Understanding Nucleophilicity of Pyridine-N-oxides Towards 2,4,6-Trinitrophenylbenzoate Through Simple Absorption Spectroscopic Studies

Page: [44 - 59] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Aims: Understanding nucleophilicity of poor nucleophiles like pyridine-N-oxides.

Background: Nucleophilicity plays a vital role in substitution reactions. It helps to determine the possibility and extent of the substitution reactions. The study of the nucleophilicity of poor nucleophiles is challenging, and it has limited substrate scope. Understanding the strength of nucleophilicity of such poor nucleophiles in a quantitative way is important.

Objective: Understanding the strength of nucleophilicity of such poor nucleophiles in a quantitative way. Selection of appropriate electrophile for the reactions with the poor nucleophilespyridine- N-oxides. Development of suitable methodology for kinetic studies of the reaction.

Methods: UV-Vis spectroscopic methods for monitoring the reactions.

Results: The kinetic studies revealed that the second-order rate constants of the nucleophilic reactions are 1.67× 102 L mol-1 min-1, 29.8 L mol-1 min-1, 2.51 L mol-1 min-1, where the nucleophiles are p-methylpyridine-N-oxide, pyridine-N-oxide, and p-nitropyridine-N-oxide, respectively. The UV-Vis spectroscopic analysis revealed the nucleophilicity of p-methylpyridine-N-oxide > pyridine- N-oxide > p-nitropyridine-N-oxide.

Conclusion: This comparative study suggests that the strength of nucleophilicity of the pmethylpyridine- N-oxide is 5.6 times and 66.53 times more than that of pyridine-N-oxide and pnitropyridine- N-oxide, respectively, whereas the strength of nucleophilicity of the pyridine-Noxide is 11.87 times more than that of p-nitropyridine-N-oxide.

Graphical Abstract

[1]
Mayr, H. Reactivity scales for quantifying polar organic reactivity: The benzhydrylium methodology. Tetrahedron, 2015, 71(32), 5095-5111.
[http://dx.doi.org/10.1016/j.tet.2015.05.055]
[2]
Jencks, W.P.; Carriuolo, J. Reactivity of nucleophilic reagents toward esters. J. Am. Chem. Soc., 1960, 82(7), 1778-1786.
[http://dx.doi.org/10.1021/ja01492a058]
[3]
Youssif, S. Recent trends in the chemistry of pyridine N-oxide. ARKIVOC, 2001, 2001(1), 242-268.
[http://dx.doi.org/10.3998/ark.5550190.0002.116]
[4]
Hsieh, S.Y.; Tang, Y.; Crotti, S.; Stone, E.A.; Miller, S.J. Catalytic enantioselective pyridine N-oxidation. J. Am. Chem. Soc., 2019, 141(46), 18624-18629.
[http://dx.doi.org/10.1021/jacs.9b10414] [PMID: 31656070]
[5]
Spivey, A.; Murray, J.; Woscholski, R. Organocatalytic phosphorylation of alcohols using pyridine-N-oxide. Synlett, 2015, 26(7), 985-990.
[http://dx.doi.org/10.1055/s-0034-1379993]
[6]
Mfuh, A.M.; Larionov, O.V. Heterocyclic N-oxides-an emerging class of therapeutic agents. Curr. Med. Chem., 2015, 22(24), 2819-2857.
[http://dx.doi.org/10.2174/0929867322666150619104007] [PMID: 26087764]
[7]
Yamanaka, H.; Araki, T.; Sakamoto, T. Site-selectivity in the reaction of 3-substituted pyridine 1-oxides with phosphoryl chloride. Chem. Pharm. Bull., 1988, 36(6), 2244-2247.
[http://dx.doi.org/10.1248/cpb.36.2244]
[8]
Keith, J.M. One-Step conversion of pyridine N-oxides to tetrazolo[1,5-a]pyridines. J. Org. Chem., 2006, 71(25), 9540-9543.
[http://dx.doi.org/10.1021/jo061819j] [PMID: 17137393]
[9]
Andersson, H.; Sainte-Luce Banchelin, T.; Das, S.; Olsson, R.; Almqvist, F. Efficient, mild and completely regioselective synthesis of substituted pyridines. Chem. Commun., 2010, 46(19), 3384-3386.
[http://dx.doi.org/10.1039/c000748j] [PMID: 20428521]
[10]
Medley, J.W.; Movassaghi, M. Direct dehydrative N-pyridinylation of amides. J. Org. Chem., 2009, 74(3), 1341-1344.
[http://dx.doi.org/10.1021/jo802355d] [PMID: 19113815]
[11]
dos Santos Fernandes, G.F.; Pavan, A.R.; dos Santos, J.L. Heterocyclic N-oxides-a promising class of agents against tuberculosis, malaria and neglected tropical diseases. Curr. Pharm. Des., 2018, 24(12), 1325-1340.
[http://dx.doi.org/10.2174/1381612824666180417122625] [PMID: 29663875]
[12]
Wengryniuk, S.E.; Weickgenannt, A.; Reiher, C.; Strotman, N.A.; Chen, K.; Eastgate, M.D.; Baran, P.S. Regioselective bromination of fused heterocyclic N-oxides. Org. Lett., 2013, 15(4), 792-795.
[http://dx.doi.org/10.1021/ol3034675] [PMID: 23350852]
[13]
Andreev, V.P. Relative nucleophilic reactivity of pyridines and pyridine N-oxides (supernucleophilicity of pyridine N-oxides). Russ. J. Org. Chem., 2009, 45(7), 1061-1069.
[http://dx.doi.org/10.1134/S1070428009070136]
[14]
Taylor, R.; Kennard, O. Crystallographic evidence for the existence of C-H-O, C-H-N, and C-H-Cl hydrogen bonds. J. Am. Chem. Soc., 1982, 104(19), 5063-5070.
[http://dx.doi.org/10.1021/ja00383a012]
[15]
Litvinenko, L.; Oleinik, N. Mechanisms of organic catalyst action. In: Basic and Nucleophilic Catalysis; Scientific thought: Kiev, 1984.
[16]
Savelova, V.; Popov, A.; Solomoichenko, T.; Sadovskii, Y.S.; Piskunova, Z.P.; Lobanova, O. Reactivity of pyridines and pyridine N-oxides toward benzoyl chloride in acetonitrile. Russ. J. Org. Chem., 2000, 36(10), 1465-1473.
[17]
Rybachenko, V.I.; Schroeder, G.; Chotii, K.Y.; Titov, E.V.; Kovalenko, V.V.; Leska, B.; Grebenyuk, L.V. Acetyl exchange between pyridine N-oxides in acetonitrile solutions: An attempt to apply the marcus equation to acetyl transfer. Russ. J. Gen. Chem., 2001, 71(10), 1608-1615.
[http://dx.doi.org/10.1023/A:1013919523997]
[18]
Schroeder, G.; Rybachenko, V.I.; Chotii, K.Y.; Kovalenko, V.V.; Grebenyuk, L.V.; Lenska, B.; Eitner, K. Rate and equilibrium constants of dimethylcarbamoyl transfer between pyridine N-oxides. Russ. J. Gen. Chem., 2003, 73(3), 455-462.
[http://dx.doi.org/10.1023/A:1024974323588]
[19]
Moreno-Fuquen, R.; Mosquera, F.; Kennedy, A.R.; Morrison, C.A.; De Almeida Santos, R.H. 2,4,6-trinitrophenyl benzoate. Acta Crystallogr. Sect. E Struct. Rep. Online, 2012, 68(12), o3493.
[http://dx.doi.org/10.1107/S1600536812048362]