vitro drug release studies. J. Colloid Interface Sci., 2017, 507, 323-336.
[http://dx.doi.org/10.1016/j.jcis.2017.08.011] [PMID: 28806653]
[73]
Chandrasekar, D.; Sistla, R.; Ahmad, F.J.; Khar, R.K.; Diwan, P.V. The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats. Biomaterials, 2007, 28(3), 504-512.
[http://dx.doi.org/10.1016/j.biomaterials.2006.07.046] [PMID: 16996126]
[74]
Salahuddin, N.; Gaber, M.; Elneanaey, S.; Snowdon, M.R.; Abdelwahab, M.A. Co-delivery of norfloxacin and tenoxicam in Ag-TiO2/poly(lactic acid) nanohybrid. Int. J. Biol. Macromol., 2021, 180, 771-781.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.033] [PMID: 33705836]
[75]
Ammar, H.O.; Ghorab, M.; El-Nahhas, S.A.; Higazy, I.M. Proniosomes as a carrier system for transdermal delivery of tenoxicam. Int. J. Pharm., 2011, 405(1-2), 142-152.
[http://dx.doi.org/10.1016/j.ijpharm.2010.11.003] [PMID: 21129461]
[76]
Mahamat Nor, S.B.; Woi, P.M.; Ng, S.H. Characterisation of ionic liquids nanoemulsion loaded with piroxicam for drug delivery system. J. Mol. Liq., 2017, 234, 30-39.
[http://dx.doi.org/10.1016/j.molliq.2017.03.042]
[77]
Liu, M.; Chen, L.; Zhao, Y.; Gan, L.; Zhu, D.; Xiong, W.; Lv, Y.; Xu, Z.; Hao, Z.; Chen, L. Preparation, characterization and properties of liposome-loaded polycaprolactone microspheres as a drug delivery system. Colloids Surf. A Physicochem. Eng. Asp., 2012, 395, 131-136.
[http://dx.doi.org/10.1016/j.colsurfa.2011.12.017]
[78]
Dasgeb, B.; Kornreich, D.; McGuinn, K.; Okon, L.; Brownell, I.; Sackett, D.L. Colchicine: An ancient drug with novel applications. Br. J. Dermatol., 2018, 178(2), 350-356.
[http://dx.doi.org/10.1111/bjd.15896] [PMID: 28832953]
[79]
Zoghebi, K.A.; Bousoik, E.; Parang, K.; Elsaid, K.A. Design and biological evaluation of colchicine-CD44-targeted peptide conjugate in an in vitro model of crystal induced inflammation. Molecules., 2019, 25(1), 46.
[http://dx.doi.org/10.3390/molecules25010046] [PMID: 31877739]
[80]
Morad, H.; Jahanshahi, M.; Akbari, J.; Saeedi, M.; Gill, P.; Enayatifard, R. Novel topical and transdermal delivery of colchicine with chitosan based biocomposite nanofiberous system; formulation, optimization, characterization, ex vivo skin deposition/permeation, and anti-melanoma evaluation. Mater. Chem. Phys., 2021, 263(263), 124381.
[http://dx.doi.org/10.1016/j.matchemphys.2021.124381]
[81]
El-Feky, G.S.; El-Naa, M.M.; Mahmoud, A.A. Flexible nano-sized lipid vesicles for the transdermal delivery of colchicine; in vitro/in vivo investigation. J. Drug Deliv. Sci. Technol., 2019, 49(49), 24-34.
[http://dx.doi.org/10.1016/j.jddst.2018.10.036]
[82]
Lv, B.; Yang, G.; Wei, Y.; Lei, Y.; Ding, Y.; Gong, W.; Wang, Y.; Gao, C.; Han, C. A pharmacokinetic and pharmacodynamic evaluation of colchicine sustained-release pellets for preventing gout. J. Drug Deliv. Sci. Technol., 2022, 67(67), 103051.
[http://dx.doi.org/10.1016/j.jddst.2021.103051]
[83]
Zeng, Z.; Feng, H.; Hao, M.; Zhang, Y. One-pot approach to form in situ colchicine-containing nano-hydroxyapatite within microemulsion composite system for sustained transdermal delivery. Compos. Commun., 2021, 25(February), 100698.
[http://dx.doi.org/10.1016/j.coco.2021.100698]
[84]
Zhang, Y.; Zhang, N.; Song, H.; Li, H.; Wen, J.; Tan, X.; Zheng, W. Design, characterization and comparison of transdermal delivery of colchicine via borneol-chemically-modified and borneol-physically-modified ethosome. Drug Deliv., 2019, 26(1), 70-77.
[http://dx.doi.org/10.1080/10717544.2018.1559258] [PMID: 30744424]
[85]
Abdulbaqi, I.M.; Darwis, Y.; Abou Assi, R.; Abdul Karim Khan, N. Transethosomal gels as carriers for the transdermal delivery of colchicine: statistical optimization, characterization, and ex vivo evaluation. Drug Des. Devel. Ther., 2018, 12, 795-813.
[http://dx.doi.org/10.2147/DDDT.S158018] [PMID: 29670336]
[86]
Liu, Y.; Zhu, X.; Ji, S.; Huang, Z.; Zang, Y.; Ding, Y.; Zhang, J.; Ding, Z. Transdermal delivery of colchicine using dissolvable microneedle arrays for the treatment of acute gout in a rat model. Drug Deliv., 2022, 29(1), 2984-2994.
[http://dx.doi.org/10.1080/10717544.2022.2122632] [PMID: 36101018]
[87]
Lei, Y.; Yang, G.; Du, F.; Yi, J.; Quan, L.; Liu, H.; Zhou, X.; Gong, W.; Han, J.; Wang, Y.; Gao, C. Formulation and evaluation of a drug-in-adhesive patch for transdermal delivery of colchicine. Pharmaceutics, 2022, 14(10), 2245.
[http://dx.doi.org/10.3390/pharmaceutics14102245] [PMID: 36297680]
[88]
Sun, J.; Zhuang, P.; Wen, S.; Ge, M.; Zhou, Z.; Li, D.; Liu, C.; Mei, X. Folic acid-modified lysozyme protected gold nanoclusters as an effective anti-inflammatory drug for rapid relief of gout flares in hyperuricemic rats. Mater. Des., 2022, 217, 110642.
[http://dx.doi.org/10.1016/j.matdes.2022.110642]
[89]
Cho, J.; Kim, S.H.; Yang, B.; Jung, J.M.; Kwon, I.; Lee, D.S. Albumin affibody-outfitted injectable gel enabling extended release of urate oxidase-albumin conjugates for hyperuricemia treatment. J. Control. Release, 2020, 324, 532-544.
[http://dx.doi.org/10.1016/j.jconrel.2020.05.037] [PMID: 32454120]
[90]
Zhang, X.; Xu, D.; Jin, X.; Liu, G.; Liang, S.; Wang, H.; Chen, W.; Zhu, X.; Lu, Y. Nanocapsules of therapeutic proteins with enhanced stability and long blood circulation for hyperuricemia management. J. Control. Release, 2017, 255, 54-61.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.019] [PMID: 28288895]
[91]
Kim, S.; Kim, M.; Jung, S.; Kwon, K.; Park, J.; Kim, S.; Kwon, I.; Tae, G. Co-delivery of therapeutic protein and catalase-mimic nanoparticle using a biocompatible nanocarrier for enhanced therapeutic effect. J. Control. Release, 2019, 309, 181-189.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.038] [PMID: 31356840]
[92]
Tran, L.; Das, S.; Zhao, L.; Finn, M.G.; Gaucher, E.A. Oral delivery of nanoparticles carrying ancestral uricase enzyme protects against hyperuricemia in knockout mice. Biomacromolecules., 2023, 24(5), 2003-2008.
[http://dx.doi.org/10.1021/acs.biomac.2c01388] [PMID: 37126604]
[93]
Hao, Y.; Li, H.; Cao, Y.; Chen, Y.; Lei, M.; Zhang, T.; Xiao, Y.; Chu, B.; Qian, Z. Uricase and horseradish peroxidase hybrid CaHPO4 nanoflower integrated with transcutaneous patches for treatment of hyperuricemia. J. Biomed. Nanotechnol., 2019, 15(5), 951-965.
[http://dx.doi.org/10.1166/jbn.2019.2752] [PMID: 30890227]
[94]
Kiyani, M.M.; Butt, M.A.; Rehman, H.; Ali, H.; Hussain, S.A.; Obaid, S.; Arif Hussain, M.; Mahmood, T.; Bokhari, S.A.I. Antioxidant and anti-gout effects of orally administered zinc oxide nanoparticles in gouty mice. J. Trace Elem. Med. Biol., 2019, 56, 169-177.
[http://dx.doi.org/10.1016/j.jtemb.2019.08.012] [PMID: 31479800]
[95]
Wang, Q.; Yang, Q.; Cao, X.; Wei, Q.; Firempong, C.K.; Guo, M.; Shi, F.; Xu, X.; Deng, W.; Yu, J. Enhanced oral bioavailability and anti-gout activity of [6]-shogaol-loaded solid lipid nanoparticles. Int. J. Pharm., 2018, 550(1-2), 24-34.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.028] [PMID: 30125653]
[96]
Weng, W.; Wang, Q.; Wei, C.; Man, N.; Zhang, K.; Wei, Q.; Adu-Frimpong, M.; Toreniyazov, E.; Ji, H.; Yu, J.; Xu, X. Preparation, characterization, pharmacokinetics and anti-hyperuricemia activity studies of myricitrin-loaded proliposomes. Int. J. Pharm., 2019, 572, 118735.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118735] [PMID: 31705971]
[97]
Wang, X.; Zhang, Y.; Zhang, M.; Kong, H.; Wang, S.; Cheng, J.; Qu, H.; Zhao, Y. Novel carbon dots derived from Puerariae lobatae radix and their anti-gout effects. Molecules., 2019, 24(22), 4152.
[http://dx.doi.org/10.3390/molecules24224152] [PMID: 31744056]
[98]
Chen, Z.; Han, B.; Liao, L.; Hu, X.; Hu, Q.; Gao, Y.; Qiu, Y. Enhanced transdermal delivery of polydatin via a combination of inclusion complexes and dissolving microneedles for treatment of acute gout arthritis. J. Drug Deliv. Sci. Technol., 2020, 55(55), 101487.
[http://dx.doi.org/10.1016/j.jddst.2019.101487]
[99]
Karunakaran, S.; Hari, R. Comparative antioxidant and anti-gout activities of Citrullus colocynthis loaded fruit silver nanoparticles with its ethanolic extract. Avicenna J. Med. Biotechnol., 2022, 14(4), 303-309.
[http://dx.doi.org/10.18502/ajmb.v14i4.10485] [PMID: 36504570]
[100]
Xu, W.; Liang, M.; Su, W.; Yang, J.; Pu, F.; Xie, Z.; Jin, K.; Polyakov, N.E.; Dushkin, A.V.; Su, W. Self-assembled nanocapsules of celery (Apium graveolens Linn) seed oil: Mechanochemical preparation, characterization and urate-lowering activity. J. Drug Deliv. Sci. Technol., 2021, 66, 102810.
[http://dx.doi.org/10.1016/j.jddst.2021.102810]
[101]
Valsalan Soba, S.; Babu, M.; Panonnummal, R. Ethosomal gel formulation of alpha phellandrene for the transdermal delivery in gout. Adv. Pharm. Bull., 2020, 11(1), 137-149.
[http://dx.doi.org/10.34172/apb.2021.015] [PMID: 33747861]
[102]
Chen, Y.; Li, C.; Duan, S.; Yuan, X.; Liang, J.; Hou, S. Curcumin attenuates potassium oxonate-induced hyperuricemia and kidney inflammation in mice. Biomed. Pharmacother., 2019, 118, 109195.
[http://dx.doi.org/10.1016/j.biopha.2019.109195] [PMID: 31362244]
[103]
Mustafa Kiyani, M.M.; Sohail, M.F.; Shahnaz, G.; Rehman, H.; Akhtar, M.F.; Nawaz, I.; Mahmood, T.; Manzoor, M.; Imran Bokhari, S.A. Evaluation of turmeric nanoparticles as anti-gout agent: Modernization of a traditional drug. Medicina., 2019, 55(1), 10.
[http://dx.doi.org/10.3390/medicina55010010] [PMID: 30642012]
[104]
Pandit, R.S.; Gaikwad, S.C.; Agarkar, G.A.; Gade, A.K.; Rai, M. Curcumin nanoparticles: Physico-chemical fabrication and its in vitro efficacy against human pathogens. 3. Biotech., 2015, 5(6), 991-997.
[http://dx.doi.org/10.1007/s13205-015-0302-9]
[105]
Zhang, M.; Zhang, X.; Tian, T.; Zhang, Q.; Wen, Y.; Zhu, J.; Xiao, D.; Cui, W.; Lin, Y. Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis. Bioact. Mater., 2022, 8, 368-380.
[http://dx.doi.org/10.1016/j.bioactmat.2021.06.003] [PMID: 34541407]
[106]
Xiong, H.; Zhou, Y.; Zhou, Q.; He, D.; Deng, X.; Sun, Q.; Zhang, J. Nanocapsule assemblies as effective enzyme delivery systems against hyperuricemia. Nanomedicine, 2016, 12(6), 1557-1566.
[http://dx.doi.org/10.1016/j.nano.2016.02.010] [PMID: 27013130]
[107]
Ruiz-Miyazawa, K.W.; Staurengo-Ferrari, L.; Pinho-Ribeiro, F.A.; Fattori, V.; Zaninelli, T.H.; Badaro-Garcia, S.; Borghi, S.M.; Andrade, K.C.; Clemente-Napimoga, J.T.; Alves-Filho, J.C.; Cunha, T.M.; Fraceto, L.F.; Cunha, F.Q.; Napimoga, M.H.; Casagrande, R.; Verri, W.A., Jr 15d-PGJ2-loaded nanocapsules ameliorate experimental gout arthritis by reducing pain and inflammation in a PPAR-gamma-sensitive manner in mice. Sci. Rep., 2018, 8(1), 13979.
[http://dx.doi.org/10.1038/s41598-018-32334-0] [PMID: 30228306]
[108]
Lou, J.; Duan, H.; Qin, Q.; Teng, Z.; Gan, F.; Zhou, X.; Zhou, X. Advances in oral drug delivery systems: Challenges and opportunities. Pharmaceutics., 2023, 15(2), 484.
[http://dx.doi.org/10.3390/pharmaceutics15020484] [PMID: 36839807]
[109]
Üstündağ Okur, N.; Siafaka, P.I.; Gökçe, E.H. Challenges in oral drug delivery and applications of lipid nanoparticles as potent oral drug carriers for managing cardiovascular risk factors. Curr. Pharm. Biotechnol., 2020, 21
[http://dx.doi.org/10.2174/1389201021666200804155535]
[110]
Ita, K.B. Transdermal drug delivery: Progress and challenges. J. Drug Deliv. Sci. Technol., 2014, 24(3), 245-250.
[http://dx.doi.org/10.1016/S1773-2247(14)50041-X]
[111]
Zhu, R.; Niu, Y.; Zhou, W.; Wang, S.; Mao, J.; Guo, Y.; Lei, Y.; Xiong, X.; Li, Y.; Guo, L. Effect of nanoparticles on gouty arthritis: A systematic review and meta-analysis. BMC Musculoskelet. Disord., 2023, 24(1), 124.
[http://dx.doi.org/10.1186/s12891-023-06186-3] [PMID: 36788552]
[112]
Albert, J.A.; Hosey, T.; LaMoreaux, B. Increased efficacy and tolerability of pegloticase in patients with uncontrolled gout co-treated with methotrexate: A retrospective study. Rheumatol. Ther., 2020, 7(3), 639-648.
[http://dx.doi.org/10.1007/s40744-020-00222-7] [PMID: 32720081]
[113]
Janssens, H.J.E.M.; Janssen, M.; van de Lisdonk, E.H.; van Riel, P.L.C.M.; van Weel, C. Use of oral prednisolone or naproxen for the treatment of gout arthritis: A double-blind, randomised equivalence trial. Lancet., 2008, 371(9627), 1854-1860.
[http://dx.doi.org/10.1016/S0140-6736(08)60799-0] [PMID: 18514729]
[114]
Cammalleri, L.; Malaguarnera, M. Rasburicase represents a new tool for hyperuricemia in tumor lysis syndrome and in gout. Int. J. Med. Sci., 2007, 4(2), 83-93.
[http://dx.doi.org/10.7150/ijms.4.83] [PMID: 17396159]
[115]
Zeng, W.C.; Li, Q.H.; Tang, A.J.; Li, H.G.; Chen, L.F.; Wei, X.N.; Liang, J.J.; Zheng, D.H.; Dai, L.; Mo, Y.Q. AB1057 efficacy and safety of low-dose rasburicase in combination with conventional urate-lowering therapy for refractory chronic gouty arthritis: A pilot study in. Ann. Rheum. Dis., 2022, 81(S1), 1650.1-1650.
[http://dx.doi.org/10.1136/annrheumdis-2022-eular.3450]
[116]
Ivanov, D.D.; Sinjchenko, O.V.; Golovach, I.Y.; Bevzenko, T.B.; Ivanova, M.D. THU0687 The Impact of Urate-Lowering Therapy on Kidney Function (IMPULSKF): Preliminary Results; BMJ Publishing Group Ltd and European League Against Rheumatism, 2018, pp. -537.
[http://dx.doi.org/10.1136/annrheumdis-2018-eular.3962]
[117]
Terkeltaub, R.; Lee, J.; Min, J.; Shin, S.; Saag, K.G. Serum urate–lowering efficacy and safety of tigulixostat in gout patients with hyperuricemia: A randomized, double-blind, placebo-controlled, dose-finding trial. Arthritis. Rheumatol., 2023, 75(7), 1275-1284.
[http://dx.doi.org/10.1002/art.42447] [PMID: 36649008]
[118]
Noori, S.; Mirzababaei, A.; Amini, M.R.; Clark, C.C.T.; Mirzaei, K. Effect of orlistat on serum uric acid level in adults: A systematic review and meta-analysis of randomised controlled trials. Int. J. Clin. Pract., 2021, 75(11), e14674.
[http://dx.doi.org/10.1111/ijcp.14674] [PMID: 34324762]
[119]
Tang, H.; Cui, B.; Chen, Y.; Chen, L.; Wang, Z.; Zhang, N.; Yang, Y.; Wang, X.; Xie, X.; Sun, L.; Dang, W.; Wang, X.; Li, R.; Zou, J.; Zhao, Y.; Liu, Y. Safety and efficacy of SHR4640 combined with febuxostat for primary hyperuricemia: A multicenter, randomized, double-blind, phase II study. Ther. Adv. Musculoskelet. Dis., 2022.
[http://dx.doi.org/10.1177/1759720X211067304]
[120]
Terkeltaub, R.; Clark, D.; Tosone, C.; Kandinov, B.; Zhang, P.; Dahl, N.; Grujic, D.; Goldfarb, D. POS1157 safety and efficacy of alln-346 oral enzyme therapy in patients with hyperuricemia and chronic kidney disease (CKD): Results of the phase 2a study 201. Ann. Rheum. Dis., 2022, 81(907), 907.1-907.
[http://dx.doi.org/10.1136/annrheumdis-2022-eular.1662]
[121]
Klück, V.; Jansen, T.L.T.A.; Janssen, M.; Comarniceanu, A.; Efdé, M.; Tengesdal, I.W.; Schraa, K.; Cleophas, M.C.P.; Scribner, C.L.; Skouras, D.B.; Marchetti, C.; Dinarello, C.A.; Joosten, L.A.B. Dapansutrile, an oral selective NLRP3 inflammasome inhibitor, for treatment of gout flares: an open-label, dose-adaptive, proof-of-concept, phase 2a trial. Lancet. Rheumatol., 2020, 2(5), e270-e280.
[http://dx.doi.org/10.1016/S2665-9913(20)30065-5] [PMID: 33005902]