A Promising Approach of Dermal Targeting of Antipsoriatic Drugs via Engineered Nanocarriers Drug Delivery Systems for Tackling Psoriasis

Page: [89 - 104] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Psoriasis is a complex autoimmune skin condition with a significant genetic component. It causes skin inflammation and is characterized by flaky, silvery reddish spots that can worsen with age. This condition results from an impaired immunological response of T-cells and affects 2-5% of the global population. The severity of the illness determines the choice of treatment. Topical treatments are commonly used to treat psoriasis, but they can have several adverse effects. Biological therapy is another option for treating specific types of psoriasis. Recently, new nanoformulations have revolutionized psoriasis treatment. Various nanocarriers, such as liposomes, nanostructured lipid nanoparticles, niosomes, and nanoemulsions, have been developed and improved for drug delivery. The use of nanocarriers enhances patient compliance, precise drug delivery, and drug safety. This review aims to suggest new nanocarrier-based drug delivery systems for treating psoriasis. It discusses the importance of nanocarriers and compares them to traditional treatments. Anti-psoriatic drugs have also been investigated for cutaneous delivery using nanocarriers. The review also covers various factors that influence dermal targeting. By highlighting several relevant aspects of psoriasis treatment, the review emphasizes the current potential of nanotechnology. Using nanocarriers as a drug delivery technique may be a promising alternative treatment for psoriasis.

Graphical Abstract

[1]
Dadwal, A.; Mishra, N.; Narang, R.K. Novel topical nanocarriers for treatment of psoriasis: An overview. Curr. Pharm. Des., 2019, 24(33), 3934-3950.
[http://dx.doi.org/10.2174/1381612824666181102151507] [PMID: 30387390]
[2]
Singhvi, G.; Patil, S.; Girdhar, V.; Dubey, S.K. Nanocarriers for topical drug delivery: Approaches and advancements. Nanosci. Nanotechnol. Asia, 2019, 9(3), 329-336.
[http://dx.doi.org/10.2174/2210681208666180320122534]
[3]
Haidari, W.; Quan, E.Y.; Cline, A.; Feldman, S.R. Adherence in Psoriasis. Treatment Adherence in Dermatology; Springer: Cham, 2020, pp. 59-74.
[4]
Singhvi, G.; Banerjee, S. Khosa, A Chapter 11 - Lyotropic liquid crystal nanoparticles: A novel improved lipidic drug delivery system. In: Organic Materials as Smart Nanocarriers for Drug Delivery; William Andrew Publishing, 2018; p. 471-517.
[5]
Gungor, S.; Rezigue, M. Nanocarriers mediated topical drug delivery for psoriasis treatment. Curr. Drug Metab., 2017, 18(5), 454-468.
[http://dx.doi.org/10.2174/1389200218666170222145240] [PMID: 28228078]
[6]
Imafuku, S.; Kanai, Y.; Murotani, K.; Nomura, T.; Ito, K.; Ohata, C.; Yamazaki, F.; Miyagi, T.; Takahashi, H.; Okubo, Y.; Saeki, H.; Honma, M.; Tada, Y.; Mabuchi, T.; Higashiyama, M.; Kobayashi, S.; Hashimoto, Y.; Seishima, M.; Kakuma, T. Utility of the dermatology life quality index at initiation or switching of biologics in real-life japanese patients with plaque psoriasis: Results from the ProLOGUE study. J. Dermatol. Sci., 2021, 101(3), 185-193.
[http://dx.doi.org/10.1016/j.jdermsci.2021.01.002] [PMID: 33495058]
[7]
Carr, E.; Mahil, S.K.; Brailean, A.; Dasandi, T.; Pink, A.E.; Barker, J.N.; Rayner, L.; Turner, M.A.; Goldsmith, K.; Smith, C.H. Association of patient mental health status with the level of agreement between patient and physician ratings of psoriasis severity. JAMA Dermatol., 2021, 157(4), 413-420.
[http://dx.doi.org/10.1001/jamadermatol.2020.5844] [PMID: 33656512]
[8]
Fargnoli, M.C.; Esposito, M.; Dapavo, P.; Parodi, A.; Rossi, M.; Tiberio, R.; Dastoli, S.; Offidani, A.M.; Argenziano, G.; Gisondi, P.; Lo Schiavo, A.; Loconsole, F.; Pella, P.; Bardazzi, F.; Cusano, F.; Gattoni, M.; Nacca, M.; Cannavò, S.P.; Pellegrini, C.; Costanzo, A.; Pertusi, G.; Stroppiana, E.; Gambardella, A.; Romano, F.; Sassetti, C.; Carpentieri, A.; Bellinato, F.; Burlando, M.; Graziola, F.; Sacchelli, L.; Campanati, A.; Ronza, G. Brodalumab for the treatment of moderate‐to‐severe plaque‐type psoriasis: A real‐life, retrospective 24‐week experience. J. Eur. Acad. Dermatol. Venereol., 2021, 35(3), 693-700.
[http://dx.doi.org/10.1111/jdv.16931] [PMID: 32916767]
[9]
Imafuku, S.; Ohata, C.; Okubo, Y.; Tobita, R.; Saeki, H.; Mabuchi, T.; Hashimoto, Y.; Murotani, K.; Kitabayashi, H.; Kanai, Y. Effectiveness of brodalumab in achieving treatment satisfaction for patients with plaque psoriasis: The ProLOGUE study. J. Dermatol. Sci., 2022, 105(3), 176-184.
[http://dx.doi.org/10.1016/j.jdermsci.2022.02.007] [PMID: 35248465]
[10]
Ishibashi, M.; Shiiyama, R. A case of psoriasis vulgaris treated with Brodalumab in a hemodialysis patient with end-stage renal disease due to diabetic nephropathy. Case Rep. Dermatol. Med., 2020, 2020, 1-4.
[http://dx.doi.org/10.1155/2020/3863152] [PMID: 32110452]
[11]
Alwan, W.; Nestle, F.O. Pathogenesis and treatment of psoriasis: Exploiting pathophysiological pathways for precision medicine. Clin. Exp. Rheumatol., 2015, 33(5)(Suppl. 93), S2-S6.
[PMID: 26472336]
[12]
Pando, D.; Matos, M.; Gutiérrez, G.; Pazos, C. Formulation of resveratrol entrapped niosomes for topical use. Colloids Surf. B Biointerfaces, 2015, 128, 398-404.
[http://dx.doi.org/10.1016/j.colsurfb.2015.02.037] [PMID: 25766923]
[13]
Yu, J.; Dubey, S.; Kalia, Y.N. Needle-free cutaneous delivery of living human cells by Er: YAG fractional laser ablation. Expert Opin. Drug Deliv., 2018, 15(6), 559-566.
[http://dx.doi.org/10.1080/17425247.2018.1472570] [PMID: 29737215]
[14]
Kuche, K.; Maheshwari, R.; Tambe, V.; Mak, K.K.; Jogi, H.; Raval, N.; Pichika, M.R.; Kumar, T.R. Carbon nanotubes (CNTs) based advanced dermal therapeutics: Current trends and future potential. Nanoscale, 2018, 10(19), 8911-8937.
[http://dx.doi.org/10.1039/C8NR01383G] [PMID: 29722421]
[15]
Yang, K.; Oak, A.S.W.; Elewski, B.E. Use of IL-23 inhibitors for the treatment of plaque psoriasis and psoriatic arthritis: A comprehensive review. Am. J. Clin. Dermatol., 2021, 22(2), 173-192.
[http://dx.doi.org/10.1007/s40257-020-00578-0] [PMID: 33301128]
[16]
Lwin, S.M.; Snowden, J.A.; Griffiths, C.E.M. The promise and challenges of cell therapy for psoriasis. Br. J. Dermatol., 2021, 185(5), 887-898.
[http://dx.doi.org/10.1111/bjd.20517] [PMID: 34036569]
[17]
Chang, W.; Liang, N.; Cao, Y.; Xing, J.; Li, J.; Li, J.; Zhao, X.; Li, J.; Niu, X.; Hou, R.; Yin, G.; Zhang, K. The effects of human dermal–derived mesenchymal stem cells on the keratinocyte proliferation and apoptosis in psoriasis. Exp. Dermatol., 2021, 30(7), 943-950.
[http://dx.doi.org/10.1111/exd.14353] [PMID: 33838056]
[18]
Bao, S.; Zheng, H.; Ye, J.; Huang, H.; Zhou, B.; Yao, Q.; Lin, G.; Zhang, H.; Kou, L.; Chen, R. Dual targeting EGFR and STAT3 with Erlotinib and Alantolactone co-loaded PLGA nanoparticles for pancreatic cancer treatment. Front. Pharmacol., 2021, 12, 625084.
[http://dx.doi.org/10.3389/fphar.2021.625084] [PMID: 33815107]
[19]
Jiang, X.; Yao, Q.; Xia, X.; Tang, Y.; Sun, M.; Li, Y.; Zheng, H.; Cai, A.; Zhang, H.; Ganapathy, V.; Chen, R.; Kou, L. Self-assembled nanoparticles with bilirubin/JPH203 alleviate imiquimod-induced psoriasis by reducing oxidative stress and suppressing Th17 expansion. Chem. Eng. J., 2022, 431, 133956.
[http://dx.doi.org/10.1016/j.cej.2021.133956]
[20]
Jing, Q.; Ruan, H.; Li, J.; Wang, Z.; Pei, L.; Hu, H.; He, Z.; Wu, T.; Ruan, S.; Guo, T.; Wang, Y.; Feng, N.; Zhang, Y. Keratinocyte membrane-mediated nanodelivery system with dissolving microneedles for targeted therapy of skin diseases. Biomaterials, 2021, 278, 121142.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121142] [PMID: 34571433]
[21]
Huang, Z.W.; Shi, Y.; Zhai, Y.Y.; Du, C.C.; Zhai, J.; Yu, R.J.; Kou, L.; Xiao, J.; Zhao, Y.Z.; Yao, Q. Hyaluronic acid coated bilirubin nanoparticles attenuate ischemia reperfusion-induced acute kidney injury. J. Control. Release, 2021, 334, 275-289.
[http://dx.doi.org/10.1016/j.jconrel.2021.04.033] [PMID: 33930479]
[22]
Tambe, V.S.; Nautiyal, A.; Wairkar, S. Topical lipid nanocarriers for management of psoriasis-an overview. J. Drug Deliv. Sci. Technol., 2021, 64, 102671.
[http://dx.doi.org/10.1016/j.jddst.2021.102671]
[23]
Galluzzo, M.; D’Adamio, S.; Campione, E.; Mazzilli, S.; Bianchi, L.; Talamonti, M. A clinical case of severe disease burden: An erythrodermic psoriatic patient treated with secukinumab. J. Dermatolog. Treat., 2018, 29(Suppl. 1), 17-20.
[http://dx.doi.org/10.1080/09546634.2018.1524818]
[24]
Kumar, R.; Dogra, S.; Amarji, B.; Singh, B.; Kumar, S.; Sharma, S.; Vinay, K.; Mahajan, R.; Katare, O.P. Efficacy of novel topical liposomal formulation of cyclosporine in mild to moderate stable plaque psoriasis: A randomized clinical trial. JAMA Dermatol., 2016, 152(7), 807-815.
[http://dx.doi.org/10.1001/jamadermatol.2016.0859] [PMID: 27096709]
[25]
Nelson, A.L. LNG-IUS 12: A 19.5 levonorgestrel-releasing intrauterine system for prevention of pregnancy for up to five years. Expert Opin. Drug Deliv., 2017, 14(9), 1131-1140.
[http://dx.doi.org/10.1080/17425247.2017.1353972] [PMID: 28696796]
[26]
Fernandes, A.R.; Martins-Gomes, C.; Santini, A.; Silva, A.M.; Souto, E.B. Psoriasis vulgaris—Pathophysiology of the disease and its classical treatment versus new drug delivery systems. In: Design of Nanostructures for Versatile Therapeutic Applications; Oxford, United Kingdom, 2018; p. 379-406.
[27]
Akhtar, N.; Verma, A.; Pathak, K. Topical delivery of drugs for the effective treatment of fungal infections of skin. Curr. Pharm. Des., 2015, 21(20), 2892-2913.
[http://dx.doi.org/10.2174/1381612821666150428150456] [PMID: 25925110]
[28]
Lei, W.; Yu, C.; Lin, H.; Zhou, X. Development of tacrolimus-loaded transfersomes for deeper skin penetration enhancement and therapeutic effect improvement in vivo. Asian J. Pharm., 2013, 8(6), 336-345.
[http://dx.doi.org/10.1016/j.ajps.2013.09.005]
[29]
Walecki, J.; Łebkowska, U.M.; Cwikła, J.; Walecka, I.; Walecki, J. Psoriatic arthritis. Pol. Przegl. Radiol. Med. Nukl., 2013, 78(1), 7-17.
[http://dx.doi.org/10.12659/PJR.883763] [PMID: 23493653]
[30]
Kim, J.E.; Cho, D.H.; Kim, H.S.; Kim, H.J.; Lee, J.Y.; Cho, B.K.; Park, H.J. Expression of the corticotropin-releasing hormone? Proopiomelanocortin axis in the various clinical types of psoriasis. Exp. Dermatol., 2007, 16(2), 104-109.
[http://dx.doi.org/10.1111/j.1600-0625.2006.00509.x] [PMID: 17222223]
[31]
Kumar, D.; Rajguru, J.P.; Maya, D.; Suri, P.; Bhardwaj, S.; Patel, N. Update on psoriasis: A review. J. Family Med. Prim. Care, 2020, 9(1), 20-24.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_689_19] [PMID: 32110559]
[32]
Lee, C.S.; Li, K. A review of acitretin for the treatment of psoriasis. Expert Opin. Drug Saf., 2009, 8(6), 769-779.
[http://dx.doi.org/10.1517/14740330903393732] [PMID: 19998529]
[33]
Lebwohl, M.; Ali, S. Treatment of psoriasis. Part 1. Topical therapy and phototherapy. J. Am. Acad. Dermatol., 2001, 45(4), 487-502.
[http://dx.doi.org/10.1067/mjd.2001.117046] [PMID: 11568737]
[34]
Megna, M.; Potestio, L.; Ruggiero, A.; Camela, E.; Fabbrocini, G. Guselkumab is efficacious and safe in psoriasis patients who failed anti-IL17: A 52-week real-life study. J. Dermatolog. Treat., 2022, 33(5), 2560-2564.
[http://dx.doi.org/10.1080/09546634.2022.2036674] [PMID: 35098859]
[35]
Gasparro, F.P. The role of PUVA in the treatment of psoriasis. Photobiology issues related to skin cancer incidence. Am. J. Clin. Dermatol., 2000, 1(6), 337-348.
[http://dx.doi.org/10.2165/00128071-200001060-00002] [PMID: 11702610]
[36]
Thapa, R.K.; Yoo, B.K. Evaluation of the effect of tacrolimus-loaded liquid crystalline nanoparticles on psoriasis-like skin inflammation. J. Dermatolog. Treat., 2014, 25(1), 22-25.
[http://dx.doi.org/10.3109/09546634.2012.755250] [PMID: 23210668]
[37]
Li, Y.; Zhang, G.; Chen, M.; Tong, M.; Zhao, M.; Tang, F.; Xiao, R.; Wen, H. Rutaecarpine inhibited imiquimod-induced psoriasis-like dermatitis via inhibiting the NF-κB and TLR7 pathways in mice. Biomed. Pharmacother., 2019, 109, 1876-1883.
[http://dx.doi.org/10.1016/j.biopha.2018.10.062] [PMID: 30551443]
[38]
Sarac, G.; Koca, T.T.; Baglan, T. A brief summary of clinical types of psoriasis. North. Clin. Istanb., 2016, 3(1), 79-82.
[PMID: 28058392]
[39]
Gupta, R.; Gupta, M.; Mangal, S.; Agrawal, U.; Vyas, S.P. Capsaicin-loaded vesicular systems designed for enhancing localized delivery for psoriasis therapy. Artif. Cells Nanomed. Biotechnol., 2016, 44(3), 825-834.
[PMID: 25465045]
[40]
Bian, G.; Wang, L.; Xie, Q.; Wang, Y.; Feng, H.; Yu, Y.; Chen, Z.; Deng, S.; Li, Y. DGT, a novel heterocyclic diterpenoid, effectively suppresses psoriasis via inhibition of STAT3 phosphorylation. Br. J. Pharmacol., 2021, 178(3), 636-653.
[http://dx.doi.org/10.1111/bph.15306] [PMID: 33140855]
[41]
Agarwal, R.; Saraswat, A.; Kaur, I.; Katare, O.P.; Kumar, B. A novelliposomal formulation of dithranol for psoriasis: Preliminary results. J. Dermatol., 2002, 29(8), 529-532.
[http://dx.doi.org/10.1111/j.1346-8138.2002.tb00321.x] [PMID: 12227489]
[42]
Sonawane, R.; Harde, H.; Katariya, M.; Agrawal, S.; Jain, S. Solid lipid nanoparticles-loaded topical gel containing combination drugs: An approach to offset psoriasis. Expert Opin. Drug Deliv., 2014, 11(12), 1833-1847.
[http://dx.doi.org/10.1517/17425247.2014.938634] [PMID: 25078031]
[43]
Pradhan, M.; Alexander, A.; Singh, M.R.; Singh, D.; Saraf, S.; Saraf, S. Ajazuddin, Understanding the prospective of nano-formulations towards the treatment of psoriasis. Biomed. Pharmacother., 2018, 107, 447-463.
[http://dx.doi.org/10.1016/j.biopha.2018.07.156] [PMID: 30103117]
[44]
Walunj, M.; Doppalapudi, S.; Bulbake, U.; Khan, W. Preparation, characterization, and in vivo evaluation of cyclosporine cationic liposomes for the treatment of psoriasis. J. Liposome Res., 2020, 30(1), 68-79.
[http://dx.doi.org/10.1080/08982104.2019.1593449] [PMID: 30897993]
[45]
Wadhwa, S.; Singh, B.; Sharma, G.; Raza, K.; Katare, O.P. Liposomal fusidic acid as a potential delivery system: A new paradigm in the treatment of chronic plaque psoriasis. Drug Deliv., 2016, 23(4), 1204-1213.
[http://dx.doi.org/10.3109/10717544.2015.1110845] [PMID: 26592918]
[46]
Hamishehkar, H.; Rahimpour, Y.; Kouhsoltani, M. Niosomes as a propitious carrier for topical drug delivery. Expert Opin. Drug Deliv., 2013, 10(2), 261-272.
[http://dx.doi.org/10.1517/17425247.2013.746310] [PMID: 23252629]
[47]
Abdelbary, A.A.; AbouGhaly, M.H.H. Design and optimization of topical methotrexate loaded niosomes for enhanced management of psoriasis: Application of Box–Behnken design, in vitro evaluation and in vivo skin deposition study. Int. J. Pharm., 2015, 485(1-2), 235-243.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.020] [PMID: 25773359]
[48]
Moghddam, S.R.M.; Ahad, A.; Aqil, M.; Imam, S.S.; Sultana, Y. Formulation and optimization of niosomes for topical diacerein delivery using 3-factor, 3-level Box-Behnken design for the management of psoriasis. Mater. Sci. Eng. C, 2016, 69, 789-797.
[http://dx.doi.org/10.1016/j.msec.2016.07.043] [PMID: 27612773]
[49]
Fathalla, D.; Youssef, E.M.K.; Soliman, G.M. Liposomal and ethosomal gels for the topical delivery of anthralin: Preparation, comparative evaluation and clinical assessment in psoriatic patients. Pharmaceutics, 2020, 12(5), 446.
[http://dx.doi.org/10.3390/pharmaceutics12050446] [PMID: 32403379]
[50]
Garg, T.; Rath, G.; Goyal, A.K. Nanotechnological approaches for the effective management of psoriasis. Artif. Cells Nanomed. Biotechnol., 2016, 44(6), 1374-1382.
[http://dx.doi.org/10.3109/21691401.2015.1037885] [PMID: 25919064]
[51]
Arora, R.; Katiyar, S.S.; Kushwah, V.; Jain, S. Solid lipid nanoparticles and nanostructured lipid carrier-based nanotherapeutics in treatment of psoriasis: A comparative study. Expert Opin. Drug Deliv., 2017, 14(2), 165-177.
[http://dx.doi.org/10.1080/17425247.2017.1264386] [PMID: 27882780]
[52]
Ren, G.; Zhao, Y. Preparation methods and thermal stability of calcipotriol solid lipid nanoparticles and efficacy in plaque psoriasis treatment. J. Therm. Anal. Calorim., 2021, 144(6), 2091-2098.
[http://dx.doi.org/10.1007/s10973-021-10627-3]
[53]
Sathe, P.; Saka, R.; Kommineni, N.; Raza, K.; Khan, W. Dithranol-loaded nanostructured lipid carrier-based gel ameliorate psoriasis in imiquimod-induced mice psoriatic plaque model. Drug Dev. Ind. Pharm., 2019, 45(5), 826-838.
[http://dx.doi.org/10.1080/03639045.2019.1576722] [PMID: 30764674]
[54]
Zakaria, F.; Ashari, S.E.; Mat Azmi, I.D.; Abdul Rahman, M.B. Recent advances in encapsulation of drug delivery (active substance) in cubosomes for skin diseases. J. Drug Deliv. Sci. Technol., 2022, 68, 103097.
[http://dx.doi.org/10.1016/j.jddst.2022.103097]
[55]
Sun, Z. Optimization of clobetasol propionate loaded niosomal gel for the treatment of psoriasis: Ex vivo and efficacy study. J. Dispers. Sci. Technol., 2022, 1-11.
[http://dx.doi.org/10.1080/01932691.2022.2110111]
[56]
Krithika, E. Preparation and characterizations of triamcinolone loaded cubosomes for transdermal drug delivery.Doctoral dissertation; College of Pharmacy, Madurai Medical College, Madurai, 2019.
[57]
Kaur, A.; Katiyar, S.S.; Kushwah, V.; Jain, S. Nanoemulsion loaded gel for topical co-delivery of clobitasol propionate and calcipotriol in psoriasis. Nanomedicine, 2017, 13(4), 1473-1482.
[http://dx.doi.org/10.1016/j.nano.2017.02.009] [PMID: 28259803]
[58]
Pople, P.V.; Singh, K.K. Targeting tacrolimus to deeper layers of skin with improved safety for treatment of atopic dermatitis. Int. J. Pharm., 2010, 398(1-2), 165-178.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.008] [PMID: 20637847]
[59]
Treister, A.D.; Kraff-Cooper, C.; Lio, P.A. Risk factors for dupilumab-associated conjunctivitis in patients with atopic dermatitis. JAMA Dermatol., 2018, 154(10), 1208-1211.
[http://dx.doi.org/10.1001/jamadermatol.2018.2690] [PMID: 30167653]
[60]
Mittal, S.; Ali, J.; Baboota, S. Enhanced anti-psoriatic activity of tacrolimus loaded nanoemulsion gel via omega 3 - Fatty acid (EPA and DHA) rich oils-fish oil and linseed oil. J. Drug Deliv. Sci. Technol., 2021, 63, 102458.
[http://dx.doi.org/10.1016/j.jddst.2021.102458]
[61]
Yu, J.J.; Zhang, C.S.; Coyle, M.E.; Du, Y.; Zhang, A.L.; Guo, X.; Xue, C.C.; Lu, C. Compound glycyrrhizin plus conventional therapy for psoriasis vulgaris: A systematic review and meta-analysis of randomized controlled trials. Curr. Med. Res. Opin., 2017, 33(2), 279-287.
[http://dx.doi.org/10.1080/03007995.2016.1254605] [PMID: 27786567]
[62]
Gisondi, P.; Girolomoni, G. Biologic therapies in psoriasis: A new therapeutic approach. Autoimmun. Rev., 2007, 6(8), 515-519.
[http://dx.doi.org/10.1016/j.autrev.2006.12.002] [PMID: 17854741]
[63]
Lecluse, L.L.A.; Tutein Nolthenius, J.L.E.; Bos, J.D.; Spuls, P.I. Patient preferences and satisfaction with systemic therapies for psoriasis: An area to be explored. Br. J. Dermatol., 2009, 160(6), 1340-1343.
[http://dx.doi.org/10.1111/j.1365-2133.2009.09115.x] [PMID: 19416228]
[64]
Rahman, M.; Akhter, S.; Ahmad, J.; Ahmad, M.Z.; Beg, S.; Ahmad, F.J. Nanomedicine-based drug targeting for psoriasis: Potentials and emerging trends in nanoscale pharmacotherapy. Expert Opin. Drug Deliv., 2015, 12(4), 635-652.
[http://dx.doi.org/10.1517/17425247.2015.982088] [PMID: 25439967]
[65]
Yan, Y.; Liang, H.; Liu, X.; Liu, L.; Chen, Y. Topical cationic hairy particles targeting cell free DNA in dermis enhance treatment of psoriasis. Biomaterials, 2021, 276, 121027.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121027] [PMID: 34293700]
[66]
Cai, Y.; Fleming, C.; Yan, J. Dermal γδ T cells-A new player in the pathogenesis of psoriasis. Int. Immunopharmacol., 2013, 16(3), 388-391.
[http://dx.doi.org/10.1016/j.intimp.2013.02.018] [PMID: 23499509]
[67]
Asad, M.I.; Khan, D.; Rehman, A.; Elaissari, A.; Ahmed, N. Development and in vitro/in vivo evaluation of pH-sensitive polymeric nanoparticles loaded hydrogel for the management of psoriasis. Nanomaterials, 2021, 11(12), 3433.
[http://dx.doi.org/10.3390/nano11123433] [PMID: 34947782]
[68]
Fereig, S.A.; El-Zaafarany, G.M.; Arafa, M.G.; Abdel-Mottaleb, M.M.A. Boosting the anti-inflammatory effect of self-assembled hybrid lecithin–chitosan nanoparticles via hybridization with gold nanoparticles for the treatment of psoriasis: Elemental mapping and in vivo modeling. Drug Deliv., 2022, 29(1), 1726-1742.
[http://dx.doi.org/10.1080/10717544.2022.2081383] [PMID: 35635314]
[69]
Pischon, H.; Radbruch, M.; Ostrowski, A.; Volz, P.; Gerecke, C.; Unbehauen, M.; Hönzke, S.; Hedtrich, S.; Fluhr, J.W.; Haag, R.; Kleuser, B.; Alexiev, U.; Gruber, A.D.; Mundhenk, L. Stratum corneum targeting by dendritic core-multishell-nanocarriers in a mouse model of psoriasis. Nanomedicine, 2017, 13(1), 317-327.
[http://dx.doi.org/10.1016/j.nano.2016.09.004] [PMID: 27697619]
[70]
Bessar, H.; Venditti, I.; Benassi, L.; Vaschieri, C.; Azzoni, P.; Pellacani, G.; Magnoni, C.; Botti, E.; Casagrande, V.; Federici, M.; Costanzo, A.; Fontana, L.; Testa, G.; Mostafa, F.F.; Ibrahim, S.A.; Russo, M.V.; Fratoddi, I. Functionalized gold nanoparticles for topical delivery of methotrexate for the possible treatment of psoriasis. Colloids Surf. B Biointerfaces, 2016, 141, 141-147.
[http://dx.doi.org/10.1016/j.colsurfb.2016.01.021] [PMID: 26852097]
[71]
Dadwal, A.; Mishra, N.; Rawal, R.K.; Narang, R.K. Development and characterisation of clobetasol propionate loaded Squarticles as a lipid nanocarrier for treatment of plaque psoriasis. J. Microencapsul., 2020, 37(5), 341-354.
[http://dx.doi.org/10.1080/02652048.2020.1756970] [PMID: 32293928]
[72]
Anwer, K.; Mohammad, M.; Ezzeldin, E.; Fatima, F.; Alalaiwe, A.; Iqbal, M. Preparation of sustained release apremilast-loaded PLGA nanoparticles: in vitro characterization and in vivo pharmacokinetic study in rats. Int. J. Nanomedicine, 2019, 14, 1587-1595.
[http://dx.doi.org/10.2147/IJN.S195048] [PMID: 30880967]
[73]
Srisuk, P.; Thongnopnua, P.; Raktanonchai, U.; Kanokpanont, S. Physico-chemical characteristics of methotrexate-entrapped oleic acid-containing deformable liposomes for in vitro transepidermal delivery targeting psoriasis treatment. Int. J. Pharm., 2012, 427(2), 426-434.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.045] [PMID: 22310459]
[74]
Saleem, S.; Iqubal, M.K.; Garg, S.; Ali, J.; Baboota, S. Trends in nanotechnology-based delivery systems for dermal targeting of drugs: An enticing approach to offset psoriasis. Expert Opin. Drug Deliv., 2020, 17(6), 817-838.
[http://dx.doi.org/10.1080/17425247.2020.1758665] [PMID: 32315216]
[75]
Essaghraoui, A.; Belfkira, A.; Hamdaoui, B.; Nunes, C.; Lima, S.A.C.; Reis, S. Improved dermal delivery of cyclosporine a loaded in solid lipid nanoparticles. Nanomaterials, 2019, 9(9), 1204.
[http://dx.doi.org/10.3390/nano9091204] [PMID: 31461853]
[76]
Liu, J.; Hu, W.; Chen, H.; Ni, Q.; Xu, H.; Yang, X. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int. J. Pharm., 2007, 328(2), 191-195.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.007] [PMID: 16978810]
[77]
Pinto, M.F.; Moura, C.C.; Nunes, C.; Segundo, M.A.; Costa Lima, S.A.; Reis, S. A new topical formulation for psoriasis: Development of methotrexate-loaded nanostructured lipid carriers. Int. J. Pharm., 2014, 477(1-2), 519-526.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.067] [PMID: 25445970]
[78]
Ramanunny, A.K.; Wadhwa, S.; Thakur, D.; Singh, S.K.; Kumar, R. Treatment modalities of psoriasis: A focus on requisite for topical nanocarrier. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(3), 418-433.
[http://dx.doi.org/10.2174/1871530320666200604162258]
[79]
Fereig, S.A.; El-Zaafarany, G.M.; Arafa, M.G.; Abdel-Mottaleb, M.M.A. Tackling the various classes of nano-therapeutics employed in topical therapy of psoriasis. Drug Deliv., 2020, 27(1), 662-680.
[http://dx.doi.org/10.1080/10717544.2020.1754527] [PMID: 32393082]
[80]
Shah, P.P.; Desai, P.R.; Boakye, C.H.A.; Patlolla, R.; Kikwai, L.C.; Babu, R.J.; Singh, M. Percutaneous delivery of α-melanocyte-stimulating hormone for the treatment of imiquimod-induced psoriasis. J. Drug Target., 2016, 24(6), 537-547.
[http://dx.doi.org/10.3109/1061186X.2015.1103743] [PMID: 26582563]
[81]
Goebel, A.S.B.; Neubert, R.H.H.; Wohlrab, J. Dermal targeting of tacrolimus using colloidal carrier systems. Int. J. Pharm., 2011, 404(1-2), 159-168.
[http://dx.doi.org/10.1016/j.ijpharm.2010.11.029] [PMID: 21094231]
[82]
Musa, S.H.; Basri, M.; Fard Masoumi, H.R.; Shamsudin, N.; Salim, N. Enhancement of physicochemical properties of nanocolloidal carrier loaded with cyclosporine for topical treatment of psoriasis: in vitro diffusion and in vivo hydrating action. Int. J. Nanomedicine, 2017, 12, 2427-2441.
[http://dx.doi.org/10.2147/IJN.S125302] [PMID: 28405165]
[83]
Zhang, J.; Yu, Q.; Peng, L.; Qin, Y.; Jing, M.; Huang, D.; Guo, J.; Xiao, M.; Chen, M. Benefits and safety of Chinese herbal medicine in treating psoriasis: An overview of systematic reviews. Front. Pharmacol., 2021, 12, 680172.
[http://dx.doi.org/10.3389/fphar.2021.680172] [PMID: 34276371]
[84]
Meng, S.; Sun, L.; Wang, L.; Lin, Z.; Liu, Z.; Xi, L.; Wang, Z.; Zheng, Y. Loading of water-insoluble celastrol into niosome hydrogels for improved topical permeation and anti-psoriasis activity. Colloids Surf. B Biointerfaces, 2019, 182, 110352.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110352] [PMID: 31306831]
[85]
Zeng, J.; Luo, S.; Huang, Y.; Lu, Q. Critical role of environmental factors in the pathogenesis of psoriasis. J. Dermatol., 2017, 44(8), 863-872.
[http://dx.doi.org/10.1111/1346-8138.13806] [PMID: 28349593]
[86]
Nussbaum, L.; Chen, Y.L.; Ogg, G.S. Role of regulatory T cells in psoriasis pathogenesis and treatment. Br. J. Dermatol., 2021, 184(1), 14-24.
[http://dx.doi.org/10.1111/bjd.19380] [PMID: 32628773]
[87]
Spector, P.E.; Fox, S.; Penney, L.M.; Bruursema, K.; Goh, A.; Kessler, S. The dimensionality of counterproductivity: Are all counterproductive behaviors created equal? J. Vocat. Behav., 2006, 68(3), 446-460.
[http://dx.doi.org/10.1016/j.jvb.2005.10.005]
[88]
Karczewski, J.; Poniedziałek, B.; Rzymski, P.; Adamski, Z. Factors affecting response to biologic treatment in psoriasis. Dermatol. Ther., 2014, 27(6), 323-330.
[http://dx.doi.org/10.1111/dth.12160] [PMID: 25053228]
[89]
Pușcaș, A.D.; Cătană, A.; Pușcaș, C.; Roman, I.I.; Vornicescu, C.; Șomlea, M.; Orăsan, R.I. Psoriasis: Association of interleukin-17 gene polymorphisms with severity and response to treatment. Exp. Ther. Med., 2019, 18(2), 875-880.
[PMID: 31384317]
[90]
Dopytalska, K.; Ciechanowicz, P.; Wiszniewski, K.; Szymańska, E.; Walecka, I. The role of epigenetic factors in psoriasis. Int. J. Mol. Sci., 2021, 22(17), 9294.
[http://dx.doi.org/10.3390/ijms22179294] [PMID: 34502197]
[91]
Frisch, K.L; Vecellio, M; Selmi, C. The role of epigenetics and immunological imbalance in the etiopathogenesis of psoriasis and psoriatic arthritis. Ther. Adv. Musculoskelet. Dis., 2019, 11, 1759720X19886505.
[92]
Eder, L.; Chandran, V.; Gladman, D.D. What have we learned about genetic susceptibility in psoriasis and psoriatic arthritis? Curr. Opin. Rheumatol., 2015, 27(1), 91-98.
[http://dx.doi.org/10.1097/BOR.0000000000000136] [PMID: 25415529]
[93]
Xie, J-L.; Chen, G-Y.; Jin, Y.; Zheng, X-D.; Wei, X-J.; Zheng, Y-Y.; Zhang, S-H.; Zhang, Y-N.; Zhang, X-J.; Zhou, X-G. Hydroa vacciniforme present for 48 years with cytotoxic CD4+ T-cell infiltration and Epstein-Barr virus infection. Br. J. Dermatol., 2012, 166(2), 449-451.
[http://dx.doi.org/10.1111/j.1365-2133.2011.10556.x] [PMID: 21801161]
[94]
Orsmond, A.; Bereza-Malcolm, L.; Lynch, T.; March, L.; Xue, M. Skin barrier dysregulation in psoriasis. Int. J. Mol. Sci., 2021, 22(19), 10841.
[http://dx.doi.org/10.3390/ijms221910841] [PMID: 34639182]
[95]
Bhattacharjee, O.; Ayyangar, U.; Kurbet, A.S.; Ashok, D.; Raghavan, S. Unraveling the ECM-immune cell crosstalk in skin diseases. Front. Cell Dev. Biol., 2019, 7, 68.
[http://dx.doi.org/10.3389/fcell.2019.00068] [PMID: 31134198]
[96]
Pivetta, E.; Capuano, A.; Vescovo, M.; Scanziani, E.; Cappelleri, A.; Rampioni Vinciguerra, G.L.; Vecchione, A.; Doliana, R.; Mongiat, M.; Spessotto, P. EMILIN-1 deficiency promotes chronic inflammatory disease through TGFβ signaling alteration and impairment of the gC1q/α4β1 integrin interaction. Matrix Biol., 2022, 111, 133-152.
[http://dx.doi.org/10.1016/j.matbio.2022.06.005] [PMID: 35764213]
[97]
Maroto-Morales, D.; Montero-Vilchez, T.; Arias-Santiago, S. Study of skin barrier function in psoriasis: The impact of emollients. Life, 2021, 11(7), 651.
[http://dx.doi.org/10.3390/life11070651] [PMID: 34357023]
[98]
Wang, X.; Sun, X.; Qu, X.; Li, C.; Yang, P.; Jia, J.; Liu, J.; Zheng, Y. Overexpressed fibulin‐3 contributes to the pathogenesis of psoriasis by promoting angiogenesis. Clin. Exp. Dermatol., 2019, 44(4), e64-e72.
[http://dx.doi.org/10.1111/ced.13720] [PMID: 30146751]
[99]
Lebwohl, M.G.; Kavanaugh, A.; Armstrong, A.W.; Van Voorhees, A.S. US perspectives in the management of psoriasis and psoriatic arthritis: Patient and physician results from the population-based multinational assessment of psoriasis and psoriatic arthritis (MAPP) survey. Am. J. Clin. Dermatol., 2016, 17(1), 87-97.
[http://dx.doi.org/10.1007/s40257-015-0169-x] [PMID: 26718712]
[100]
Yadav, K.; Soni, A.; Singh, D.; Singh, M.R. Polymers in topical delivery of anti-psoriatic medications and other topical agents in overcoming the barriers of conventional treatment strategies. Prog. Biomater., 2021, 10(1), 1-17.
[http://dx.doi.org/10.1007/s40204-021-00154-7] [PMID: 33738750]
[101]
Gabriel, D.; Mugnier, T.; Courthion, H.; Kranidioti, K.; Karagianni, N.; Denis, M.C.; Lapteva, M.; Kalia, Y.; Möller, M.; Gurny, R. Improved topical delivery of tacrolimus: A novel composite hydrogel formulation for the treatment of psoriasis. J. Control. Release, 2016, 242, 16-24.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.007] [PMID: 27639683]
[102]
Paller, A.; Jaworski, J.C.; Simpson, E.L.; Boguniewicz, M.; Russell, J.J.; Block, J.K.; Tofte, S.; Dunn, J.D.; Feldman, S.R.; Clark, A.R.; Schwartz, G.; Eichenfield, L.F. Major comorbidities of atopic dermatitis: Beyond allergic disorders. Am. J. Clin. Dermatol., 2018, 19(6), 821-838.
[http://dx.doi.org/10.1007/s40257-018-0383-4] [PMID: 30168085]
[103]
Mohd Nordin, U.U.; Ahmad, N.; Salim, N.; Mohd Yusof, N.S. Lipid-based nanoparticles for psoriasis treatment: A review on conventional treatments, recent works, and future prospects. RSC Advances, 2021, 11(46), 29080-29101.
[http://dx.doi.org/10.1039/D1RA06087B] [PMID: 35478537]
[104]
Pandey, K. Nimisha, An overview on promising nanotechnological approaches for the treatment of psoriasis. Recent Pat. Nanotechnol., 2020, 14(2), 102-118.
[http://dx.doi.org/10.2174/1872210514666200204124130] [PMID: 32013854]
[105]
Liang, H.; Yan, Y.; Wu, J.; Ge, X.; Wei, L.; Liu, L.; Chen, Y. Topical nanoparticles interfering with the DNA-LL37 complex to alleviate psoriatic inflammation in mice and monkeys. Sci. Adv., 2020, 6(31), eabb5274.
[http://dx.doi.org/10.1126/sciadv.abb5274] [PMID: 32923608]
[106]
Wu, L.; Liu, G.; Wang, W.; Liu, R.; Liao, L.; Cheng, N.; Li, W.; Zhang, W.; Ding, D. Cyclodextrin-modified CeO2 nanoparticles as a multifunctional nanozyme for combinational therapy of psoriasis. Int. J. Nanomedicine, 2020, 15, 2515-2527.
[http://dx.doi.org/10.2147/IJN.S246783] [PMID: 32368038]
[107]
Guo, D.; Shi, C.; Wang, L.; Ji, X.; Zhang, S.; Luo, J. Rationally designed micellar nanocarriers for the delivery of hydrophilic methotrexate in Psoriasis treatment. ACS Appl. Bio Mater., 2020, 3(8), 4832-4846.
[http://dx.doi.org/10.1021/acsabm.0c00342] [PMID: 34136761]
[108]
Basmanav, F.B.; Betz, R.C. Translational impact of omics studies in alopecia areata: Recent advances and future perspectives. Expert Rev. Clin. Immunol., 2022, 18(8), 845-857.
[http://dx.doi.org/10.1080/1744666X.2022.2096590] [PMID: 35770930]
[109]
Yamamoto, Y.; Kanayama, N.; Nakayama, Y.; Matsushima, N. Current status, issues and future prospects of personalized medicine for each disease. J. Pers. Med., 2022, 12(3), 444.
[http://dx.doi.org/10.3390/jpm12030444] [PMID: 35330444]
[110]
Zhang, L. Type1 interferons potential initiating factors linking skin wounds with psoriasis pathogenesis. Front. Immunol., 2019, 10, 1440.
[http://dx.doi.org/10.3389/fimmu.2019.01440] [PMID: 31293591]
[111]
Steuer, A.B.; Peterson, E.; Lo Sicco, K.; Franks, A.G., Jr Morphea in a patient undergoing treatment with ustekinumab. JAAD Case Rep., 2019, 5(7), 590-592.
[http://dx.doi.org/10.1016/j.jdcr.2019.05.008] [PMID: 31312709]