Diagnostic Value of 3D Optical Coherence Tomography Multimode Images in the Diagnosis of Acute Central Serous Chorioretinopathy

Article ID: e040823219418 Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Spectral-Domain Optical Coherence Tomography (SD-OCT) provides non-invasive, high-speed, high-resolution, three-dimensional cross-section imaging of the macula.

Objectives: This study aimed to investigate the diagnostic value of the multimodal imaging technique of three-dimension (3D) optical coherence tomography (OCT) (3D-OCT) for the diagnosis and characterization of acute central serous chorioretinopathy (CSC).

Methods: In this prospective clinical study 3D-OCT examinations of 82 cases with acute CSC were performed on the macular area, and the image characteristics were analyzed. Our study included a total of 87 eyes from 82 cases of CSC patients, 67 males and 15 females (mean age ± standard deviation (SD): 42.89 ±7.80 years old; age range: 27 to 56 years old. The 3D-OCT images were evaluated for the presence of subretinal fluid, subretinal space, fluctuation of the internal limiting membrane (ILM), folds of retinal pigment epithelial (RPE), retinal pigment epithelium detachment (PED), and flat irregular PED. The foveal thickness was measured using the manual caliper of OCT software.

Results: The OCT B-scan images showed 87 (100%) eyes had exudative retinal detachment (ERD), 38 (44%) had flat irregular PED, 36 (41%) had PED, 8 (9%) had subretinal turbidity structure, 2 (2%) had subretinal dot-like precipitates, 1 (1%) had focal choroidal excavation (FCE), and 1 (1%) eye had fluctuation of internal limiting membrane (FI). In the ILM-RPE thickness map, all eyes had a round or round like regular uniform domes. Fifty-seven (66%) domes were limited in the examination area and 30 (44%) domes were beyond the scope of this examination and only a partial section of the dome could be observed. In the en-face image, all eyes had a round or round-like black figure that corresponded with domes in the ILM-RPE thickness map. In RPE surface, 76 (87%) eyes had a shallow plate depression, 71(82%) had small focal uplift, and 1 (1%) eye had a focal concave feature.

Conclusion: In the OCT ILM-RPE thickness, en-face image, and RPE surface maps, acute CSC exhibited specific imaging characteristics that can be helpful for reliable diagnosis and differential diagnosis of CSC.

[1]
Margolis R, Mukkamala SK, Jampol LM, et al. The expanded spectrum of focal choroidal excavation. Arch Ophthalmol 2011; 129(10): 1320-5.
[http://dx.doi.org/10.1001/archophthalmol.2011.148] [PMID: 21670327]
[2]
Liu GH, Lin B, Sun XQ, et al. Focal choroidal excavation: A preliminary interpretation based on clinic and review. Int J Ophthalmol 2015; 8(3): 513-21.
[PMID: 26086000]
[3]
Uyama M, Matsunaga H, Matsubara T, Fukushima I, Takahashi K, Nishimura T. Indocyanine green angiography and pathophysiology of multifocal posterior pigment epitheliopathy. Retina 1999; 19(1): 12-21.
[http://dx.doi.org/10.1097/00006982-199901000-00003] [PMID: 10048368]
[4]
Yannuzzi LA. Central serous chorioretinopathy: A personal perspective. Am J Ophthalmol 2010; 149(3): 361-363.e1.
[http://dx.doi.org/10.1016/j.ajo.2009.11.017] [PMID: 20172062]
[5]
Spitznas M, Huke J. Number, shape, and topography of leakage points in acute type I central serous retinopathy. Graefes Arch Clin Exp Ophthalmol 1987; 225(6): 437-40.
[http://dx.doi.org/10.1007/BF02334172] [PMID: 3678855]
[6]
Shahin MM. Angiographic characteristics of central serous chorioretinopathy in an Egyptian population. Int J Ophthalmol 2013; 6(3): 342-5.
[PMID: 23826530]
[7]
Kitaya N, Nagaoka T, Hikichi T, et al. Features of abnormal choroidal circulation in central serous chorioretinopathy. Br J Ophthalmol 2003; 87(6): 709-12.
[http://dx.doi.org/10.1136/bjo.87.6.709] [PMID: 12770966]
[8]
Imamura Y, Fujiwara T, Margolis R, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 2009; 29(10): 1469-73.
[http://dx.doi.org/10.1097/IAE.0b013e3181be0a83] [PMID: 19898183]
[9]
Maruko I, Iida T, Sugano Y, Ojima A, Sekiryu T. Subfoveal choroidal thickness in fellow eyes of patients with central serous chorioretinopathy. Retina 2011; 31(8): 1603-8.
[http://dx.doi.org/10.1097/IAE.0b013e31820f4b39] [PMID: 21487334]
[10]
Maruko I, Iida T, Sugano Y, Ojima A, Ogasawara M, Spaide RF. Subfoveal choroidal thickness after treatment of central serous chorioretinopathy. Ophthalmology 2010; 117(9): 1792-9.
[http://dx.doi.org/10.1016/j.ophtha.2010.01.023] [PMID: 20472289]
[11]
General Assembly of the World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. J Am Coll Dent 2014; 81(3): 14-8.
[PMID: 25951678]
[12]
Shin YU, Lee BR. Retro-mode Imaging for retinal pigment epithelium alterations in central serous chorioretinopathy. Am J Ophthalmol 2012; 154(1): 155-163.e4.
[http://dx.doi.org/10.1016/j.ajo.2012.01.023] [PMID: 22503695]
[13]
Lehmann M, Wolff B, Vasseur V, et al. Retinal and choroidal changes observed with ‘En face’ enhanced-depth imaging OCT in central serous chorioretinopathy. Br J Ophthalmol 2013; 97(9): 1181-6.
[http://dx.doi.org/10.1136/bjophthalmol-2012-302974] [PMID: 23823080]
[14]
Aqil A, Mehmood A, Moin M, Abid K. Characteristics of acute central serous chorioretinopathy on optical coherence tomography-a retrospective study. J Pak Med Assoc 2020; 70(0): 1.
[http://dx.doi.org/10.5455/JPMA.23039] [PMID: 33159763]
[15]
Ahn SE, Oh J, Oh JH, Oh IK, Kim SW, Huh K. Three-dimensional configuration of subretinal fluid in central serous chorioretinopathy. Invest Ophthalmol Vis Sci 2013; 54(9): 5944-52.
[http://dx.doi.org/10.1167/iovs.13-12279] [PMID: 23920371]
[16]
Yu J, Jiang C, Xu G. Study of subretinal exudation and consequent changes in acute central serous chorioretinopathy by optical coherence tomography. Am J Ophthalmol 2014; 158(4): 752-756.e2.
[http://dx.doi.org/10.1016/j.ajo.2014.06.015] [PMID: 24973608]
[17]
Gass JDM. Central serous chorioretinopathy and white subretinal exudation during pregnancy. Arch Ophthalmol 1991; 109(5): 677-81.
[http://dx.doi.org/10.1001/archopht.1991.01080050091036] [PMID: 2025170]
[18]
Saito M, Iida T, Kishi S. Ring-shaped subretinal fibrinous exudate in central serous chorioretinopathy. Jpn J Ophthalmol 2005; 49(6): 516-9.
[http://dx.doi.org/10.1007/s10384-005-0244-6] [PMID: 16365799]
[19]
Fujimoto H, Gomi F, Wakabayashi T, Sawa M, Tsujikawa M, Tano Y. Morphologic changes in acute central serous chorioretinopathy evaluated by fourier-domain optical coherence tomography. Ophthalmology 2008; 115(9): 1500.e1-2.
[http://dx.doi.org/10.1016/j.ophtha.2008.01.021] [PMID: 18394706]
[20]
Kon Y, Iida T, Maruko I, Saito M. The optical coherence tomography-ophthalmoscope for examination of central serous chorioretinopathy with precipitates. Retina 2008; 28(6): 864-9.
[http://dx.doi.org/10.1097/IAE.0b013e3181669795] [PMID: 18536604]
[21]
Matsumoto H, Kishi S, Sato T, Mukai R. Fundus autofluorescence of elongated photoreceptor outer segments in central serous chorioretinopathy. Am J Ophthalmol 2011; 151(4): 617-623.e1.
[http://dx.doi.org/10.1016/j.ajo.2010.09.031] [PMID: 21257153]
[22]
Maruko I, Iida T, Ojima A, Sekiryu T. Subretinal dot-like precipitates and yellow material in central serous chorioretinopathy. Retina 2011; 31(4): 759-65.
[http://dx.doi.org/10.1097/IAE.0b013e3181fbce8e] [PMID: 21052035]
[23]
Spaide R, Klancnik J Jr. Fundus autofluorescence and central serous chorioretinopathy. Ophthalmology 2005; 112(5): 825-33.
[http://dx.doi.org/10.1016/j.ophtha.2005.01.003] [PMID: 15878062]
[24]
Bloom SM, Singal IP. The outer Bruch membrane layer: A previously undescribed spectral-domain optical coherence tomography finding. Retina 2011; 31(2): 316-23.
[http://dx.doi.org/10.1097/IAE.0b013e3181ed8c9a] [PMID: 20890240]
[25]
Xing LI, Yunlan LIML. Optical coherence tomography in central serous choroidoretinopathy 1999; 3.
[26]
Lin D, Chen W, Zhang G, et al. Comparison of the optical coherence tomographic characters between acute Vogt-Koyanagi-Harada disease and acute central serous chorioretinopathy. BMC Ophthalmol 2014; 14(1): 87.
[http://dx.doi.org/10.1186/1471-2415-14-87] [PMID: 24974016]
[27]
Montero JA, Ruiz-Moreno JM. Optical coherence tomography characterisation of idiopathic central serous chorioretinopathy. Br J Ophthalmol 2005; 89(5): 562-4.
[http://dx.doi.org/10.1136/bjo.2004.049403] [PMID: 15834085]
[28]
Kim HC, Cho WB, Chung H. Morphologic changes in acute central serous chorioretinopathy using spectral domain optical coherence tomography. Korean J Ophthalmol 2012; 26(5): 347-54.
[http://dx.doi.org/10.3341/kjo.2012.26.5.347] [PMID: 23060721]
[29]
Jampol LM, Shankle J, Schroeder R, Tornambe P, Spaide RF, Hee MR. Diagnostic and therapeutic challenges. Retina 2006; 26(9): 1072-6.
[http://dx.doi.org/10.1097/01.iae.0000248819.86737.a5] [PMID: 17151497]
[30]
Abe S, Yamamoto T, Kirii E, Yamashita H. Cup-shaped choroidal excavation detected by optical coherence tomography: A case report. Retin Cases Brief Rep 2010; 4(4): 373-6.
[http://dx.doi.org/10.1097/ICB.0b013e3181babe7e] [PMID: 25390922]
[31]
Wakabayashi Y, Nishimura A, Higashide T, Ijiri S, Sugiyama K. Unilateral choroidal excavation in the macula detected by spectral-domain optical coherence tomography. Acta Ophthalmol 2010; 88(3): e87-91.
[http://dx.doi.org/10.1111/j.1755-3768.2010.01895.x] [PMID: 20546234]
[32]
Katome T, Mitamura Y, Hotta F, Niki M, Naito T. Two cases of focal choroidal excavation detected by spectral-domain optical coherence tomography. Case Rep Ophthalmol 2012; 3(1): 96-103.
[http://dx.doi.org/10.1159/000337880] [PMID: 23008695]
[33]
Kobayashi W, Abe T, Tamai H, Nakazawa T. Choroidal excavation with polypoidal choroidal vasculopathy: A case report. Clin Ophthalmol 2012; 6: 1373-6.
[http://dx.doi.org/10.2147/OPTH.S33879] [PMID: 22969281]
[34]
Say EAT, Jani PD, Appenzeller MF, Houghton OM. Focal choroidal excavation associated with polypoidal choroidal vasculopathy. Ophthalmic Surg Lasers Imaging Retina 2013; 44(4): 409-11.
[http://dx.doi.org/10.3928/23258160-20130715-12] [PMID: 23883536]
[35]
Wang Y, Chen Z-Q, Wang W, Fang X-Y. Multimodal imaging evaluations of focal choroidal excavations in eyes with central serous chorioretinopathy. J Ophthalmol 2016; 2016: 7073083.
[http://dx.doi.org/10.1155/2016/7073083] [PMID: 27437148]
[36]
Li B, Ye JJ, Zhang MF, Li DH. [The fundus manifestations and SD-OCT findings of patients with acute Vogt-Koyanagi-Harada disease]. Zhonghua Yan Ke Za Zhi 2017; 53(6): 436-9.
[PMID: 28606265]
[37]
Zhao G, Li R, Pang Y, et al. Diagnostic function of 3D optical coherence tomography images in diagnosis of Vogt-Koyanagi-Harada disease at acute uveitis stage. Med Sci Monit 2018; 24: 687-97.
[http://dx.doi.org/10.12659/MSM.905931] [PMID: 29396390]
[38]
Xi-Jia , ZX-M , HB-A . Characteristics of near infrared imaging in central serous chorioretinopathy. Rec Adv Ophthalmol 2011; 31: 976-9.
[39]
Manjunath V, Taha M, Fujimoto JG, Duker JS. Choroidal thickness in normal eyes measured using cirrus HD optical coherence tomography. Am J Ophthalmol 2010; 150(3): 325-329.e1.
[http://dx.doi.org/10.1016/j.ajo.2010.04.018] [PMID: 20591395]