Antileishmanial Activity of Natural Diterpenoids: A Comprehensive Review

Page: [772 - 781] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Infections that occur by protozoa are a chief universal issue for health, with wide endemicity in the involved areas. In the absence of a vaccine, there is an immediate requirement for efficient medications to replace those in common applications. However, their low effectiveness, lengthy treatment regimen, high poisoning, detrimental side effects of drugs and expensive prices require the need for superior medicine; these are all the factors that make leishmaniasis vaccines unavailable in the near future. Therefore, there is an immediate requirement to discover unique antileishmanial drugs with fine power and preferable remedial profile. Even though most of the medications are still derived from medicinal plant origins, the concern in higher plants as the origin of new bioactive natural compounds has been enhanced in recent years. The present study is a review of reports of naturally occurring diterpenoids extracted from plants and exhibiting anti-leishmaniasis activity. This review article refers to 25 plant species, their families, the portion used and the type of extract investigated. It also includes 88 diterpenoids extracted and identified from higher plant species, which are classified into chemically and structurally suitable groups. A number of recent reports and anti-leishmaniasis activities on natural compounds are discussed. This article provides a good overview of the future of leishmaniasis drug discovery.

Graphical Abstract

[1]
Rogers, M.E.; Ilg, T.; Nikolaev, A.V.; Ferguson, M.A.J.; Bates, P.A. Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature, 2004, 430(6998), 463-467.
[http://dx.doi.org/10.1038/nature02675] [PMID: 15269771]
[2]
Alemayehu, B.; Alemayehu, M. Leishmaniasis: A review on parasite, vector and reservoir host. Health Sci. J., 2017, 11(4), 1-19.
[http://dx.doi.org/10.21767/1791-809X.1000519]
[3]
Tate, E.W.; Bell, A.S.; Rackham, M.D.; Wright, M.H.; Barrett, M.P.; Croft, S.L. N-Myristoyltransferase as a potential drug target in malaria and leishmaniasis. Parasitology, 2014, 141(1), 37-49.
[http://dx.doi.org/10.1017/S0031182013000450] [PMID: 23611109]
[4]
Enk, C.D.; Gardlo, K.; Hochberg, M.; Ingber, A.; Ruzicka, T. Kutane Leishmaniose. Hautarzt, 2003, 54(6), 506-512.
[http://dx.doi.org/10.1007/s00105-003-0530-5] [PMID: 12759734]
[5]
Mohebali, M. Visceral leishmaniasis in Iran: Review of the epidemiological and clinical features. Iran. J. Parasitol., 2013, 8(3), 348-358.
[PMID: 24454426]
[6]
Hamzavi, S.S.; Sanaei Dashti, A.; Kadivar, M.R.; Pouladfar, G.; Pourabbas, B. Successful treatment of disseminated cutaneous leishmaniasis with liposomal amphotericin B and miltefosine in an eight-year-old girl. Pediatr. Infect. Dis. J., 2018, 37(3), 275-277.
[http://dx.doi.org/10.1097/INF.0000000000001741] [PMID: 29424815]
[7]
de Mello, M.V.P.; Abrahim-Vieira, B.A.; Domingos, T.F.S.; de Jesus, J.B.; de Sousa, A.C.C.; Rodrigues, C.R.; Souza, A.M.T. A comprehensive review of chalcone derivatives as antileishmanial agents. Eur. J. Med. Chem., 2018, 150, 920-929.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.047] [PMID: 29602038]
[8]
Rocha, L.G.; Almeida, J.R.G.S.; Macêdo, R.O.; Barbosa-Filho, J.M. A review of natural products with antileishmanial activity. Phytomedicine, 2005, 12(6-7), 514-535.
[http://dx.doi.org/10.1016/j.phymed.2003.10.006] [PMID: 16008131]
[9]
Akhoundi, M.; Kuhls, K.; Cannet, A.; Votýpka, J.; Marty, P.; Delaunay, P.; Sereno, D. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl. Trop. Dis., 2016, 10(3)e0004349
[http://dx.doi.org/10.1371/journal.pntd.0004349] [PMID: 26937644]
[10]
Pawar, H.; Sahasrabuddhe, N.A.; Renuse, S.; Keerthikumar, S.; Sharma, J.; Kumar, G.S.S.; Venugopal, A.; Sekhar, N.R.; Kelkar, D.S.; Nemade, H.; Khobragade, S.N.; Muthusamy, B.; Kandasamy, K.; Harsha, H.C.; Chaerkady, R.; Patole, M.S.; Pandey, A. A proteogenomic approach to map the proteome of an unsequenced pathogen - Leishmania donovani. Proteomics, 2012, 12(6), 832-844.
[http://dx.doi.org/10.1002/pmic.201100505] [PMID: 22539434]
[11]
Abu-Dayyeh, I.; Hassani, K.; Westra, E.R.; Mottram, J.C.; Olivier, M. Comparative study of the ability of Leishmania mexicana promastigotes and amastigotes to alter macrophage signaling and functions. Infect. Immun., 2010, 78(6), 2438-2445.
[http://dx.doi.org/10.1128/IAI.00812-09] [PMID: 20368344]
[12]
Naderer, T.; McConville, M.J. The Leishmania-macrophage interaction: A metabolic perspective. Cell. Microbiol., 2008, 10(2), 301-308.
[http://dx.doi.org/10.1111/j.1462-5822.2007.01096.x] [PMID: 18070117]
[13]
Gaze, S.T.; Dutra, W.O.; Lessa, M.; Lessa, H.; Guimarães, L.H.; de Jesus, A.R.; Carvalho, L.P.; Machado, P.; Carvalho, E.M.; Gollob, K.J. Mucosal leishmaniasis patients display an activated inflammatory T-cell phenotype associated with a nonbalanced monocyte population. Scand. J. Immunol., 2006, 63(1), 70-78.
[http://dx.doi.org/10.1111/j.1365-3083.2005.01707.x] [PMID: 16398703]
[14]
Tchokouaha Yamthe, L.; Appiah-Opong, R.; Tsouh Fokou, P.; Tsabang, N.; Fekam Boyom, F.; Nyarko, A.; Wilson, M. Marine algae as source of novel antileishmanial drugs: A review. Mar. Drugs, 2017, 15(11), 323-334.
[http://dx.doi.org/10.3390/md15110323] [PMID: 29109372]
[15]
Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; Boer, M. Leishmaniasis worldwide and global estimates of its incidence. PLoS One, 2012, 7(5)e35671
[http://dx.doi.org/10.1371/journal.pone.0035671] [PMID: 22693548]
[16]
Yanik, M.; Gurel, M.S.; Simsek, Z.; Kati, M. The psychological impact of cutaneous leishmaniasis. Clin. Exp. Dermatol., 2004, 29(5), 464-467.
[http://dx.doi.org/10.1111/j.1365-2230.2004.01605.x] [PMID: 15347324]
[17]
Vicente, C.R.; Falqueto, A. Differentiation of mucosal lesions in mucocutaneous leishmaniasis and paracoccidioidomycosis. PLoS One, 2018, 13(11)e0208208
[http://dx.doi.org/10.1371/journal.pone.0208208] [PMID: 30475920]
[18]
de Moura, T.R.; Novais, F.O.; Oliveira, F.; Clarêncio, J.; Noronha, A.; Barral, A.; Brodskyn, C.; de Oliveira, C.I. Toward a novel experimental model of infection to study American cutaneous leishmaniasis caused by Leishmania braziliensis. Infect. Immun., 2005, 73(9), 5827-5834.
[http://dx.doi.org/10.1128/IAI.73.9.5827-5834.2005] [PMID: 16113301]
[19]
Bhattacharya, S.K.; Dash, A.P. Elimination of kala-azar from the Southeast Asia region. Am. J. Trop. Med. Hyg., 2017, 96(4), 16-0279.
[http://dx.doi.org/10.4269/ajtmh.16-0279] [PMID: 28115678]
[20]
Mirzania, F.; Sarrafi, Y.; Farimani, M.M. Comparison of chemical composition, antifungal antibacterial activities of two populations of Salvia macilenta Boiss essential oil. Rec. Nat. Prod., 2018, 12(4), 385-390.
[http://dx.doi.org/10.25135/rnp.37.17.10.166]
[21]
Savoia, D. Recent updates and perspectives on leishmaniasis. J. Infect. Dev. Ctries., 2015, 9(6), 588-596.
[http://dx.doi.org/10.3855/jidc.6833] [PMID: 26142667]
[22]
Mhadhbi, M.; Sassi, A. Infection of the equine population by Leishmania parasites. Equine Vet. J., 2020, 52(1), 28-33.
[http://dx.doi.org/10.1111/evj.13178] [PMID: 31498914]
[23]
Gupta, S.; Pal, A.; Vyas, S.P. Drug delivery strategies for therapy of visceral leishmaniasis. Expert Opin. Drug Deliv., 2010, 7(3), 371-402.
[http://dx.doi.org/10.1517/17425240903548232] [PMID: 20201740]
[24]
Mondiale, S.O. Leishmaniasis in high-burden countries: An epidemiological update based on data reported in 2014. Wkly. Epidemiol. Rec., 2016, 91(22), 287-296.
[PMID: 27263128]
[25]
Naderer, T.; Vince, J.; McConville, M. Surface determinants of Leishmania parasites and their role in infectivity in the mammalian host. Curr. Mol. Med., 2004, 4(6), 649-665.
[http://dx.doi.org/10.2174/1566524043360069] [PMID: 15357214]
[26]
Cairns, B.R.; Collard, M.W.; Landfear, S.M. Developmentally regulated gene from Leishmania encodes a putative membrane transport protein. Proc. Natl. Acad. Sci. USA, 1989, 86(20), 7682-7686.
[http://dx.doi.org/10.1073/pnas.86.20.7682] [PMID: 2813352]
[27]
Rochette, A.; Raymond, F.; Corbeil, J.; Ouellette, M.; Papadopoulou, B. Whole-genome comparative RNA expression profiling of axenic and intracellular amastigote forms of Leishmania infantum. Mol. Biochem. Parasitol., 2009, 165(1), 32-47.
[http://dx.doi.org/10.1016/j.molbiopara.2008.12.012] [PMID: 19393160]
[28]
Herwaldt, B.L.; Berman, J.D. Recommendations for treating leishmaniasis with sodium stibogluconate (Pentostam) and review of pertinent clinical studies. Am. J. Trop. Med. Hyg., 1992, 46(3), 296-306.
[http://dx.doi.org/10.4269/ajtmh.1992.46.296] [PMID: 1313656]
[29]
Laniado-Laborín, R.; Cabrales-Vargas, M.N.; Amphotericin, B.; Amphotericin, B. Side effects and toxicity. Rev. Iberoam. Micol., 2009, 26(4), 223-227.
[http://dx.doi.org/10.1016/j.riam.2009.06.003] [PMID: 19836985]
[30]
Monzote, L. Current treatment of leishmaniasis: A review. Antimicrob. Agents J, 2009, 1(1), 9-19.
[31]
Ebrahimi, S.N.; Farimani, M.M.; Mirzania, F.; Soltanipoor, M.A.; De Mieri, M.; Hamburger, M. Manoyloxide sesterterpenoids from Salvia mirzayanii. J. Nat. Prod., 2014, 77(4), 848-854.
[http://dx.doi.org/10.1021/np400948n] [PMID: 24689905]
[32]
Keypour, S.; Mirzania, F.; Farimani, M.M. Antioxidant activity, total flavonoid and phenolic contents of three different extracts of Hyrcanian reishi. Curr. Bioact. Compd., 2019, 15(1), 109-113.
[http://dx.doi.org/10.2174/1573407213666171107151007]
[33]
David, B.; Wolfender, J.L.; Dias, D.A. The pharmaceutical industry and natural products: Historical status and new trends. Phytochem. Rev., 2015, 14(2), 299-315.
[http://dx.doi.org/10.1007/s11101-014-9367-z]
[34]
Habtemariam, S.; Gray, A.; Halbert, G.; Waterman, P. A novel antibacterial diterpene from Premna schimperi. Planta Med., 1990, 56(2), 187-189.
[http://dx.doi.org/10.1055/s-2006-960922] [PMID: 2353066]
[35]
Habtemariam, S.; Gray, A.; Waterman, P. Antibacterial diterpenes from the aerial parts of Premna oligotricha. Planta Med., 1992, 58(1), 109-110.
[http://dx.doi.org/10.1055/s-2006-961404] [PMID: 1620735]
[36]
Habtemariam, S. In vitro antileishmanial effects of antibacterial diterpenes from two Ethiopian premna species: P. schimperi and P. oligotricha. BMC pharmaco, 2003, 3(1), 6-13.
[http://dx.doi.org/10.1186/1471-2210-3-6]
[37]
Fokialakis, N.; Kalpoutzakis, E.; Tekwani, B.L.; Skaltsounis, A.L.; Duke, S.O. Antileishmanial activity of natural diterpenes from Cistus sp. and semisynthetic derivatives thereof. Biol. Pharm. Bull., 2006, 29(8), 1775-1778.
[http://dx.doi.org/10.1248/bpb.29.1775] [PMID: 16880643]
[38]
Santos, A.O.; Izumi, E.; Ueda-Nakamura, T.; Dias-Filho, B.P.; Veiga-Júnior, V.F.; Nakamura, C.V. Antileishmanial activity of diterpene acids in copaiba oil. Mem. Inst. Oswaldo Cruz, 2013, 108(1), 59-64.
[http://dx.doi.org/10.1590/S0074-02762013000100010] [PMID: 23440116]
[39]
Siheri, W.; Igoli, J.O.; Gray, A.I.; Nasciemento, T.G.; Zhang, T.; Fearnley, J.; Clements, C.J.; Carter, K.C.; Carruthers, J.; Edrada-Ebel, R.; Watson, D.G. The isolation of antiprotozoal compounds from Libyan propolis. Phytother. Res., 2014, 28(12), 1756-1760.
[http://dx.doi.org/10.1002/ptr.5194] [PMID: 25044090]
[40]
Ghosh, S.; Singh, R.; Dubey, V.; Rangan, L. Antileishmanial activity of labdane diterpenes isolated from Alpinia nigra seeds. Lett. Drug Des. Discov., 2016, 14(1), 119-124.
[http://dx.doi.org/10.2174/1570180813666160725100300]
[41]
Jullian, V.; Bonduelle, C.; Valentin, A.; Acebey, L.; Duigou, A.G.; Prévost, M.F.; Sauvain, M. New clerodane diterpenoids from Laetia procera (Poepp.) Eichler (Flacourtiaceae), with antiplasmodial and antileishmanial activities. Bioorg. Med. Chem. Lett., 2005, 15(22), 5065-5070.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.090] [PMID: 16168652]
[42]
Silva, R.M.; Oliveira, F.A.; Cunha, K.M.A.; Maia, J.L.; Maciel, M.A.M.; Pinto, A.C.; Nascimento, N.R.F.; Santos, F.A.; Rao, V.S.N. Cardiovascular effects of trans-dehydrocrotonin, a diterpene from Croton cajucara in rats. Vascul. Pharmacol., 2005, 43(1), 11-18.
[http://dx.doi.org/10.1016/j.vph.2005.02.015] [PMID: 15975531]
[43]
Lima, G.S.; Castro-Pinto, D.B.; Machado, G.C.; Maciel, M.A.M.; Echevarria, A. Antileishmanial activity and trypanothione reductase effects of terpenes from the Amazonian species Croton cajucara Benth (Euphorbiaceae). Phytomedicine, 2015, 22(12), 1133-1137.
[http://dx.doi.org/10.1016/j.phymed.2015.08.012] [PMID: 26547537]
[44]
Misra, P.; Sashidhara, K.V.; Singh, S.P.; Kumar, A.; Gupta, R.; Chaudhaery, S.S.; Gupta, S.S.; Majumder, H.K.; Saxena, A.K.; Dube, A. 16α-Hydroxycleroda-3,13 (14)Z-dien-15,16-olide from Polyalthia longifolia: A safe and orally active antileishmanial agent. Br. J. Pharmacol., 2010, 159(5), 1143-1150.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00609.x] [PMID: 20136832]
[45]
Novello, C.R.; Düsman, E.; Balbinot, R.B.; de Paula, J.C.; Nakamura, C.V.; de Mello, J.C.P.; Sarragiotto, M.H. Antileishmanial activity of neo-clerodane diterpenes from Croton echioides. Nat. Prod. Res., 2020, 33, 1-7.
[http://dx.doi.org/10.1080/14786419.2020.1851221] [PMID: 33249918]
[46]
Tan, N.; Kaloga, M.; Radtke, O.A.; Kiderlen, A.F.; Öksüz, S.; Ulubelen, A.; Kolodziej, H. Abietane diterpenoids and triterpenoic acids from Salvia cilicica and their antileishmanial activities. Phytochemistry, 2002, 61(8), 881-884.
[http://dx.doi.org/10.1016/S0031-9422(02)00361-8] [PMID: 12453510]
[47]
Búfalo, J.; Cantrell, C. L.; Jacob, M. R.; Schrader, K. K.; Tekwani, B. L.; Kustova, T. S. Antimicrobial and antileishmanial activities of diterpenoids isolated from the roots of Salvia deserta. Planta Med., 2016, 82(01/02), 131-137.
[http://dx.doi.org/10.1055/s-0035-1557875]
[48]
Tan, N.; Sen, B.; Onat, F.; Carcak, N.; Specker, E.; Tan, E. Chemical composition and biological activities of extracts from an endemic Salvia cilicica Boiss. Planta Med., 2013, 79(13), PJ47.
[http://dx.doi.org/10.1055/s-0033-1352251]
[49]
Tan, N.; Kaloga, M.; Radtke, O.A.; Kolodziej, H. Evaluation of the antileishmanial activity of two new diterpenoids and extracts from Salvia cilicica. Biodivers., 2002, 22, 269-271.
[http://dx.doi.org/10.1007/978-1-4419-9242-0_29]
[50]
Naman, C.B.; Gromovsky, A.D.; Vela, C.M.; Fletcher, J.N.; Gupta, G.; Varikuti, S.; Zhu, X.; Zywot, E.M.; Chai, H.; Werbovetz, K.A.; Satoskar, A.R.; Kinghorn, A.D. Antileishmanial and cytotoxic activity of some highly oxidized abietane diterpenoids from the bald cypress, Taxodium distichum. J. Nat. Prod., 2016, 79(3), 598-606.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01131] [PMID: 26905523]
[51]
Zhang, J.; Rahman, A.A.; Jain, S.; Jacob, M.R.; Khan, S.I.; Tekwani, B.L.; Ilias, M. Antimicrobial and antiparasitic abietane diterpenoids from Cupressus sempervirens. Res. Rep. Med. Chem., 2012, 2, 1-9.
[http://dx.doi.org/10.2147/RRMC.S29902]
[52]
Gondal, H.Y.; Nisar, M.; Choudhary, M.I. Antileishmanial activity of diterpene lactones from Suregada multiflora and their semisynthetic derivatives. Curr. Bioact. Compd., 2020, 16(1), 53-57.
[http://dx.doi.org/10.2174/1573407214666180516101031]
[53]
Zare, S.; Hatam, G.; Firuzi, O.; Bagheri, A.; Chandran, J.N.; Schneider, B. Antileishmanial and pharmacophore modeling of abietane-type diterpenoids extracted from the roots of Salvia hydrangea. J. Mol. Struct., 2020, 129, 447-458.
[http://dx.doi.org/10.1016/j.molstruc.2020.129447]
[54]
Santos, A.O.; Britta, E.A.; Bianco, E.M.; Ueda-Nakamura, T.; Filho, B.P.D.; Pereira, R.C.; Nakamura, C.V. 4-Acetoxydolastane diterpene from the Brazilian brown alga Canistrocarpus cervicornis as antileishmanial agent. Mar. Drugs, 2011, 9(11), 2369-2383.
[http://dx.doi.org/10.3390/md9112369] [PMID: 22163190]
[55]
Nvau, J.B.; Alenezi, S.; Ungogo, M.A.; Alfayez, I.A.M.; Natto, M.J.; Gray, A.I.; Ferro, V.A.; Watson, D.G.; de Koning, H.P.; Igoli, J.O. Antiparasitic and cytotoxic activity of bokkosin, a novel diterpene-substituted chromanyl benzoquinone from Calliandra portoricensis. Front Chem., 2020, 8574103
[http://dx.doi.org/10.3389/fchem.2020.574103] [PMID: 33282826]
[56]
Shyaula, S.L.; Tamang, T.; Ghouri, N.; Adhikari, A.; Marasini, S.; Bajracharya, G.B.; Manandhar, M.D.; Choudhary, M.I. Antileishmanial diterpenoid alkaloids from Aconitum spicatum (Bruhl). Stapf. Nat. Prod. Res., 2016, 30(22), 2590-2593.
[http://dx.doi.org/10.1080/14786419.2015.1114941] [PMID: 26615865]
[57]
Alencar, D.C.; da Silva, F.M.A.; de Almeida, R.A.; Costa, E.V.; Dutra, L.M.; Barison, A.; Volpato, H.; Nakamura, C.V.; Koolen, H.H.F.; de Souza, A.D.L.; Pinheiro, M.L.B. Antileishmanial activity of a new ent-kaurene diterpene glucoside isolated from leaves of Xylopia excellens R.E.Fr. (annonaceae). Rec. Nat. Prod., 2018, 12(2), 190-194.
[http://dx.doi.org/10.25135/rnp.16.17.06.111]
[58]
Murillo, J.A.; Gil, J.F.; Upegui, Y.A.; Restrepo, A.M.; Robledo, S.M.; Quiñones, W.; Echeverri, F.; San Martin, A.; Olivo, H.F.; Escobar, G. Antileishmanial activity and cytotoxicity of ent-beyerene diterpenoids. Bioorg. Med. Chem., 2019, 27(1), 153-160.
[http://dx.doi.org/10.1016/j.bmc.2018.11.030] [PMID: 30482546]
[59]
Bruno de Sousa, C.; Gangadhar, K.N.; Morais, T.R.; Conserva, G.A.A.; Vizetto-Duarte, C.; Pereira, H.; Laurenti, M.D.; Campino, L.; Levy, D.; Uemi, M.; Barreira, L.; Custódio, L.; Passero, L.F.D.; Lago, J.H.G.; Varela, J. Antileishmanial activity of meroditerpenoids from the macroalgae Cystoseira baccata. Exp. Parasitol., 2017, 174, 1-9.
[http://dx.doi.org/10.1016/j.exppara.2017.01.002] [PMID: 28126391]
[60]
Moridi Farimani, M.; Mirzania, F.; Sonboli, A.; Moghaddam, F.M. Chemical composition and antibacterial activity of Dracocephalum kotschyi essential oil obtained by microwave extraction and hydrodistillation. Int. J. Food Prop., 2017, 20(sup1), 306-315.
[http://dx.doi.org/10.1080/10942912.2017.1295987]
[61]
Sonboli, A.; Mirzania, F.; Gholipour, A. Essential oil composition of Dracocephalum kotschyi Boiss. from Iran. Nat. Prod. Res., 2019, 33(14), 2095-2098.
[http://dx.doi.org/10.1080/14786419.2018.1482550] [PMID: 29873264]
[62]
Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[63]
Sonboli, A.; Mirzania, F.; Aliahmadi, A.; Amiri, M.S. Composition and antibacterial activity of the essential oil of Phlomidoschema parviflorum from Iran. Chem. Nat. Compd., 2015, 51(2), 366-368.
[http://dx.doi.org/10.1007/s10600-015-1286-8]
[64]
El-Tantawy, W.H. Natural products for the management of hyperuricaemia and gout: A review. Arch. Physiol. Biochem., 2021, 127(1), 61-72.
[http://dx.doi.org/10.1080/13813455.2019.1610779] [PMID: 31094218]
[65]
Kwon, M.; Yim, S.; Kim, G.; Lee, D. Integrated network-based computational analysis for drug development. In:Recent Advances in Biological Network Analysis; Springer: Cham, 2021.
[http://dx.doi.org/10.1007/978-3-030-57173-3_8]
[66]
Ebrahimi, S.; Farimani, M.M.; Mirzania, F.; Hamburger, M. New sesterterpenoids from Salvia mirzayanii - stereochemical characterization by computational electronic circular dichroism. Planta Med., 2013, 79(13), PG2.
[http://dx.doi.org/10.1055/s-0033-1352072]
[67]
Mirzania, F.; Farimani, M.M. Biochemical evaluation of antioxidant activity, phenol and flavonoid contents of Dracocephalum Kotschyi Boiss extracts obtained with different solvents. HBB, 2018, 1, 32-44.
[68]
Chen, H.; Li, R. Introduction of diabetes mellitus and future prospects of natural products on diabetes mellitus. In: Structure and Health Effects of Natural Products on Diabetes Mellitus; Springer: Singapore, , 2021; 24, p. pp. 1- 15.
[http://dx.doi.org/10.1007/978-981-15-8791-7_1]
[69]
Khan, A.; Khan, A.; Ahmad, M.; Ali, M.; Farooq, U.; Khan, F.A.; Bukhari, S.M. Antiglycation potential of Indigoferin A, Indigoferin B and Indigoferin C natural products from Indigofera heterantha Brandis. Clin. Phytosci., 2021, 7(1), 5.
[http://dx.doi.org/10.1186/s40816-020-00238-0]
[70]
Mirzania, F.; Sarrafi, Y.; Moridi, F.M. Comparative evaluation of chemical compositions and biological activities of wild and cultivated Froriepia subpinnata L. essential oils. J. Agric. Sci. Technol., 2019, 21(2), 331-340.
[71]
Araújo, I.A.C. In vitro efficacy of isoflavonoids and terpenes against Leishmania infantum and L. amazonensis. Exp. Parasitol., 2022, 242108383
[http://dx.doi.org/10.1016/j.exppara.2022.108383] [PMID: 36152879]
[72]
Menghini, L.; Ferrante, C.; Carradori, S.; D’Antonio, M.; Orlando, G.; Cairone, F.; Cesa, S.; Filippi, A.; Fraschetti, C.; Zengin, G.; Ak, G.; Tacchini, M.; Iqbal, K. Chemical and bioinformatics analyses of the anti-leishmanial and anti-oxidant activities of hemp essential oil. Biomolecules, 2021, 11(2), 272.
[http://dx.doi.org/10.3390/biom11020272] [PMID: 33673274]
[73]
Chacón-Vargas, K.F.; Sánchez-Torres, L.E.; Chávez-González, M.L.; Adame-Gallegos, J.R.; Nevárez-Moorillón, G.V. Mexican oregano (Lippia berlandieri schauer and Poliomintha longiflora Gray) essential oils induce cell death by apoptosis in Leishmania (Leishmania) mexicana promastigotes. Molecules, 2022, 27(16), 5183.
[http://dx.doi.org/10.3390/molecules27165183] [PMID: 36014423]
[74]
Faria, L.V.; Brígido, H.P.C.; Bentaberry-Rosa, A.A.; Correa-Barbosa, J.; Silva-Silva, J.V.; Bastos, M.L.C.; Costa, E.V.S.; Coelho-Ferreira, M.; Silveira, F.T.; Dolabela, M.F. Anti-leishmania activity of extract and fractions from the stem and leaf of Montrichardia linifera (Arruda) schott (Araceae) against Leishmania amazonensis. Res. Soc. Dev., 2021, 10(2), e9310212312-e9310212312.
[http://dx.doi.org/10.33448/rsd-v10i2.12312]
[75]
Gouri, V.; Upreti, S.; Samant, M. Evaluation of target-specific natural compounds for drug discovery against Leishmaniasis. Parasitol. Int., 2022, 91102622
[http://dx.doi.org/10.1016/j.parint.2022.102622] [PMID: 35798284]
[76]
Bagherani, N. Can Saffron (Crocus sativus) be effective in the treatment of leishmaniasis? Infect. Disord. Drug Targets, 2014, 13(5), 328-329.
[http://dx.doi.org/10.2174/1871526514666140217145454] [PMID: 24552229]
[77]
Nilforoushzadeh, M.A.; Heidari-Kharaji, M.; Zare, M.; Torkamaniha, E.; Rafati, S. Novel strategies and pharmaceutical agents for the treatment of leishmaniasis: A review. Antiinfect. Agents, 2020, 18(2), 89-100.
[http://dx.doi.org/10.2174/2211352517666190123113843]
[78]
Barbosa, J.; Figueiredo, S.; Monteiro, F.; Rocha-Silva, F.; Gaciele-Melo, C.; Coelho, S.; Lyon, S.; Caligiorne, R. New approaches on leishmaniasis treatment and prevention: A review of recent patents. Recent Pat. Endocr. Metab. Immune Drug Discov., 2015, 9(2), 90-102.
[http://dx.doi.org/10.2174/1872214809666150921111956] [PMID: 26392062]
[79]
Passero, L.F.D.; Cruz, L.A.; Santos-Gomes, G.; Rodrigues, E.; Laurenti, M.D.; Lago, J.H.G. Conventional versus natural alternative treatments for leishmaniasis: A review. Curr. Top. Med. Chem., 2018, 18(15), 1275-1286.
[http://dx.doi.org/10.2174/1568026618666181002114448] [PMID: 30277153]
[80]
Pathak, R.; Batra, S. Malaria and leishmaniasis: Current status of chemotherapy, new leads and targets for drug discovery. Agents. Antiinfect. Agents Med. Chem., 2009, 8(3), 226-267.
[http://dx.doi.org/10.2174/187152109788680216]
[81]
Lorenzo, V.P.; Scotti, L.; da Silva Almeida, J.R.G.; Scotti, M.T. Annonaceae family alkaloids as agents against Leishmaniasis: A review and molecular docking evaluation. Curr. Drug Metab., 2020, 21(7), 482-492.
[http://dx.doi.org/10.2174/1389200221666200702124046] [PMID: 32614742]
[82]
Katinas, J.; Epplin, R.; Hamaker, C.; Jones, M.A. Sulfonamides as inhibitors of Leishmania-potential new treatments for leishmaniasis. Antiinfect. Agents, 2017, 15(1), 57-62.
[http://dx.doi.org/10.2174/2211352515666170216143401] [PMID: 29399442]
[83]
Reynolds, K.A.; Loughlin, W.A.; Young, D.J. Quinolines as chemotherapeutic agents for leishmaniasis. Mini Rev. Med. Chem., 2013, 13(5), 730-743.
[http://dx.doi.org/10.2174/1389557511313050010] [PMID: 23469781]
[84]
Salem, M.; Werbovetz, K. Natural products from plants as drug candidates and lead compounds against leishmaniasis and trypanosomiasis. Curr. Med. Chem., 2006, 13(21), 2571-2598.
[http://dx.doi.org/10.2174/092986706778201611] [PMID: 17017912]
[85]
Mansuri, R.; Singh, J.; Diwan, A. An insight into the current perspective and potential drug targets for visceral leishmaniasis (VL). Curr. Drug Targets, 2020, 21(11), 1105-1129.
[http://dx.doi.org/10.2174/1389450121666200422083735] [PMID: 32321399]
[86]
Barrett, M.; Gilbert, I. Perspectives for new drugs against trypanosomiasis and leishmaniasis. Curr. Top. Med. Chem., 2002, 2(5), 471-482.
[http://dx.doi.org/10.2174/1568026024607427] [PMID: 11966468]
[87]
Srivastava, A.; Chandra, D. Alkaloids and Leishmania donovani UDP-galactopyarnosemutase: A novel approach in drug designing against visceral leishmaniasis. Infect. Disord. Drug Targets, 2018, 18(2), 145-155.
[http://dx.doi.org/10.2174/1871526517666170606104003] [PMID: 28595543]
[88]
Mahender, T.; Pankaj, W.; Kumar, S.P.; Ankur, V.; Kumar, S.S. Some scaffolds as anti-leishmanial agents: A review. Mini Rev. Med. Chem., 2022, 22(5), 743-757.
[http://dx.doi.org/10.2174/1389557521666210913115116] [PMID: 34517799]
[89]
Sahu, A.; Kumar, D.; Agrawal, R.K. Antileishmanial drug discovery: Synthetic methods, chemical characteristics, and biological potential of quinazolines and its derivatives. Antiinflamm. Antiallergy Agents Med. Chem., 2017, 16(1), 3-32.
[http://dx.doi.org/10.2174/1871523016666170502120210] [PMID: 28464778]
[90]
Mohamadi, N.; Sharifi, I.; Afgar, A.; Sharififar, F.; Sharifi, F. Antileishmanial effects of Bunium persicum crude extract, essential oil, and cuminaldehyde on Leishmania major: In silico and in vitro properties. Acta Parasitol., 2022, 1, 1-11.
[http://dx.doi.org/10.1007/s11686-022-00642-1] [PMID: 36434380]
[91]
Pospíšil, J.; Konrádová, D.; Strnad, M. Antileishmanial activity of lignans, neolignans, and other plant phenols. Prog. Chem. Org. Nat, 2021, 115, 115-176.
[http://dx.doi.org/10.1007/978-3-030-64853-4_5]
[92]
Albalawi, A.E. Antileishmanial activity of Ziziphus spina-christi leaves extract and its possible cellular mechanisms. Microorganisms, 2021, 9(10), 2113.
[http://dx.doi.org/10.3390/microorganisms9102113] [PMID: 34683434]
[93]
Ahmadi, M.; Akbari, Z.; Zamani, Z.; Haji Hosseini, R.; Arjmand, M. Study the mechanism of antileishmanial action of Xanthium strumarium against amastigotes stages in Leishmania major: A metabolomics approach. Jundishapur J. Nat. Pharm. Prod., 2021, 16(3), 1-10.
[http://dx.doi.org/10.5812/jjnpp.106431]
[94]
Shukla, A.K.; Patra, S.; Dubey, V.K. Deciphering molecular mechanism underlying antileishmanial activity of Nyctanthes arbortristis, an Indian medicinal plant. J. Ethnopharmacol., 2011, 134(3), 996-998.
[http://dx.doi.org/10.1016/j.jep.2011.01.044] [PMID: 21291983]
[95]
Baréa, P.; Barbosa, V.A.; Bidóia, D.L.; de Paula, J.C.; Stefanello, T.F.; da Costa, W.F.; Nakamura, C.V.; Sarragiotto, M.H. Synthesis, antileishmanial activity and mechanism of action studies of novel β-carboline-1,3,5-triazine hybrids. Eur. J. Med. Chem., 2018, 150, 579-590.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.014] [PMID: 29549842]
[96]
Lage, P.S.; Chávez-Fumagalli, M.A.; Mesquita, J.T.; Mata, L.M.; Fernandes, S.O.A.; Cardoso, V.N.; Soto, M.; Tavares, C.A.P.; Leite, J.P.V.; Tempone, A.G.; Coelho, E.A.F. Antileishmanial activity and evaluation of the mechanism of action of strychnobiflavone flavonoid isolated from Strychnos pseudoquina against Leishmania infantum. Parasitol. Res., 2015, 114(12), 4625-4635.
[http://dx.doi.org/10.1007/s00436-015-4708-4] [PMID: 26346453]
[97]
Allec, S.I.; Sun, Y.; Sun, J.; Chang, C.A.; Wong, B.M.; Heterogeneous, C.P.U. + GPU-enabled simulations for DFTB molecular dynamics of large chemical and biological systems. J. Chem. Theory Comput., 2019, 15(5), 2807-2815.
[http://dx.doi.org/10.1021/acs.jctc.8b01239] [PMID: 30916958]
[98]
Fedorov, D.G.; Li, H.; Mironov, V.; Alexeev, Y. Computational methods for biochemical simulations implemented in GAMESS. Methods Mol. Biol., 2020, 2114, 123-142.
[http://dx.doi.org/10.1007/978-1-0716-0282-9_8]
[99]
Seifert, K.; Croft, S.L. In vitro and in vivo interactions between miltefosine and other antileishmanial drugs. Antimicrob. Agents Chemother., 2006, 50(1), 73-79.
[http://dx.doi.org/10.1128/AAC.50.1.73-79.2006] [PMID: 16377670]
[100]
Van den Kerkhof, M.; Mabille, D.; Chatelain, E.; Mowbray, C.E.; Braillard, S.; Hendrickx, S.; Maes, L.; Caljon, G. In vitro and in vivo pharmacodynamics of three novel antileishmanial lead series. Int. J. Parasitol. Drugs Drug Resist., 2018, 8(1), 81-86.
[http://dx.doi.org/10.1016/j.ijpddr.2018.01.006] [PMID: 29425734]
[101]
Dalimi, A.; Delavari, M.; Ghaffarifar, F.; Sadraei, J. In vitro and in vivo antileishmanial effects of aloe-emodin on Leishmania major. J. Tradit. Complement. Med., 2015, 5(2), 96-99.
[http://dx.doi.org/10.1016/j.jtcme.2014.11.004] [PMID: 26151018]
[102]
Hassan, A.A.; Khalid, H.E.; Abdalla, A.H.; Mukhtar, M.M.; Osman, W.J.; Efferth, T. Antileishmanial activities of medicinal herbs and phytochemicals in vitro and in vivo: An update for the years 2015 to 2021. Molecules, 2022, 27(21), 7579.
[http://dx.doi.org/10.3390/molecules27217579] [PMID: 36364404]