Interfacing Silver Nanoparticles with Hematene Nanosheets for the Electrochemical Sensing of Hydrogen Peroxide

Page: [605 - 612] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Hydrogen peroxide (H2O2) is an important metabolite that plays a crucial role in enzymatic reactions in living organisms. However, it acts as a reactive oxygen species (ROS) that causes various chronic diseases. The main challenging aspects in detecting H2O2 in body cells are the ultra-lowlevel concentrations and its reactivity. Hence, it is highly essential to develop a platform for H2O2 with high sensitivity and selectivity.

Objective: In this work, we report an electrochemical biosensor for hydrogen peroxide (H2O2) by interfacing 3-dimensional silver nanoparticles (Ag-NPs) with 2-dimensional hematene (HMT) nanosheets.

Methods: The two-dimensional nanomaterial, HMT, was exfoliated from natural iron ore hematite (α- Fe2O3) and characterized by Raman spectroscopy. The morphology of the Ag nanoparticles and HMT was imaged by scanning electron microscope. Electrochemical characterization of Ag/HMT modified glassy carbon electrode (GCE) was performed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).

Results: The fabricated sensor showed a wide linearity range of H2O2 concentrations from 0.99 μM to 1110 μM and a low detection limit of 0.16 μM using CV. Further, the sensor was successfully applied for the electrochemical sensing of hydrogen peroxide using chronoamperometry (CA) from 20 μM to 1110 μM (LOD 5.5 μM).

Conclusion: The proposed electrochemical sensor for H2O2 is fast responding with a high sensitivity, and shows selectivity in the presence of biologically important molecules. These consequences suggested that the formation of heterostructures between 2D and 3D nanomaterials unveils the possibility of stable and selective electrochemical sensors for bioanalytics.

Graphical Abstract

[1]
Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), 787-795.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[2]
Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med., 2010, 49(11), 1603-1616.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
[3]
Galaris, D.; Skiada, V.; Barbouti, A. Redox signaling and cancer: The role of “labile” iron. Cancer Lett., 2008, 266(1), 21-29.
[http://dx.doi.org/10.1016/j.canlet.2008.02.038] [PMID: 18374479]
[4]
Guo, H.; Aleyasin, H.; Dickinson, B.C.; Haskew-Layton, R.E.; Ratan, R.R. Recent advances in hydrogen peroxide imaging for biological applications. Cell Biosci., 2014, 4(1), 64.
[http://dx.doi.org/10.1186/2045-3701-4-64] [PMID: 25400906]
[5]
Ramezani, H.; Azizi, S.N.; Hosseini, S.R. NaY zeolite as a platform for preparation of Ag nanoparticles arrays in order to construction of H2O2 sensor. Sens. Actuators B Chem., 2017, 248, 571-579.
[http://dx.doi.org/10.1016/j.snb.2017.04.005]
[6]
Chang, C.T.; Lin, C.Y. Electrochemical reduction of hydrogen peroxide by nanostructured hematite modified electrodes., RSC Advances., 2016, 6(71), 67428-67434.
[http://dx.doi.org/10.1039/C6RA07267D]
[7]
Kurowska-Tabor, E.; Jaskuła, M.; Sulka, G.D. Sensitive] amperometric sensing of hydrogen peroxide using ag nanowire array electrode. Electroanalysis, 2015, 27(8), 1968-1978.
[http://dx.doi.org/10.1002/elan.201400741]
[8]
Long, H.; Shoufang, C.; Dongmei, D.; Yuanyuan, L. Synthesis of Ag-Au/reduced graphene oxide/TiO2 nanocomposites: Application as a non-enzymatic amperometric H2O2 sensor. Curr. Anal. Chem., 2020, 16(4), 485-492.
[9]
Bohlooli, F.; Yamatogi, A.; Mori, S. Manganese oxides/carbon nanowall nanocomposite electrode as an efficient non-enzymatic electrochemical sensor for hydrogen peroxide. Sens. Biosensing Res., 2021, 31, 100392.
[http://dx.doi.org/10.1016/j.sbsr.2020.100392]
[10]
Zen, J.M.; Chung, H.H.; Kumar, A.S. Flow injection analysis of hydrogen peroxide on copper-plated screen-printed carbon electrodes. Analyst, 2000, 125(9), 1633-1637.
[http://dx.doi.org/10.1039/b004207m]
[11]
Miao, X.M.; Yuan, R.; Chai, Y.Q.; Shi, Y.T.; Yuan, Y.Y. Direct electrocatalytic reduction of hydrogen peroxide based on Nafion and copper oxide nanoparticles modified Pt electrode. J. Electroanal. Chem., 2008, 612(2), 157-163.
[http://dx.doi.org/10.1016/j.jelechem.2007.09.026]
[12]
Ke, H.; Li, T.; Dongmei, D.; Huan, W.; Chougale, A.D. A two-step electrodeposition of Pd-Cu/Cu2O nanocomposite on FTO substrate for non-enzymatic hydrogen peroxide sensor. Curr. Anal. Chem., 2021, 17(9), 1373-1381.
[13]
Karade, V.C.; Patil, R.B.; Parit, S.B.; Kim, J.H.; Chougale, A.D.; Dawkar, V.V. Insights into shape-based silver nanoparticles: A weapon to cope with pathogenic attacks. ACS Sustain. Chem.& Eng., 2021, 9(37), 12476-12507.
[http://dx.doi.org/10.1021/acssuschemeng.1c03797]
[14]
Kahraman, M.; Mullen, E.R.; Korkmaz, A.; Wachsmann-Hogiu, S. Fundamentals and applications of SERS-based bioanalytical sensing. Nanophotonics, 2017, 6(5), 831-852.
[http://dx.doi.org/10.1515/nanoph-2016-0174]
[15]
Abdelwahab, A.A.; Shim, Y-B. Nonenzymatic H2O2 sensing based on silver nanoparticles capped polyterthiophene/MWCNT nanocomposite. Sens. Actuators B Chem., 2014, 201, 51-58.
[http://dx.doi.org/10.1016/j.snb.2014.05.004]
[16]
Han, Q.; Ni, P.; Liu, Z.; Dong, X.; Wang, Y.; Li, Z.; Liu, Z. Enhanced hydrogen peroxide sensing by incorporating manganese dioxide nanowire with silver nanoparticles. Electrochem. Commun., 2014, 38, 110-113.
[http://dx.doi.org/10.1016/j.elecom.2013.11.012]
[17]
Cai, X.; Tanner, E.E.L.; Lin, C.; Ngamchuea, K.; Foord, J.S.; Compton, R.G. The mechanism of electrochemical reduction of hydrogen peroxide on silver nanoparticles. Phys. Chem. Chem. Phys., 2018, 20(3), 1608-1614.
[http://dx.doi.org/10.1039/C7CP07492A] [PMID: 29260816]
[18]
Levard, C.; Hotze, E.M.; Lowry, G.V.; Brown, G.E., Jr Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ. Sci. Technol., 2012, 46(13), 6900-6914.
[http://dx.doi.org/10.1021/es2037405] [PMID: 22339502]
[19]
Venkateswara, R.C.; Hwan, C.C.; Mohana, R.G.; Manju, V.; Umapathi, R.; Suk, H.Y.; Pil, P.J. Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions. Coord. Chem. Rev., 2023, 476, 214920.
[http://dx.doi.org/10.1016/j.ccr.2022.214920]
[20]
Umapathi, R.; Venkateswara, R.C.; Ghoreishian, M.S.; Rani, M.G.; Kumar, K.; Oh, M.H.; Park, P.J.; Huh, S.Y. Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coord. Chem. Rev., 2022, 470, 214708.
[http://dx.doi.org/10.1016/j.ccr.2022.214708]
[21]
Vallabani, N.V.S.; Singh, S. Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech, 2018, 8, 279.
[http://dx.doi.org/10.1007/s13205-018-1286-z]
[22]
Puthirath Balan, A.; Radhakrishnan, S.; Woellner, C.F.; Sinha, S.K.; Deng, L.; Reyes, C.; Rao, B.M.; Paulose, M.; Neupane, R.; Apte, A.; Kochat, V.; Vajtai, R.; Harutyunyan, A.R.; Chu, C.W.; Costin, G.; Galvao, D.S.; Martí, A.A.; van Aken, P.A.; Varghese, O.K.; Tiwary, C.S.; Malie, M.R.I.A.; Ajayan, P.M. Exfoliation of a non-van der Waals material from iron ore hematite. Nat. Nanotechnol., 2018, 13(7), 602-609.
[http://dx.doi.org/10.1038/s41565-018-0134-y] [PMID: 29736036]
[23]
Jana, N.R.; Gearheart, L.; Murphy, C.J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem. Commun., 2001, 617–618(7), 617-618.
[http://dx.doi.org/10.1039/b100521i]
[24]
Paulraj, P.; Umar, A.; Rajendran, K.; Manikandan, A.; Kumar, R.; Manikandan, E.; Pandian, K.; Mahnashi, M.H.; Alsaiari, M.A.; Ibrahim, A.A.; Bouropoulos, N.; Baskoutas, S. Solid-state synthesis of Ag-doped PANI nanocomposites for their end-use as an electrochemical sensor for hydrogen peroxide and dopamine. Electrochim. Acta, 2020, 363, 137158.
[http://dx.doi.org/10.1016/j.electacta.2020.137158]
[25]
Faulkner, A.J.B. Electrochemical Methods: Fundamentals and Applications; John Wiley& Sons, Ed.: New York , 2004.
[26]
Kitte, S.A.; Zafar, M.N.; Zholudov, Y.T.; Ma, X.; Nsabimana, A.; Zhang, W.; Xu, G. Determination of concentrated hydrogen peroxide free from oxygen interference at stainless steel electrode. Anal. Chem., 2018, 90(14), 8680-8685.
[http://dx.doi.org/10.1021/acs.analchem.8b02038] [PMID: 29923395]
[27]
Abbas, M.N.; Saeed, A.A.; El-Hawary, W.F.; Issa, Y.M.; Baljit, S. A core-shell Au@TiO2 and multi-walled carbon nanotube-based sensor for the electroanalytical determination of H2O2 in human blood serum and saliva. Biosensors, 2022, 12(10), 778.
[28]
Sardaremelli, S.; Hasanzadeh, M.; Razmi, H. Chemical binding of horseradish peroxidase enzyme with poly beta‐cyclodextrin and its application as molecularly imprinted polymer for the monitoring of H2O2 in human plasma samples. J. Mol. Recognit., 2021, 34(5), e2884.
[http://dx.doi.org/10.1002/jmr.2884] [PMID: 33393155]
[29]
Shu, Y.; Zhang, W.; Yin, X.; Zhang, L.; Yang, Y.; Ma, D.; Gao, Q. Efficient electrochemical biosensing of hydrogen peroxide on bimetallic Mo1-xWxS2 nanoflowers. J. Colloid Interface Sci., 2020, 566, 248-256.
[http://dx.doi.org/10.1016/j.jcis.2020.01.083] [PMID: 32006821]
[30]
Zhang, Y.; Huang, B.; Yu, F.; Yuan, Q.; Gu, M.; Ji, J.; Zhang, Y.; Li, Y. 3D nitrogen-doped graphite foam@Prussian blue: an electrochemical sensing platform for highly sensitive determination of H2O2 and glucose. Mikrochim. Acta, 2018, 185(2), 86.
[http://dx.doi.org/10.1007/s00604-017-2631-3] [PMID: 29594721]
[31]
Xie, J.; Cheng, D.; Zhou, Z.; Pang, X.; Liu, M.; Yin, P.; Zhang, Y.; Li, H.; Liu, X.; Yao, S. Hydrogen peroxide sensing in body fluids and tumor cells via in situ produced redox couples on two-dimensional holey CuCo2O4 nanosheets. Mikrochim. Acta, 2020, 187(8), 469.
[http://dx.doi.org/10.1007/s00604-020-04389-2] [PMID: 32712816]
[32]
Emir, G.; Dilgin, Y.; Apak, R. A new redox mediator (Cupric‐Neocuproine Complex)‐ modified pencil graphite electrode for the electrocatalytic oxidation of H2O2: A flow injection amperometric sensor. ChemElectroChem, 2020, 7(3), 649-658.
[http://dx.doi.org/10.1002/celc.201901765]