Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Author(s): Dhanalekshmi Unnikrishnan Meenakshi, Gurpreet Kaur Narde, Sameera Siddiqui and Alka Ahuja*

DOI: 10.2174/1871523022666230731104529

Marine Bioactive Phytoconstituents in Autoimmune Disorders: Role and Mechanism - A Review

Page: [10 - 29] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

The significance of Autoimmune Disorders (Ads) is underscored by their chronic nature, high maintenance costs, and complexity affecting numerous organs and tissues. A more comprehensive approach to treating Ads is required across patient populations. A revolutionary area for obtaining an integrated therapeutic option is natural phytoconstituents. Diverse biomolecules with promising properties can be found in abundance in the marine environment. Many substances have been identified from sponges, bacteria, fungi, cyanobacteria, and algae that have been shown to have immunomodulatory activities and may be used as possible treatments for Ads. Marine-derived bioactive substances have been demonstrated to affect immunological responses and to be essential in immunotherapies. The amount of information about the specific effects of substances obtained from marine sources utilized as dietary supplements or for treating immune-related diseases is growing. This paper discusses many sources of potential marine metabolic chemicals, such as maritime flora and fauna. Numerous marine phytoconstituents have recently been isolated, described, and identified, and they are currently undergoing human usage studies. We have attempted to consolidate information concerning phytoconstituents from marine sources with anti-inflammatory and immunomodulatory properties in this review, and we have briefly explored their methods of action. In order to provide a baseline of knowledge for promoting marine flora-based phytoconstituents in the current context of increasing Ads incidence, deprived of the more affordable, safe, and effective medications to combat the terrible human disease, this paper reviews the works thus far conducted on this aspect.

Graphical Abstract

[1]
Han, M.; Yuan, X.; Shi, X.; Zhu, X.Y.; Su, Y.; Xiong, D.K.; Zhang, X.M.; Zhou, H.; Zhang, X. M.; Wang, J.N. X, D. K.; Zhou, H.; Wang, J.N. The pathological mechanism and potential application of IL-38 in autoimmune diseases. Front. Pharmacol., 2021, 12, 732790.
[http://dx.doi.org/10.3389/fphar.2021.732790] [PMID: 34539413]
[2]
Fugger, L.; Jensen, L.T.; Rossjohn, J. Challenges, progress, and prospects of developing therapies to treat autoimmune diseases. Cell, 2020, 181(1), 63-80.
[http://dx.doi.org/10.1016/j.cell.2020.03.007] [PMID: 32243797]
[3]
Parks, C.; Miller, F.; Pollard, K.; Selmi, C.; Germolec, D.; Joyce, K.; Rose, N.; Humble, M. Expert panel workshop consensus statement on the role of the environment in the development of autoimmune disease. Int. J. Mol. Sci., 2014, 15(8), 14269-14297.
[http://dx.doi.org/10.3390/ijms150814269] [PMID: 25196523]
[4]
Cooper, G.S.; Bynum, M.L.K.; Somers, E.C. Recent insights in the epidemiology of autoimmune diseases: Improved prevalence estimates and understanding of clustering of diseases. J. Autoimmun., 2009, 33(3-4), 197-207.
[http://dx.doi.org/10.1016/j.jaut.2009.09.008] [PMID: 19819109]
[5]
Ramos, P.S.; Shedlock, A.M.; Langefeld, C.D. Genetics of autoimmune diseases: insights from population genetics. J. Hum. Genet., 2015, 60(11), 657-664.
[http://dx.doi.org/10.1038/jhg.2015.94] [PMID: 26223182]
[6]
Derdelinckx, J.; Cras, P.; Berneman, Z.N.; Cools, N. Antigenspecific treatment modalities in ms: the past, the present, and the future. Front. Immunol., 2021, 12, 624685.
[http://dx.doi.org/10.3389/fimmu.2021.624685] [PMID: 33679769]
[7]
Kuhn, A.; Wenzel, J.; Weyd, H. Photosensitivity, apoptosis, and cytokines in the pathogenesis of lupus erythematosus: a critical review. Clin. Rev. Allergy Immunol., 2014, 47(2), 148-162.
[http://dx.doi.org/10.1007/s12016-013-8403-x] [PMID: 24420508]
[8]
Steinman, R.M.; Turley, S.; Mellman, I.; Inaba, K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J. Exp. Med., 2000, 191(3), 411-416.
[http://dx.doi.org/10.1084/jem.191.3.411] [PMID: 10662786]
[9]
Mikuls, T.R.; Payne, J.B.; Yu, F.; Thiele, G.M.; Reynolds, R.J.; Cannon, G.W.; Markt, J.; McGowan, D.; Kerr, G.S.; Redman, R.S.; Reimold, A.; Griffiths, G.; Beatty, M.; Gonzalez, S.M.; Bergman, D.A.; Hamilton, B.C., III; Erickson, A.R.; Sokolove, J.; Robinson, W.H.; Walker, C.; Chandad, F.; O’Dell, J.R. Periodontitis and porphyromonas gingivalis in patients with rheumatoid arthritis. Arthritis Rheumatol., 2014, 66(5), 1090-1100.
[http://dx.doi.org/10.1002/art.38348] [PMID: 24782175]
[10]
Mills, K.H.G. TLR-dependent T cell activation in autoimmunity. Nat. Rev. Immunol., 2011, 11(12), 807-822.
[http://dx.doi.org/10.1038/nri3095] [PMID: 22094985]
[11]
Serafini, B.; Rosicarelli, B.; Franciotta, D.; Magliozzi, R.; Reynolds, R.; Cinque, P.; Andreoni, L.; Trivedi, P.; Salvetti, M.; Faggioni, A.; Aloisi, F. Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J. Exp. Med., 2007, 204(12), 2899-2912.
[http://dx.doi.org/10.1084/jem.20071030] [PMID: 17984305]
[12]
Marks, K.E.; Cho, K.; Stickling, C.; Reynolds, J.M. Toll-like receptor 2 in autoimmune inflammation. Immune Netw., 2021, 21(3), e18.
[http://dx.doi.org/10.4110/in.2021.21.e18] [PMID: 34277108]
[13]
Jafarzadeh, A.; Nemati, M.; Khorramdelazad, H.; Mirshafiey, A. The toll-like receptor 2 (TLR2)-related immunopathological responses in the multiple sclerosis and experimental autoimmune encephalomyelitis. Iran. J. Allergy Asthma Immunol., 2019, 18(3), 230-250.
[http://dx.doi.org/10.18502/ijaai.v18i3.1117] [PMID: 31522431]
[14]
El Menyiy, N.; El Allam, A.; Aboulaghras, S.; Jaouadi, I.; Bakrim, S.; El Omari, N.; Shariati, M.A.; Miftakhutdinov, A.; Wilairatana, P.; Mubarak, M.S.; Bouyahya, A. Inflammatory auto-immune diseases of the intestine and their management by natural bioactive compounds. Biomed. Pharmacother., 2022, 151, 113158.
[http://dx.doi.org/10.1016/j.biopha.2022.113158] [PMID: 35644116]
[15]
Mathis, D.; Benoist, C. Microbiota and autoimmune disease: the hosted self. Cell Host Microbe, 2011, 10(4), 297-301.
[http://dx.doi.org/10.1016/j.chom.2011.09.007] [PMID: 22018229]
[16]
Wilson, J.C.; Furlano, R.I.; Jick, S.S.; Meier, C.R. Inflammatory bowel disease and the risk of autoimmune diseases. J. Crohn’s Colitis, 2016, 10(2), 186-193.
[http://dx.doi.org/10.1093/ecco-jcc/jjv193] [PMID: 26507860]
[17]
Dinarello, C.A. Introduction to the interleukin-1 family of cytokines and receptors: Drivers of innate inflammation and acquired immunity. Immunol. Rev., 2018, 281(1), 5-7.
[http://dx.doi.org/10.1111/imr.12624] [PMID: 29248001]
[18]
Eisenstein, E.M.; Williams, C.B. The T(reg)/Th17 cell balance: a new paradigm for autoimmunity. Pediatr. Res., 2009, 65(5 Part 2), 26R-31R.
[http://dx.doi.org/10.1203/PDR.0b013e31819e76c7] [PMID: 19218879]
[19]
Kong, N.; Lan, Q.; Chen, M.; Wang, J.; Shi, W.; Horwitz, D.A.; Quesniaux, V.; Ryffel, B.; Liu, Z.; Brand, D.; Zou, H.; Zheng, S.G. Antigen-specific transforming growth factor β-induced Treg cells, but not natural Treg cells, ameliorate autoimmune arthritis in mice by shifting the Th17/Treg cell balance from Th17 predominance to Treg cell predominance. Arthritis Rheum., 2012, 64(8), 2548-2558.
[http://dx.doi.org/10.1002/art.34513] [PMID: 22605463]
[20]
Zheng, S.G.; Wang, J.; Horwitz, D.A. Cutting edge: Foxp3+CD4+CD25+ regulatory T cells induced by IL-2 and TGF-beta are resistant to Th17 conversion by IL-6. J. Immunol., 18072008, , 112-116.
[PMID: 18490709]
[21]
Migliorini, P.; Italiani, P.; Pratesi, F.; Puxeddu, I.; Boraschi, D. The IL-1 family cytokines and receptors in autoimmune diseases. Autoimmun. Rev., 2020, 19(9), 102617.
[http://dx.doi.org/10.1016/j.autrev.2020.102617] [PMID: 32663626]
[22]
Patidar, M.; Yadav, N.; Dalai, S.K. Interleukin 15: A key cytokine for immunotherapy. Cytokine Growth Factor Rev., 2016, 31, 49-59.
[http://dx.doi.org/10.1016/j.cytogfr.2016.06.001] [PMID: 27325459]
[23]
Su, L.C.; Liu, X.Y.; Huang, A.F.; Xu, W.D. Emerging role of IL35 in inflammatory autoimmune diseases. Autoimmun. Rev., 2018, 17(7), 665-673.
[http://dx.doi.org/10.1016/j.autrev.2018.01.017] [PMID: 29729445]
[24]
Ghoreschi, K.; Laurence, A.; Yang, X.P.; Tato, C.M.; McGeachy, M.J.; Konkel, J.E.; Ramos, H.L.; Wei, L.; Davidson, T.S.; Bouladoux, N.; Grainger, J.R.; Chen, Q.; Kanno, Y.; Watford, W.T.; Sun, H.W.; Eberl, G.; Shevach, E.M.; Belkaid, Y.; Cua, D.J.; Chen, W.; O’Shea, J.J. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature, 2010, 467(7318), 967-971.
[http://dx.doi.org/10.1038/nature09447] [PMID: 20962846]
[25]
Vandenbroeck, K. Cytokine gene polymorphisms and human autoimmune disease in the era of genome-wide association studies. J. Interferon Cytokine Res., 2012, 32(4), 139-151.
[http://dx.doi.org/10.1089/jir.2011.0103] [PMID: 22191464]
[26]
van de Veerdonk, F.L.; Stoeckman, A.K.; Wu, G.; Boeckermann, A.N.; Azam, T.; Netea, M.G.; Joosten, L.A.B.; van der Meer, J.W.M.; Hao, R.; Kalabokis, V.; Dinarello, C.A. IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist. Proc. Natl. Acad. Sci. USA, 2012, 109(8), 3001-3005.
[http://dx.doi.org/10.1073/pnas.1121534109] [PMID: 22315422]
[27]
Nold-Petry, C.A.; Lo, C.Y.; Rudloff, I.; Elgass, K.D.; Li, S.; Gantier, M.P.; Lotz-Havla, A.S.; Gersting, S.W.; Cho, S.X.; Lao, J.C.; Ellisdon, A.M.; Rotter, B.; Azam, T.; Mangan, N.E.; Rossello, F.J.; Whisstock, J.C.; Bufler, P.; Garlanda, C.; Mantovani, A.; Dinarello, C.A.; Nold, M.F. IL-37 requires the receptors IL-18Rα and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction. Nat. Immunol., 2015, 16(4), 354-365.
[http://dx.doi.org/10.1038/ni.3103] [PMID: 25729923]
[28]
Rosenblum, M.D.; Remedios, K.A.; Abbas, A.K. Mechanisms of human autoimmunity. J. Clin. Invest., 2015, 125(6), 2228-2233.
[http://dx.doi.org/10.1172/JCI78088] [PMID: 25893595]
[29]
Elliott, M.; Benson, J.; Blank, M.; Brodmerkel, C.; Baker, D.; Sharples, K.R.; Szapary, P. Ustekinumab: lessons learned from targeting interleukin-12/23p40 in immune-mediated diseases. Ann. N. Y. Acad. Sci., 2009, 1182(1), 97-110.
[http://dx.doi.org/10.1111/j.1749-6632.2009.05070.x] [PMID: 20074279]
[30]
Papp, K.A.; Leonardi, C.; Menter, A.; Ortonne, J.P.; Krueger, J.G.; Kricorian, G.; Aras, G.; Li, J.; Russell, C.B.; Thompson, E.H.Z.; Baumgartner, S. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N. Engl. J. Med., 2012, 366(13), 1181-1189.
[http://dx.doi.org/10.1056/NEJMoa1109017] [PMID: 22455412]
[31]
Shah, D.; Mahajan, N.; Sah, S.; Nath, S.K.; Paudyal, B. Oxidative stress and its biomarkers in systemic lupus erythematosus. J. Biomed. Sci., 2014, 21(1), 23.
[http://dx.doi.org/10.1186/1423-0127-21-23] [PMID: 24636579]
[32]
Wójcik, P.; Biernacki, M.; Wroński, A.; Łuczaj, W.; Waeg, G.; Žarković, N.; Skrzydlewska, E. Altered lipid metabolism in blood mononuclear cells of psoriatic patients indicates differential changes in psoriasis vulgaris and psoriatic arthritis. Int. J. Mol. Sci., 2019, 20(17), 4249.
[http://dx.doi.org/10.3390/ijms20174249] [PMID: 31480263]
[33]
Zabłocka-Słowińska, K.; Płaczkowska, S.; Skórska, K.; Prescha, A.; Pawełczyk, K.; Porębska, I.; Kosacka, M.; Grajeta, H. Oxidative stress in lung cancer patients is associated with altered serum markers of lipid metabolism. PLoS One, 2019, 14(4), e0215246.
[http://dx.doi.org/10.1371/journal.pone.0215246] [PMID: 30973911]
[34]
Datta, S.; Kundu, S.; Ghosh, P.; De, S.; Ghosh, A.; Chatterjee, M. Correlation of oxidant status with oxidative tissue damage in patients with rheumatoid arthritis. Clin. Rheumatol., 2014, 33(11), 1557-1564.
[http://dx.doi.org/10.1007/s10067-014-2597-z] [PMID: 24718487]
[35]
Sokolova, O.; Naumann, M. NF‐κB signaling in gastric cancer. Toxins (Basel), 2017, 9(4), 119.
[http://dx.doi.org/10.3390/toxins9040119] [PMID: 28350359]
[36]
Miraghazadeh, B.; Cook, M.C. Nuclear factor-kappaB in autoimmunity: Man and Mouse. Front. Immunol., 2018, 9, 613.
[http://dx.doi.org/10.3389/fimmu.2018.00613] [PMID: 29686669]
[37]
Yang, L.; Fan, X.; Cui, T.; Dang, E.; Wang, G. Nrf2 promotes keratinocyte proliferation in psoriasis through up-regulation of keratin 6, keratin 16, and keratin 17. J. Invest. Dermatol., 2017, 137(10), 2168-2176.
[http://dx.doi.org/10.1016/j.jid.2017.05.015] [PMID: 28576737]
[38]
Farrugia, M.; Baron, B. The role of TNF-α in rheumatoid arthritis: a focus on regulatory T cells. J. Clin. Transl. Res., 2016, 2(3), 84-90.
[http://dx.doi.org/10.18053/jctres.02.201603.005] [PMID: 30873466]
[39]
Pazmandi, K.; Magyarics, Z.; Boldogh, I.; Csillag, A.; Rajnavolgyi, E.; Bacsi, A. Modulatory effects of low-dose hydrogen peroxide on the function of human plasmacytoid dendritic cells. Free Radic. Biol. Med., 2012, 52(3), 635-645.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.11.022] [PMID: 22178414]
[40]
Yang, J.; Yang, X.; Zou, H.; Li, M. Oxidative stress and treg and th17 dysfunction in systemic lupus erythematosus. Oxid. Med. Cell. Longev., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/2526174] [PMID: 27597882]
[41]
Delgoffe, G.M.; Pollizzi, K.N.; Waickman, A.T.; Heikamp, E.; Meyers, D.J.; Horton, M.R.; Xiao, B.; Worley, P.F.; Powell, J.D. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol., 2011, 12(4), 295-303.
[http://dx.doi.org/10.1038/ni.2005] [PMID: 21358638]
[42]
Park, D.; Jeong, H.; Lee, M.N.; Koh, A.; Kwon, O.; Yang, Y.R.; Noh, J.; Suh, P.G.; Park, H.; Ryu, S.H. Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition. Sci. Rep., 2016, 6(1), 21772.
[http://dx.doi.org/10.1038/srep21772] [PMID: 26902888]
[43]
Sizzano, F.; Collino, S.; Cominetti, O.; Monti, D.; Garagnani, P.; Ostan, R.; Pirazzini, C.; Bacalini, M.G.; Mari, D.; Passarino, G. Evaluation of lymphocyte response to the induced oxidative stress in a cohort of ageing subjects, including semi-supercentenarians and their offspring. Mediat. Inflamm., 2018, 2018, 7109312.
[44]
Hauser, S.L.; Bar-Or, A.; Comi, G.; Giovannoni, G.; Hartung, H.P.; Hemmer, B.; Lublin, F.; Montalban, X.; Rammohan, K.W.; Selmaj, K.; Traboulsee, A.; Wolinsky, J.S.; Arnold, D.L.; Klingelschmitt, G.; Masterman, D.; Fontoura, P.; Belachew, S.; Chin, P.; Mairon, N.; Garren, H.; Kappos, L. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N. Engl. J. Med., 2017, 376(3), 221-234.
[http://dx.doi.org/10.1056/NEJMoa1601277] [PMID: 28002679]
[45]
Monaco, C.; Nanchahal, J.; Taylor, P.; Feldmann, M. Anti-TNF therapy: past, present and future. Int. Immunol., 2015, 27(1), 55-62.
[http://dx.doi.org/10.1093/intimm/dxu102] [PMID: 25411043]
[46]
Belarif, L.; Danger, R.; Kermarrec, L.; Nerrière-Daguin, V.; Pengam, S.; Durand, T.; Mary, C.; Kerdreux, E.; Gauttier, V.; Kucik, A.; Thepenier, V.; Martin, J.C.; Chang, C.; Rahman, A.; Guen, N.S.L.; Braudeau, C.; Abidi, A.; David, G.; Malard, F.; Takoudju, C.; Martinet, B.; Gérard, N.; Neveu, I.; Neunlist, M.; Coron, E.; MacDonald, T.T.; Desreumaux, P.; Mai, H.L.; Le Bas-Bernardet, S.; Mosnier, J.F.; Merad, M.; Josien, R.; Brouard, S.; Soulillou, J.P.; Blancho, G.; Bourreille, A.; Naveilhan, P.; Vanhove, B.; Poirier, N. IL-7 receptor influences anti-TNF responsiveness and T cell gut homing in inflammatory bowel disease. J. Clin. Invest., 2019, 129(5), 1910-1925.
[http://dx.doi.org/10.1172/JCI121668] [PMID: 30939120]
[47]
Feagan, B.G.; Sandborn, W.J.; D’Haens, G.; Panés, J.; Kaser, A.; Ferrante, M.; Louis, E.; Franchimont, D.; Dewit, O.; Seidler, U.; Kim, K.J.; Neurath, M.F.; Schreiber, S.; Scholl, P.; Pamulapati, C.; Lalovic, B.; Visvanathan, S.; Padula, S.J.; Herichova, I.; Soaita, A.; Hall, D.B.; Böcher, W.O. Induction therapy with the selective interleukin-23 inhibitor risankizumab in patients with moderate-tosevere Crohn’s disease: a randomised, double-blind, placebocontrolled phase 2 study. Lancet, 2017, 389(10080), 1699-1709.
[http://dx.doi.org/10.1016/S0140-6736(17)30570-6] [PMID: 28411872]
[48]
Neurath, M.F. Targeting immune cell circuits and trafficking in inflammatory bowel disease. Nat. Immunol., 2019, 20(8), 970-979.
[http://dx.doi.org/10.1038/s41590-019-0415-0] [PMID: 31235952]
[49]
Fritz, Y.; Klenotic, P.A.; Swindell, W.R.; Yin, Z.Q.; Groft, S.G.; Zhang, L.; Baliwag, J.; Camhi, M.I.; Diaconu, D.; Young, A.B.; Foster, A.M.; Johnston, A.; Gudjonsson, J.E.; McCormick, T.S.; Ward, N.L. Induction of alternative proinflammatory cytokines accounts for sustained psoriasiform skin inflammation in il-17c+il6ko mice. J. Invest. Dermatol., 2017, 137(3), 696-705.
[http://dx.doi.org/10.1016/j.jid.2016.10.021] [PMID: 27984037]
[50]
Komatsu, N.; Okamoto, K.; Sawa, S.; Nakashima, T.; Oh-hora, M.; Kodama, T.; Tanaka, S.; Bluestone, J.A.; Takayanagi, H. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med., 2014, 20(1), 62-68.
[http://dx.doi.org/10.1038/nm.3432] [PMID: 24362934]
[51]
Kobayashi, J. Search for new bioactive marine natural products and application to drug development. Chem. Pharm. Bull. (Tokyo), 2016, 64(8), 1079-1083.
[http://dx.doi.org/10.1248/cpb.c16-00281] [PMID: 27477644]
[52]
Lombardi, V.R.M.; Corzo, L.; Carrera, I.; Cacabelos, R. The search for biomarine derived compounds with immunomodulatory activities. Journal of Exploratory Research in Pharmacology, 2018, 3(1), 30-41.
[http://dx.doi.org/10.14218/JERP.2018.00006]
[53]
Tiwari, A.; Gupta, V.G.; Bakhshi, S. Newer medical therapies for metastatic soft tissue sarcoma. Expert Rev. Anticancer Ther., 2017, 17(3), 257-270.
[http://dx.doi.org/10.1080/14737140.2017.1285229] [PMID: 28103739]
[54]
Pearce, A.N.; Chia, E.W.; Berridge, M.V.; Clark, G.R.; Harper, J.L.; Larsen, L.; Maas, E.W.; Page, M.J.; Perry, N.B.; Webb, V.L.; Copp, B.R. Anti-inflammatory thiazine alkaloids isolated from the New Zealand ascidian Aplidium sp.: inhibitors of the neutrophil respiratory burst in a model of gouty arthritis. J. Nat. Prod., 2007, 70(6), 936-940.
[http://dx.doi.org/10.1021/np060626o] [PMID: 17497807]
[55]
Pearce, A.N.; Chia, E.W.; Berridge, M.V.; Maas, E.W.; Page, M.J.; Webb, V.L.; Harper, J.L.; Copp, B.R. E/Z-rubrolide O, an antiinflammatory halogenated furanone from the New Zealand Ascidian Synoicum n. sp. J. Nat. Prod., 2007, 70(1), 111-113.
[http://dx.doi.org/10.1021/np060188l] [PMID: 17253860]
[56]
Wali, A.F.; Majid, S.; Rasool, S.; Shehada, S.B.; Abdulkareem, S.K.; Firdous, A.; Beigh, S.; Shakeel, S.; Mushtaq, S.; Akbar, I.; Madhkali, H.; Rehman, M.U. Natural products against cancer: Review on phytochemicals from marine sources in preventing cancer. Saudi Pharm. J., 2019, 27(6), 767-777.
[http://dx.doi.org/10.1016/j.jsps.2019.04.013] [PMID: 31516319]
[57]
Ahmad, B.; Shah, M.; Choi, S. Oceans as source of immunotherapy. Mar. Drugs, 2019, 17(5), 282.
[http://dx.doi.org/10.3390/md17050282] [PMID: 31083446]
[58]
Nair, D.G.; Weiskirchen, R.; Al-Musharafi, S.K. The use of marine-derived bioactive compounds as potential hepatoprotective agents. Acta Pharmacol. Sin., 2015, 36(2), 158-170.
[http://dx.doi.org/10.1038/aps.2014.114] [PMID: 25500871]
[59]
Bilal, M.; Qindeel, M.; Nunes, L.V.; Duarte, M.T.S.; Ferreira, L.F.R.; Soriano, R.N.; Iqbal, H.M.N. Marine-derived biologically active compounds for the potential treatment of rheumatoid arthritis. Mar. Drugs, 2020, 19(1), 10.
[http://dx.doi.org/10.3390/md19010010] [PMID: 33383638]
[60]
Barbalace, M.C.; Malaguti, M.; Giusti, L.; Lucacchini, A.; Hrelia, S.; Angeloni, C. Anti-inflammatory activities of marine algae in neurodegenerative diseases. Int. J. Mol. Sci., 2019, 20(12), 3061.
[http://dx.doi.org/10.3390/ijms20123061] [PMID: 31234555]
[61]
Smit, A.J. Medicinal and pharmaceutical uses of seaweed natural products: A review. J. Appl. Phycol., 2004, 16(4), 245-262.
[http://dx.doi.org/10.1023/B:JAPH.0000047783.36600.ef]
[62]
Abdelwahab, R. Therapeutic and pharmaceutical application of seaweeds. In: Biotechnological Applications of Seaweeds; s Nova Science Publishers, Inc., 2017.
[63]
Souza, C.R.M.; Bezerra, W.P.; Souto, J.T. Marine alkaloids with anti-inflammatory activity: current knowledge and future perspectives. Mar. Drugs, 2020, 18(3), 147.
[http://dx.doi.org/10.3390/md18030147] [PMID: 32121638]
[64]
Robertson, R.; Guihéneuf, F.; Bahar, B.; Schmid, M.; Stengel, D.; Fitzgerald, G.; Ross, R.; Stanton, C. The anti-inflammatory effect of algae-derived lipid extracts on lipopolysaccharide (LPS)- stimulated human THP-1 macrophages. Mar. Drugs, 2015, 13(8), 5402-5424.
[http://dx.doi.org/10.3390/md13085402] [PMID: 26308008]
[65]
Gulder, T.A.M.; Moore, B.S. Chasing the treasures of the sea — bacterial marine natural products. Curr. Opin. Microbiol., 2009, 12(3), 252-260.
[http://dx.doi.org/10.1016/j.mib.2009.05.002] [PMID: 19481972]
[66]
Waters, A.L.; Hill, R.T.; Place, A.R.; Hamann, M.T. The expanding role of marine microbes in pharmaceutical development. Curr. Opin. Biotechnol., 2010, 21(6), 780-786.
[http://dx.doi.org/10.1016/j.copbio.2010.09.013] [PMID: 20956080]
[67]
Rotter, A.; Barbier, M.; Bertoni, F.; Bones, A.M.; Cancela, M.L.; Carlsson, J.; Carvalho, M.F.; Cegłowska, M.; Chirivella-Martorell, J.; Conk Dalay, M.; Cueto, M.; Dailianis, T.; Deniz, I.; Díaz-Marrero, A.R.; Drakulovic, D.; Dubnika, A.; Edwards, C.; Einarsson, H.; Erdoǧan, A.; Eroldoǧan, O.T.; Ezra, D.; Fazi, S.; FitzGerald, R.J.; Gargan, L.M.; Gaudêncio, S.P.; Gligora Udovič, M.; Ivošević DeNardis, N.; Jónsdóttir, R.; Kataržytė, M.; Klun, K.; Kotta, J.; Ktari, L.; Ljubešić, Z.; Lukić Bilela, L.; Mandalakis, M.; Massa-Gallucci, A.; Matijošytė, I.; Mazur-Marzec, H.; Mehiri, M.; Nielsen, S.L.; Novoveská, L.; Overlingė, D.; Perale, G.; Ramasamy, P.; Rebours, C.; Reinsch, T.; Reyes, F.; Rinkevich, B.; Robbens, J.; Röttinger, E.; Rudovica, V.; Sabotič, J.; Safarik, I.; Talve, S.; Tasdemir, D.; Theodotou Schneider, X.; Thomas, O.P.; Toruńska-Sitarz, A.; Varese, G.C.; Vasquez, M.I. The essentials of marine biotechnology. Front. Mar. Sci., 2021, 8, 629629.
[http://dx.doi.org/10.3389/fmars.2021.629629]
[68]
Gugliandolo, C.; Spanò, A.; Lentini, V.; Arena, A.; Maugeri, T.L. Antiviral and immunomodulatory effects of a novel bacterial exopolysaccharide of shallow marine vent origin. J. Appl. Microbiol., 2014, 116(4), 1028-1034.
[http://dx.doi.org/10.1111/jam.12422] [PMID: 24354946]
[69]
Jeong, S.; Ku, S.K.; Min, G.; Choi, H.; Park, D.H.; Bae, J.S. Suppressive effects of three diketopiperazines from marine-derived bacteria on polyphosphate-mediated septic responses. Chem. Biol. Interact., 2016, 257, 61-70.
[http://dx.doi.org/10.1016/j.cbi.2016.07.032] [PMID: 27481191]
[70]
Gao, M.; Lee, S.B.; Lee, J.E.; Kim, G.J.; Moon, J.; Nam, J.W.; Bae, J.S.; Chin, J.; Jeon, Y.H.; Choi, H. Anti-inflammatory butenolides from a marine-derived Streptomyces sp. 13G036. Appl. Sci. (Basel), 2022, 12(9), 4510.
[http://dx.doi.org/10.3390/app12094510]
[71]
Lai, K.H.; You, W.J.; Lin, C.C.; El-Shazly, M.; Liao, Z.J.; Su, J.H. Anti-inflammatory cembranoids from the soft coral Lobophytum crassum. Mar. Drugs, 2017, 15(10), 327.
[http://dx.doi.org/10.3390/md15100327] [PMID: 29065512]
[72]
Tseng, W-R.; Ahmed, A.F.; Huang, C-Y.; Tsai, Y-Y.; Tai, C-J.; Orfali, R.S.; Hwang, T-L.; Wang, Y-H.; Dai, C-F.; Sheu, J-H. Bioactive capnosanes and cembranes from the soft coral Klyxum flaccidum. Mar. Drugs, 2019, 17(8), 461.
[http://dx.doi.org/10.3390/md17080461] [PMID: 31394844]
[73]
Singh, R.K.; Tiwari, S.P.; Rai, A.K.; Mohapatra, T.M. Cyanobacteria: an emerging source for drug discovery. J. Antibiot. (Tokyo), 2011, 64(6), 401-412.
[http://dx.doi.org/10.1038/ja.2011.21] [PMID: 21468079]
[74]
Tiwari, A.K.; Tiwari, B.S. Cyanotherapeutics: an emerging field for future drug discovery. Appl. Psychol., 2020, 1(1), 44-57.
[http://dx.doi.org/10.1080/26388081.2020.1744480]
[75]
Tabarzad, M.; Atabaki, V.; Hosseinabadi, T. Anti-inflammatory activity of bioactive compounds from microalgae and cyanobacteria by focusing on the mechanisms of action. Mol. Biol. Rep., 2020, 47(8), 6193-6205.
[http://dx.doi.org/10.1007/s11033-020-05562-9] [PMID: 32557174]
[76]
Xu, J.; Yi, M.; Ding, L.; He, S. A review of anti-inflammatory compounds from marine fungi, 2000-2018. Mar. Drugs, 2019, 17(11), 636.
[http://dx.doi.org/10.3390/md17110636] [PMID: 31717541]
[77]
Li, H.; Sun, W.; Deng, M.; Zhou, Q.; Wang, J.; Liu, J.; Chen, C.; Qi, C.; Luo, Z.; Xue, Y.; Zhu, H.; Zhang, Y. Asperversiamides, linearly fused prenylated indole alkaloids from the marine‐derived fungus Aspergillus versicolor. J. Org. Chem., 2018, 83(15), 8483-8492.
[http://dx.doi.org/10.1021/acs.joc.8b01087] [PMID: 30016097]
[78]
Liu, J.; Gu, B.; Yang, L.; Yang, F.; Lin, H. New anti-inflammatory cyclopeptides from a sponge-derived fungus Aspergillus violaceofuscus. Front Chem., 2018, 6, 226.
[http://dx.doi.org/10.3389/fchem.2018.00226] [PMID: 29963550]
[79]
Ding, Y.; An, F.; Zhu, X.; Yu, H.; Hao, L.; Lu, Y. Curdepsidones B–G, six depsidones with anti-inflammatory activities from the marine-derived fungus Curvularia sp. IFB-Z10. Mar. Drugs, 2019, 17(5), 266.
[http://dx.doi.org/10.3390/md17050266] [PMID: 31060304]
[80]
Chen, S.; Jiang, M.; Chen, B.; Salaenoi, J.; Niaz, S.I.; He, J.; Liu, L. Penicamide A, a unique N,N′‐ketal quinazolinone alkaloid fromascidian‐derived fungus Penicillium sp. 4829. Mar. Drugs, 2019, 17(9), 522.
[http://dx.doi.org/10.3390/md17090522] [PMID: 31492051]
[81]
Pan, G.; Zhao, Y.; Ren, S.; Liu, F.; Xu, Q.; Pan, W.; Yang, T.; Yang, M.; Zhang, X.; Peng, C.; Hao, G.; Kong, F.; Zhou, L.; Xiao, N. Indole-terpenoids with anti-inflammatory activities from Penicillium sp. HFF16 associated with the rhizosphere soil of Cynanchum bungei decne. Front. Microbiol., 2021, 12, 710364.
[http://dx.doi.org/10.3389/fmicb.2021.710364] [PMID: 34305878]
[82]
Toledo, T.R.; Dejani, N.N.; Monnazzi, L.G.S.; Kossuga, M.H.; Berlinck, R.G.S.; Sette, L.D.; Medeiros, A.I. Potent antiinflammatory activity of pyrenocine A isolated from the marinederived fungus Penicillium paxilli Ma(G)K. Mediators Inflamm., 2014, 2014, 1-11.
[http://dx.doi.org/10.1155/2014/767061] [PMID: 24574582]
[83]
Naqvi, S.A.R.; Sherazi, T.A.; Hassan, S.U.; Shahzad, S.A.; Faheem, Z. Anti-inflammatory, anti-infectious and anti-cancer potential of marine algae and sponge: A review. Eur. J. Inflamm., 2022, 20.
[http://dx.doi.org/10.1177/20587392221075514]
[84]
Susana, S.R.; Salvador-Reyes, L.A. Antiinflammatory activity of monosubstituted xestoquinone analogues from the marine sponge Neopetrosia compacta. Antioxidants, 2022, 11(4), 607.
[http://dx.doi.org/10.3390/antiox11040607] [PMID: 35453294]
[85]
Hort, M.A.; Silva Júnior, F.M.R.; Garcia, E.M.; Peraza, G.G.; Soares, A.; Lerner, C.; Muccillo-Baisch, A.L. Antinociceptive and anti-inflammatory activities of marine sponges Aplysina caissara, Haliclona sp. and Dragmacidon reticulatum. Braz. Arch. Biol. Technol., 2018, 61(0), e18180104.
[http://dx.doi.org/10.1590/1678-4324-2018180104]
[86]
Keyzers, R.A.; Davies-Coleman, M.T. Anti-inflammatory metabolites from marine sponges. Chem. Soc. Rev., 2005, 34(4), 355-365.
[http://dx.doi.org/10.1039/b408600g] [PMID: 15778769]
[87]
Anjum, K.; Abbas, S.Q.; Akhter, N.; Shagufta, B.I.; Shah, S.A.A.; Hassan, S.S. Emerging biopharmaceuticals from bioactive peptides derived from marine organisms. Chem. Biol. Drug Des., 2017, 90(1), 12-30.
[http://dx.doi.org/10.1111/cbdd.12925] [PMID: 28004491]
[88]
Sharp, M.; Wilson, J.; Stefan, M.; Gheith, R.; Lowery, R.; Ottinger, C.; Reber, D.; Orhan, C.; Sahin, N.; Tuzcu, M.; Durkee, S.; Saiyed, Z.; Sahin, K. Marine phytoplankton improves recovery and sustains immune function in humans and lowers proinflammatory immunoregulatory cytokines in a rat model. Phys. Act. Nutr., 2021, 25(1), 42-55.
[http://dx.doi.org/10.20463/pan.2021.0007] [PMID: 33887828]
[89]
Ahmad, B.; Shah, M.; Choi, S. Oceans as a source of immunotherapy. Mar. Drugs, 2019, 17(5), 282.
[http://dx.doi.org/10.3390/md17050282] [PMID: 31083446]
[90]
Lauritano, C.; Helland, K.; Riccio, G.; Andersen, J.H.; Ianora, A.; Hansen, E.H. Lysophosphatidylcholines and chlorophyll-derived molecules from the diatom Cylindrotheca closterium with anti-Inflammatory activity. Mar. Drugs, 2020, 18(3), 166.
[http://dx.doi.org/10.3390/md18030166] [PMID: 32192075]
[91]
Khan, B.K.; Praba, L.K.; Ali, H.A.J. Aqueous and methanolic extracts of Caulerpa mexicana suppress cell migration and ear edema induced by inflammatory agents. Mar. Drugs., 2020, 9(8), 1332-1345.
[http://dx.doi.org/10.1080/22311866.2021.1919208]
[92]
Samarakoon, K.W.; Ko, J.Y.; Shah, M.M.R.; Lee, J.H.; Kang, M.C.; Kwon, O-N.; Lee, J-B.; Jeon, Y-J. In vitro studies of anti-inflammatory and anticancer activities of organic solvent extracts from cultured marine microalgae. Algae, 2013, 28(1), 111-119.
[http://dx.doi.org/10.4490/algae.2013.28.1.111]
[93]
Jo, W.S.; Choi, Y.J.; Kim, H.J.; Nam, B.H.; Hong, S.H.; Lee, G.A.; Lee, S.W.; Seo, S.Y.; Jeong, M.H. Anti-inflammatory effect of microalgal extracts from Tetraselmis suecica. Food Sci. Biotechnol., 2010, 19(6), 1519-1528.
[http://dx.doi.org/10.1007/s10068-010-0216-6]
[94]
Bitencourt, M.A.O.; Dantas, G.R.; Lira, D.P.; Barbosa-Filho, J.M.; Miranda, G.E.C.; Santos, B.V.O.; Souto, J.T. Aqueous and methanolic extracts of Caulerpa mexicana suppress cell migration and ear edema induced by inflammatory agents. Mar. Drugs, 2011, 9(8), 1332-1345.
[http://dx.doi.org/10.3390/md9081332] [PMID: 21892348]
[95]
Suh, S.S.; Hwang, J.; Park, M.; Seo, H.; Kim, H.S.; Lee, J.; Moh, S.; Lee, T.K. Anti-inflammation activities of mycosporine-like amino acids (MAAs) in response to UV radiation suggest potential anti-skin aging activity. Mar. Drugs, 2014, 12(10), 5174-5187.
[http://dx.doi.org/10.3390/md12105174] [PMID: 25317535]
[96]
Hanif, N.; Ohno, O.; Kitamura, M.; Yamada, K.; Uemura, D. Symbiopolyol, a VCAM-1 inhibitor from a symbiotic dinoflagellate of the jellyfish Mastigias papua. J. Nat. Prod., 2010, 73(7), 1318-1322.
[http://dx.doi.org/10.1021/np100221k] [PMID: 20557071]
[97]
Kim, M.M.; Rajapakse, N.; Kim, S.K. Anti-inflammatory effect of Ishige okamurae ethanolic extract via inhibition of NF- κ B transcription factor in RAW 264.7 cells. Phytother. Res., 2009, 23(5), 628-634.
[http://dx.doi.org/10.1002/ptr.2674] [PMID: 19117331]
[98]
Li, Y.X.; Li, Y.; Lee, S.H.; Qian, Z.J.; Kim, S.K. Inhibitors of oxidation and matrix metalloproteinases, floridoside, and Disofloridoside from marine red alga Laurencia undulata. J. Agric. Food Chem., 2010, 58(1), 578-586.
[http://dx.doi.org/10.1021/jf902811j] [PMID: 20017487]
[99]
Jung, W.K.; Choi, I.; Oh, S.; Park, S.G.; Seo, S.K.; Lee, S.W.; Lee, D.S.; Heo, S.J.; Jeon, Y.J.; Je, J.Y.; Ahn, C.B.; Kim, J.S.; Oh, K.S.; Kim, Y.M.; Moon, C.; Choi, I.W. Anti-asthmatic effect of marine red alga (Laurencia undulata) polyphenolic extracts in a murine model of asthma. Food Chem. Toxicol., 2009, 47(2), 293-297.
[http://dx.doi.org/10.1016/j.fct.2008.11.012] [PMID: 19049817]
[100]
Abreu, T.; Ribeiro, N.; Chaves, H.; Jorge, R.; Bezerra, M.; Monteiro, H.; Vasconcelos, I.; Mota, É.; Benevides, N. antinociceptive and anti-inflammatory activities of the lectin from marine red alga Solieria filiformis. Planta Med., 2016, 82(7), 596-605.
[http://dx.doi.org/10.1055/s-0042-101762] [PMID: 27093245]
[101]
Meenakshi, S.; Gnanambigai, D.; Mozhi, S.T.; Muthuvel, A.; Balasubramanian, T. Total flavanoid and in vitro antioxidant activity of two seaweeds of Rameshwaram coast. Glob. J. Pharmacol., 2009, 3(2), 59-62.
[102]
Makkar, F.; Chakraborty, K. Previously undescribed antioxidative azocinyl morpholinone alkaloid from red seaweed Gracilaria opuntia with anti-cyclooxygenase and lipoxygenase properties. Nat. Prod. Res., 2018, 32(10), 1150-1160.
[http://dx.doi.org/10.1080/14786419.2017.1326041] [PMID: 28482695]
[103]
Saraswati; Giriwono, P.E.; Iskandriati, D.; Andarwulan, N. Saraswati; Giriwono, P.E.; Iskandriati, D.; Andarwulan, N. Screening of in-vitro anti-inflammatory and antioxidant activity of Sargassum ilicifolium crude lipid extracts from different coastal areas in Indonesia. Mar. Drugs, 2021, 19(5), 252.
[http://dx.doi.org/10.3390/md19050252] [PMID: 33925071]
[104]
Camacho, F.; Macedo, A.; Malcata, F. Potential industrial applications and commercialization of microalgae in the functional food and feed industries: A short review. Mar. Drugs, 2019, 17(6), 312.
[http://dx.doi.org/10.3390/md17060312] [PMID: 31141887]
[105]
Mordenti, A.L.; Bonaldo, L.S.A.; Pizzamiglio, V.; Brogna, N.; Cipollini, I.; Tassinari, M.; Zaghini, G. Influence of marine algae (Schizochytrium spp.) dietary supplementation on doe performance and progeny meat quality. Livest. Sci., 2010, 128(1-3), 184.
[http://dx.doi.org/10.1016/j.livsci.2009.12.003]
[106]
Dalle Zotte, A.; Cullere, M.; Sartori, A.; Szendrő, Z.; Kovàcs, M.; Giaccone, V.; Dal Bosco, A. Dietary Spirulina (Arthrospira platensis) and Thyme (Thymus vulgaris) supplementation to growing rabbits: Effects on raw and cooked meat quality, nutrient true retention and oxidative stability. Meat Sci., 2014, 98(2), 94-103.
[http://dx.doi.org/10.1016/j.meatsci.2014.05.005] [PMID: 24908377]
[107]
Zaldivar, F.; Wang-Rodriguez, J.; Nemet, D.; Schwindt, C.; Galassetti, P.; Mills, P.J.; Wilson, L.D.; Cooper, D.M. Constitutive pro- and anti-inflammatory cytokine and growth factor response to exercise in leukocytes. J. Appl. Physiol., 2006, 100(4), 1124-1133.
[http://dx.doi.org/10.1152/japplphysiol.00562.2005]
[108]
Silva, T.; de Andrade, P.; Paiva-Martins, F.; Valentão, P.; Pereira, D. In vitro anti‐inflammatory and cytotoxic effects of aqueous extracts from the edible sea anemones Anemonia sulcata and Actinia equina. Int. J. Mol. Sci., 2017, 18(3), 653.
[http://dx.doi.org/10.3390/ijms18030653] [PMID: 28304352]
[109]
Sintsova, O.V.; Pislyagin, E.A.; Gladkikh, I.N.; Monastyrnaya, M.M.; Menchinskaya, E.S.; Leychenko, E.V.; Aminin, D.L.; Kozlovskaya, E.P. Kunitz-type peptides of the sea anemone Heteractis crispa: Potential anti-inflammatory compounds. Russ. J. Bioorganic Chem., 2017, 43(1), 91-97.
[http://dx.doi.org/10.1134/S1068162016060121]
[110]
Pearce, A.N.; Chia, E.W.; Berridge, M.V.; Maas, E.W.; Page, M.J.; Harper, J.L.; Webb, V.L.; Copp, B.R. Orthidines A–E, tubastrine, 3,4-dimethoxyphenethyl-β-guanidine, and 1,14-sperminedihomovanillamide: potential anti-inflammatory alkaloids isolated from the New Zealand ascidian Aplidium orthium that act as inhibitors of neutrophil respiratory burst. Tetrahedron, 2008, 64(24), 5748-5755.
[http://dx.doi.org/10.1016/j.tet.2008.04.012]
[111]
Thomson, D.; Panagos, C.G.; Venkatasamy, R.; Moss, C.; Robinson, J.; Bavington, C.D.; Hogwood, J.; Mulloy, B.; Uhrín, D.; Spina, D.; Page, C.P. Structural characterization and antiinflammatory activity of two novel polysaccharides from the sea squirt, Ascidiella aspersa. Pulm. Pharmacol. Ther., 2016, 40, 69-79.
[http://dx.doi.org/10.1016/j.pupt.2016.05.001] [PMID: 27220632]
[112]
Appleton, D.R.; Page, M.J.; Lambert, G.; Berridge, M.V.; Copp, B.R. Kottamides A-D: novel bioactive imidazolone-containing alkaloids from the New Zealand ascidian Pycnoclavella kottae. J. Org. Chem., 2002, 67(15), 5402-5404.
[http://dx.doi.org/10.1021/jo0201427] [PMID: 12126438]
[113]
Belmiro, C.L.R.; Castelo-Branco, M.T.L.; Melim, L.M.C.; Schanaider, A.; Elia, C.; Madi, K.; Pavão, M.S.G.; de Souza, H.S.P. Unfractionated heparin and new heparin analogues from ascidians (chordate-tunicate) ameliorate colitis in rats. J. Biol. Chem., 2009, 284(17), 11267-11278.
[http://dx.doi.org/10.1074/jbc.M807211200] [PMID: 19258310]
[114]
Carletti, A.; Cardoso, C.; Lobo-Arteaga, J.; Sales, S.; Juliao, D.; Ferreira, I.; Chainho, P.; Dionísio, M.A.; Gaudêncio, M.J.; Afonso, C.; Lourenço, H.; Cancela, M.L.; Bandarra, N.M.; Gavaia, P.J. Antioxidant and anti-inflammatory extracts from sea cucumbers and tunicates induce a pro-osteogenic effect in zebrafish larvae. Front. Nutr., 2022, 9, 888360.
[http://dx.doi.org/10.3389/fnut.2022.888360] [PMID: 35614979]
[115]
Mitsiades, C.S.; Ocio, E.M.; Pandiella, A.; Maiso, P.; Gajate, C.; Garayoa, M.; Vilanova, D.; Montero, J.C.; Mitsiades, N.; McMullan, C.J.; Munshi, N.C.; Hideshima, T.; Chauhan, D.; Aviles, P.; Otero, G.; Faircloth, G.; Mateos, M.V.; Richardson, P.G.; Mollinedo, F.; San-Miguel, J.F.; Anderson, K.C. Aplidin, a marine organism-derived compound with potent antimyeloma activity in vitro and in vivo. Cancer Res., 2008, 68(13), 5216-5225.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5725] [PMID: 18593922]
[116]
Raghuvanshi, R.; Bharate, S.B. Preclinical and clinical studies on bryostatins, a class of marine-derived protein kinase C modulators: A Mini-Review. Curr. Top. Med. Chem., 2020, 20(12), 1124-1135.
[http://dx.doi.org/10.2174/1568026620666200325110444] [PMID: 32209043]
[117]
Roberts, J.D.; Smith, M.R.; Feldman, E.J.; Cragg, L.; Millenson, M.M.; Roboz, G.J.; Honeycutt, C.; Thune, R.; Padavic-Shaller, K.; Carter, W.H.; Ramakrishnan, V.; Murgo, A.J.; Grant, S. Phase I study of bryostatin 1 and fludarabine in patients with chronic lymphocytic leukemia and indolent (non-Hodgkin’s) lymphoma. Clin. Cancer Res., 2006, 12(19), 5809-5816.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2730] [PMID: 17020988]
[118]
Sim, S.; Lee, D.H.; Kim, K.; Park, H.J.; Kim, Y.K.; Choi, Y.; Park, H.S. Micrococcus luteus-derived extracellular vesicles attenuate neutrophilic asthma by regulating miRNAs in airway epithelial cells. Exp. Mol. Med., 2023, 55(1), 196-204.
[http://dx.doi.org/10.1038/s12276-022-00910-0] [PMID: 36639716]
[119]
Ning, C.; Wang, H.M.D.; Gao, R.; Chang, Y.C.; Hu, F.; Meng, X.; Huang, S.Y. Marine-derived protein kinase inhibitors for neuroinflammatory diseases. Biomed. Eng. Online, 2018, 17(1), 46.
[http://dx.doi.org/10.1186/s12938-018-0477-5] [PMID: 29690896]
[120]
Kamata, K.; Okamoto, S.; Oka, S.; Kamata, H.; Yagisawa, H.; Hirata, H. Cycloprodigiosin hydrocloride suppresses tumor necrosis factor (TNF) α-induced transcriptional activation by NFκB. FEBS Lett., 2001, 507(1), 74-80.
[http://dx.doi.org/10.1016/S0014-5793(01)02946-5] [PMID: 11682062]
[121]
Kozuma, S.; Hirota-Takahata, Y.; Fukuda, D.; Kuraya, N.; Nakajima, M.; Ando, O. Identification and biological activity of ogipeptins, novel LPS inhibitors produced by marine bacterium. J. Antibiot. (Tokyo), 2017, 70(1), 79-83.
[http://dx.doi.org/10.1038/ja.2016.81] [PMID: 27381520]
[122]
Asolkar, R.N.; Freel, K.C.; Jensen, P.R.; Fenical, W.; Kondratyuk, T.P.; Park, E.J.; Pezzuto, J.M. Arenamides A-C, cytotoxic NFkappaB inhibitors from the marine actinomycete Salinispora arenicola. J. Nat. Prod., 2009, 72(3), 396-402.
[http://dx.doi.org/10.1021/np800617a] [PMID: 19117399]
[123]
Zheng, L.; Lin, X.; Wu, N.; Liu, M.; Zheng, Y.; Sheng, J.; Ji, X.; Sun, M. Targeting cellular apoptotic pathway with peptides from marine organisms. Biochim. Biophys. Acta Rev. Cancer, 2013, 1836(1), 42-48.
[http://dx.doi.org/10.1016/j.bbcan.2013.02.006] [PMID: 23470652]
[124]
Mayer, A.; Rodríguez, A.; Taglialatela-Scafati, O.; Fusetani, N. Marine pharmacology in 2009-2011: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs, 2013, 11(7), 2510-2573.
[http://dx.doi.org/10.3390/md11072510] [PMID: 23880931]
[125]
Hassan, S.S.; Shaikh, A.L. Marine actinobacteria as a drug treasure house. Biomed. Pharmacother., 2017, 87, 46-57.
[http://dx.doi.org/10.1016/j.biopha.2016.12.086] [PMID: 28040597]
[126]
Lee, D.S.; Yoon, C.S.; Jung, Y.T.; Yoon, J.H.; Kim, Y.C.; Oh, H. Marine-derived secondary metabolite, griseusrazin A, suppresses inflammation through heme oxygenase-1 induction in activated RAW264.7 macrophages. J. Nat. Prod., 2016, 79(4), 1105-1111.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00009] [PMID: 27019105]
[127]
Renner, M.K.; Shen, Y.C.; Cheng, X.C.; Jensen, P.R.; Frankmoelle, W.; Kauffman, C.A.; Fenical, W.; Lobkovsky, E.; Clardy, J. Cyclomarins A−C, new antiinflammatory cyclic peptides produced by a marine bacterium (Streptomyces sp.). J. Am. Chem. Soc., 1999, 121(49), 11273-11276.
[http://dx.doi.org/10.1021/ja992482o]
[128]
Moore, B.S.; Trischman, J.A.; Seng, D.; Kho, D.; Jensen, P.R.; Fenical, W. Salinamides, antiinflammatory depsipeptides from a marine Streptomycete. J. Org. Chem., 1999, 64(4), 1145-1150.
[http://dx.doi.org/10.1021/jo9814391]
[129]
Trischman, J.A.; Tapiolas, D.M.; Jensen, P.R.; Dwight, R.; Fenical, W.; McKee, T.C.; Ireland, C.M.; Stout, T.J.; Clardy, J. Salinamides A and B: anti-inflammatory depsipeptides from a marine streptomycete. J. Am. Chem. Soc., 1994, 116(2), 757-758.
[http://dx.doi.org/10.1021/ja00081a042]
[130]
Ghiciuc, C.M.; Vicovan, A.G.; Stafie, C.S.; Antoniu, S.A.; Postolache, P. Marine-derived compounds for the potential treatment of glucocorticoid resistance in severe asthma. Mar. Drugs, 2021, 19(11), 586.
[http://dx.doi.org/10.3390/md19110586] [PMID: 34822457]
[131]
Hsu, Y.M.; Chang, F.R.; Lo, I.W.; Lai, K.H.; El-Shazly, M.; Wu, T.Y.; Du, Y.C.; Hwang, T.L.; Cheng, Y.B.; Wu, Y.C. Zoanthamine‐type alkaloids from the zoanthid Zoanthus kuroshio collected in Taiwan and their effects on inflammation. J. Nat. Prod., 2016, 79(10), 2674-2680.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00625] [PMID: 27759384]
[132]
Guillen, P.; Gegunde, S.; Jaramillo, K.; Alfonso, A.; Calabro, K.; Alonso, E.; Rodriguez, J.; Botana, L.; Thomas, O. Zoanthamine alkaloids from the zoantharian Zoanthus cf. pulchellus and their effects in neuroinflammation. Mar. Drugs, 2018, 16(7), 242.
[http://dx.doi.org/10.3390/md16070242] [PMID: 30036989]
[133]
Jean, Y.H.; Chen, W.F.; Sung, C.S.; Duh, C.Y.; Huang, S.Y.; Lin, C.S.; Tai, M.H.; Tzeng, S.F.; Wen, Z.H. Capnellene, a natural marine compound derived from soft coral, attenuates chronic constriction injury-induced neuropathic pain in rats. Br. J. Pharmacol., 2009, 158(3), 713-725.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00323.x] [PMID: 19663884]
[134]
Liu, C.Y.; Hwang, T.L.; Lin, M.R.; Chen, Y.H.; Chang, Y.C.; Fang, L.S.; Wang, W.H.; Wu, Y.C.; Sung, P.J. Carijoside A, a bioactive sterol glycoside from an octocoral Carijoa sp. (Clavulariidae). Mar. Drugs, 2010, 8(7), 2014-2020.
[http://dx.doi.org/10.3390/md8072014] [PMID: 20714421]
[135]
Torres-Mendoza, D.; González, Y.; Gómez-Reyes, J.; Guzmán, H.; López-Perez, J.; Gerwick, W.; Fernandez, P.; Gutiérrez, M.; Uprolides, N. Uprolides N, O and P from the Panamanian Octocoral Eunicea succinea. Molecules, 2016, 21(6), 819.
[http://dx.doi.org/10.3390/molecules21060819] [PMID: 27338338]
[136]
Cheng, S.Y.; Huang, Y.C.; Wen, Z.H.; Chiou, S.F.; Wang, S.K.; Hsu, C.H.; Dai, C.F.; Duh, C.Y. Novel sesquiterpenes and norergosterol from the soft corals Nephthea erecta and Nephthea chabroli. Tetrahedron Lett., 2009, 50(7), 802-806.
[http://dx.doi.org/10.1016/j.tetlet.2008.12.002]
[137]
Chen, C.Y.; Tsai, Y.F.; Chang, W.Y.; Yang, S.C.; Hwang, T.L. Marine natural product inhibitors of neutrophil-associated inflammation. Mar. Drugs, 2016, 14(8), 141.
[http://dx.doi.org/10.3390/md14080141] [PMID: 27472345]
[138]
Cheng, S.Y.; Chuang, C.T.; Wang, S.K.; Wen, Z.H.; Chiou, S.F.; Hsu, C.H.; Dai, C.F.; Duh, C.Y. Antiviral and anti-inflammatory diterpenoids from the soft coral Sinularia gyrosa. J. Nat. Prod., 2010, 73(6), 1184-1187.
[http://dx.doi.org/10.1021/np100185a] [PMID: 20499851]
[139]
Motoyama, K.; Tanida, Y.; Hata, K.; Hayashi, T.; Hashim, I.I.A.; Higashi, T.; Ishitsuka, Y.; Kondo, Y.; Irie, T.; Kaneko, S.; Arima, H. Anti-infammatory effects of novel polysaccharide sacran extracted from cyanobacterium Aphanothece sacrum in various inflammatory animal models. Biol. Pharm. Bull., 2016, 39(7), 1172-1178.
[http://dx.doi.org/10.1248/bpb.b16-00208] [PMID: 27170516]
[140]
Appel, K.; Munoz, E.; Navarrete, C.; Cruz-Teno, C.; Biller, A.; Thiemann, E. Immunomodulatory and inhibitory effect of Immulina®, and Immunloges® in the Ig-E mediated activation of RBL-2H3 cells. A new role in allergic inflammatory responses. Plants, 2018, 7(1), 13.
[http://dx.doi.org/10.3390/plants7010013] [PMID: 29495393]
[141]
Yang, H.N.; Lee, E.H.; Kim, H.M. Spirulina platensis inhibits anaphylactic reaction. Life Sci., 1997, 61(13), 1237-1244.
[http://dx.doi.org/10.1016/S0024-3205(97)00668-1] [PMID: 9324065]
[142]
Fais, G.; Manca, A.; Bolognesi, F.; Borselli, M.; Concas, A.; Busutti, M.; Broggi, G.; Sanna, P.; Castillo-Aleman, Y.M.; Rivero-Jiménez, R.A.; Bencomo-Hernandez, A.A.; Ventura-Carmenate, Y.; Altea, M.; Pantaleo, A.; Gabrielli, G.; Biglioli, F.; Cao, G.; Giannaccare, G. Wide range applications of spirulina: From earth to space missions. Mar. Drugs, 2022, 20(5), 299.
[http://dx.doi.org/10.3390/md20050299] [PMID: 35621951]
[143]
Gunasekera, S.P.; Kokkaliari, S.; Ratnayake, R.; Sauvage, T.; dos Santos, L.A.H.; Luesch, H.; Paul, V.J. Anti-inflammatory dysidazirine carboxylic acid from the marine cyanobacterium Caldora sp. collected from the reefs of Fort Lauderdale, Florida. Molecules, 2022, 27(5), 1717.
[http://dx.doi.org/10.3390/molecules27051717] [PMID: 35268819]
[144]
Kwan, J.C.; Eksioglu, E.A.; Liu, C.; Paul, V.J.; Luesch, H. Grassystatins A-C from marine cyanobacteria, potent cathepsin E inhibitors that reduce antigen presentation. J. Med. Chem., 2009, 52(18), 5732-5747.
[http://dx.doi.org/10.1021/jm9009394] [PMID: 19715320]
[145]
Takamatsu, S.; Nagle, D.G.; Gerwick, W.H. Secondary metabolites from marine cyanobacteria and algae inhibit LFA1/ICAM-1 mediated cell adhesion. Planta Med., 2004, 70(2), 127-131.
[http://dx.doi.org/10.1055/s-2004-815488] [PMID: 14994189]
[146]
Malloy, K.L.; Villa, F.A.; Engene, N.; Matainaho, T.; Gerwick, L.; Gerwick, W.H. Malyngamide 2, an oxidized lipopeptide with nitric oxide inhibiting activity from a Papua New Guinea marine cyanobacterium. J. Nat. Prod., 2011, 74(1), 95-98.
[http://dx.doi.org/10.1021/np1005407] [PMID: 21155594]
[147]
Villa, F.A.; Lieske, K.; Gerwick, L. Selective MyD88-dependent pathway inhibition by the cyanobacterial natural product malyngamide F acetate. Eur. J. Pharmacol., 2010, 629(1-3), 140-146.
[http://dx.doi.org/10.1016/j.ejphar.2009.12.002] [PMID: 20006962]
[148]
Faltermann, S.; Hutter, S.; Christen, V.; Hettich, T.; Fent, K. Antiinflammatory activity of cyanobacterial serine protease inhibitors aeruginosin 828A and cyanopeptolin 1020 in human hepatoma cell line Huh7 and effects in zebrafish (Danio rerio). Toxins (Basel), 2016, 8(7), 219.
[http://dx.doi.org/10.3390/toxins8070219] [PMID: 27428998]
[149]
Engene, N.; Choi, H.; Esquenazi, E.; Byrum, T.; Villa, F.A.; Cao, Z.; Murray, T.F.; Dorrestein, P.C.; Gerwick, L.; Gerwick, W.H. Phylogeny-guided isolation of ethyl tumonoate A from the marine cyanobacterium cf. Oscillatoria margaritifera. J. Nat. Prod., 2011, 74(8), 1737-1743.
[http://dx.doi.org/10.1021/np200236c] [PMID: 21751786]
[150]
Silambarasan, G.; Ramanathan, T.; Nabeel, M.A.; Kalaichelvan, V.K.; Kathiresan, K.; Balasubramanian, T. anti-inflammatory activity of the marine cyanobacterium Trichodesmium erythraeum against carrageenan-induced paw oedema in wistar albino rats. Eur. J. Inflamm., 2011, 9(1), 53-56.
[http://dx.doi.org/10.1177/1721727X1100900108]
[151]
Ingebrigtsen, R.A.; Hansen, E.; Andersen, J.H.; Eilertsen, H.C. Light and temperature effects on bioactivity in diatoms. J. Appl. Phycol., 2016, 28(2), 939-950.
[http://dx.doi.org/10.1007/s10811-015-0631-4] [PMID: 27057087]
[152]
Lauritano, C.; Andersen, J.H.; Hansen, E.; Albrigtsen, M.; Escalera, L.; Esposito, F.; Helland, K.; Hanssen, K.Ø.; Romano, G.; Ianora, A. Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Front. Mar. Sci., 2016, 3, 68.
[http://dx.doi.org/10.3389/fmars.2016.00068]
[153]
Tanaka, Y.; Nishikawa, M.; Kamisaki, K.; Hachiya, S.; Nakamura, M.; Kuwazuru, T.; Tanimura, S.; Soyano, K.; Takeda, K. Marine-derived microbes and molecules for drug discovery. Inflamm. Regen., 2022, 42(1), 18.
[http://dx.doi.org/10.1186/s41232-022-00207-9] [PMID: 35655291]
[154]
Dou, H.; Song, Y.; Liu, X.; Gong, W.; Li, E.; Tan, R.; Hou, Y. Chaetoglobosin Fex from the marine-derived endophytic fungus inhibits induction of inflammatory mediators via Toll-like receptor 4 signaling in macrophages. Biol. Pharm. Bull., 2011, 34(12), 1864-1873.
[http://dx.doi.org/10.1248/bpb.34.1864] [PMID: 22130243]
[155]
Kim, K.S.; Cui, X.; Lee, D.S.; Sohn, J.; Yim, J.; Kim, Y.C.; Oh, H. Anti-inflammatory effect of neoechinulin a from the marine fungus Eurotium sp. SF-5989 through the suppression of NF-кB and p38 MAPK Pathways in lipopolysaccharide-stimulated RAW264.7 macrophages. Molecules, 2013, 18(11), 13245-13259.
[http://dx.doi.org/10.3390/molecules181113245] [PMID: 24165583]
[156]
Niu, S.; Xie, C.L.; Xia, J.M.; Luo, Z.H.; Shao, Z.; Yang, X.W. New anti-inflammatory guaianes from the Atlantic hydrotherm-derived fungus Graphostroma sp. MCCC 3A00421. Sci. Rep., 2018, 8(1), 530.
[http://dx.doi.org/10.1038/s41598-017-18841-6] [PMID: 29323171]
[157]
Schillaci, D.; Arizza, V.; Parrinello, N.; Di Stefano, V.; Fanara, S.; Muccilli, V.; Cunsolo, V.; Haagensen, J.J.A.; Molin, S. Antimicrobial and antistaphylococcal biofilm activity from the sea urchin Paracentrotus lividus. J. Appl. Microbiol., 2010, 108(1), 17-24.
[http://dx.doi.org/10.1111/j.1365-2672.2009.04394.x] [PMID: 19548887]
[158]
Shi, Y.P.; Wei, X.; Rodríguez, I.I.; Rodríguez, A.D.; Mayer, A.M.S. New terpenoid constituents of the southwestern Caribbean Sea whip Pseudopterogorgia elisabethae (Bayer), including a unique pentanorditerpene. Eur. J. Org. Chem., 2009, 2009(4), 493-502.
[http://dx.doi.org/10.1002/ejoc.200800795]
[159]
Tello, E.; Castellanos, L.; Arevalo-Ferro, C.; Duque, C. Cembranoid diterpenes from the Caribbean sea whip Eunicea knighti. J. Nat. Prod., 2009, 72(9), 1595-1602.
[http://dx.doi.org/10.1021/np9002492] [PMID: 19778088]
[160]
Pinheiro, U.S.; Hajdu, E. Shallow-water Aplysina Nardo (Aplysinidae, Verongida, Demospongiae) from the São Sebastião Channel and its environs (Tropical southwestern Atlantic), with the description of a new species and a literature review of other brazilian records of the genus. Rev. Bras. Zool., 2001, 18(1)(Suppl. 1), 143-160.
[http://dx.doi.org/10.1590/S0101-81752001000500012]
[161]
Azevedo, L.G.; Muccillo-Baisch, A.L.; Filgueira, D.M.V.B.; Boyle, R.T.; Ramos, D.F.; Soares, A.D.; Lerner, C.; Silva, P.A.; Trindade, G.S. Comparative cytotoxic and anti-tuberculosis activity of Aplysina caissara marine sponge crude extracts. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2008, 147(1), 36-42.
[http://dx.doi.org/10.1016/j.cbpc.2007.07.007] [PMID: 17826358]
[162]
Youssef, D.T.A.; Ibrahim, A.K.; Khalifa, S.I.; Mesbah, M.K.; Mayer, A.M.S.; van Soest, R.W.M. New anti-inflammatory sterols from the Red Sea sponges Scalarispongia aqabaensis and Callyspongia siphonella. Nat. Prod. Commun., 2010, 5(1), 1934578X1000500.
[http://dx.doi.org/10.1177/1934578X1000500107] [PMID: 20184014]
[163]
Hu, T.Y.; Zhang, H.; Chen, Y.Y.; Jiao, W.H.; Fan, J.T.; Liu, Z.Q.; Lin, H.W.; Cheng, B.H. Dysiarenone from marine sponge Dysidea arenaria attenuates ROS and inflammation via inhibition of 5- LOX/NF-κB/MAPKs and upregulation of Nrf-2/OH-1 in RAW 264.7 macrophages. J. Inflamm. Res., 2021, 14, 587-597.
[http://dx.doi.org/10.2147/JIR.S283745] [PMID: 33664584]
[164]
Lind, K.; Hansen, E.; Østerud, B.; Eilertsen, K.E.; Bayer, A.; Engqvist, M.; Leszczak, K.; Jørgensen, T.; Andersen, J. Antioxidant and anti-inflammatory activities of barettin. Mar. Drugs, 2013, 11(7), 2655-2666.
[http://dx.doi.org/10.3390/md11072655] [PMID: 23880935]
[165]
Tsubosaka, Y.; Murata, T.; Yamada, K.; Uemura, D.; Hori, M.; Ozaki, H. Halichlorine reduces monocyte adhesion to endothelium through the suppression of nuclear factor-kappaB activation. J. Pharmacol. Sci., 2010, 113(3), 208-213.
[http://dx.doi.org/10.1254/jphs.10065FP] [PMID: 20562517]
[166]
Shady, N.; El-Hossary, E.; Fouad, M.; Gulder, T.; Kamel, M.; Abdelmohsen, U. Bioactive natural products of marine sponges from the genus Hyrtios. Molecules, 2017, 22(5), 781.
[http://dx.doi.org/10.3390/molecules22050781] [PMID: 28492499]
[167]
Dellai, A.; Laroche-Clary, A.; Mhadhebi, L.; Robert, J.; Bouraoui, A. Anti-inflammatory and antiproliferative activities of crude extract and its fractions of the defensive secretion from the Mediterranean sponge, Spongia officinalis. Drug Dev. Res., 2010, 71(7), 412-418.
[http://dx.doi.org/10.1002/ddr.20392]
[168]
Wang, Q.; Gao, C.; Wei, Z.; Tang, X.; Ji, L.; Luo, X.; Peng, X.; Li, G.; Lou, H. A series of new pyrrole alkaloids with ALR2 inhibitory activities from the sponge Stylissa massa. Mar. Drugs, 2022, 20(7), 454.
[http://dx.doi.org/10.3390/md20070454] [PMID: 35877747]
[169]
Costantino, V.; Fattorusso, E.; Mangoni, A.; Perinu, C.; Cirino, G.; De Gruttola, L.; Roviezzo, F. Tedanol: A potent anti-inflammatory ent-pimarane diterpene from the Caribbean Sponge Tedania ignis. Bioorg. Med. Chem., 2009, 17(21), 7542-7547.
[http://dx.doi.org/10.1016/j.bmc.2009.09.010] [PMID: 19800802]
[170]
Li, Z.; Zhang, L.; Zhao, Z.; Malyngamide, F. Possesses anti-inflammatory and antinociceptive activity in rat models of inflammation. Pain Res. Manag., 2021, 2021, 1-9.
[http://dx.doi.org/10.1155/2021/4919391] [PMID: 34239653]
[171]
Nunnery, J.K.; Mevers, E.; Gerwick, W.H. Biologically active secondary metabolites from marine cyanobacteria. Curr. Opin. Biotechnol., 2010, 21(6), 787-793.
[http://dx.doi.org/10.1016/j.copbio.2010.09.019] [PMID: 21030245]
[172]
Jiang, M.; Wu, Z.; Guo, H.; Liu, L.; Chen, S. A Review of Terpenes from Marine-Derived Fungi: 2015–2019. Mar. Drugs, 2020, 18(6), 321-326.
[http://dx.doi.org/10.3390/md18060321] [PMID: 32570903]
[173]
Avila, C. Terpenoids in Marine Heterobranch Molluscs. Mar. Drugs, 2020, 18(3), 162-169.
[http://dx.doi.org/10.3390/md18030162] [PMID: 32183298]
[174]
D’Orazio, N.; Gammone, M.A.; Gemello, E.; De Girolamo, M.; Cusenza, S.; Riccioni, G. Marine bioactives: pharmacological properties and potential applications against inflammatory diseases. Mar. Drugs, 2012, 10(12), 812-833.
[http://dx.doi.org/10.3390/md10040812] [PMID: 22690145]
[175]
Areche, C.; San-Martín, A.; Rovinosa, J.; Sepúlveda, B. Gastroprotective activity of epitaondiol and sargaol. Nat. Prod. Commun., 2011, 6(8), 1934578X1100600.
[http://dx.doi.org/10.1177/1934578X1100600805] [PMID: 21922901]
[176]
San-Martín, A.; Rovirosa, J.; Astudillo, L.; Sepúlveda, B.; Ruiz, D.; San-Martín, C. Biotransformation of the marine sesquiterpene pacifenol by a facultative marine fungus. Nat. Prod. Res., 2008, 22(18), 1627-1632.
[http://dx.doi.org/10.1080/14786410701869440] [PMID: 19085420]
[177]
Fuster, J.J.; Walsh, K. The good, the bad, and the ugly of interleukin-6 signaling. EMBO J., 2014, 33(13), 1425-1427.
[http://dx.doi.org/10.15252/embj.201488856] [PMID: 24850773]
[178]
Sui, B.; Yeh, E.A.H.; Curran, D.P. Assignment of the structure of petrocortyne A by mixture syntheses of four candidate stereoisomers. J. Org. Chem., 2010, 75(9), 2942-2954.
[http://dx.doi.org/10.1021/jo100115h] [PMID: 20394446]
[179]
Šudomová, M.; Shariati, M.; Echeverría, J.; Berindan-Neagoe, I.; Nabavi, S.; Hassan, S. A microbiological, toxicological, and biochemical study of the effects of fucoxanthin, a marine carotenoid, on mycobacterium tuberculosis and the enzymes implicated in its cell wall: A link between Mycobacterial Infection and Autoimmune Diseases. Mar. Drugs, 2019, 17(11), 641.
[http://dx.doi.org/10.3390/md17110641] [PMID: 31739453]
[180]
Randazzo, A.; Bifulco, G.; Giannini, C.; Bucci, M.; Debitus, C.; Cirino, G.; Gomez-Paloma, L. Halipeptins A and B: two novel potent anti-inflammatory cyclic depsipeptides from the Vanuatu marine sponge Haliclona species. J. Am. Chem. Soc., 2001, 123(44), 10870-10876.
[http://dx.doi.org/10.1021/ja010015c] [PMID: 11686688]
[181]
Nicolaou, K.C.; Lizos, D.E.; Kim, D.W.; Schlawe, D.; de Noronha, R.G.; Longbottom, D.A.; Rodriquez, M.; Bucci, M.; Cirino, G. Total synthesis and biological evaluation of halipeptins A and D and analogues. J. Am. Chem. Soc., 2006, 128(13), 4460-4470.
[http://dx.doi.org/10.1021/ja060064v] [PMID: 16569024]
[182]
Merino-Contreras, M.L.; Guzman-Murillo, M.A.; Ruiz-Bustos, E.; Romero, M.J.; Cadena-Roa, M.A.; Ascencio, F. Mucosal immune response of spotted sand bass Paralabrax maculatofasciatus (Steindachner, 1868) orally immunised with an extracellular lectin of Aeromonas veronii. Fish Shellfish Immunol., 2001, 11(2), 115-126.
[http://dx.doi.org/10.1006/fsim.2000.0299] [PMID: 11308074]
[183]
Lam, Y.W.; Ng, T.B. Purification and characterization of a rhamnose-binding lectin with immunoenhancing activity from grass carp (Ctenopharyngodon idellus) ovaries. Protein Expr. Purif., 2002, 26(3), 378-385.
[http://dx.doi.org/10.1016/S1046-5928(02)00559-4] [PMID: 12460761]
[184]
Tommonaro, G.; Iodice, C. The Mediterranean sponge Dysidea avara as a 40 year inspiration of marine natural product chemists. J Biodivers Endanger Species, 2015, 2015(S1), 001.
[185]
Yang, J.W.; Yoon, S.Y.; Oh, S.J.; Kim, S.K.; Kang, K.W. Bifunctional effects of fucoidan on the expression of inducible nitric oxide synthase. Biochem. Biophys. Res. Commun., 2006, 346(1), 345-350.
[http://dx.doi.org/10.1016/j.bbrc.2006.05.135] [PMID: 16756944]
[186]
Apostolova, E.; Lukova, P.; Baldzhieva, A.; Katsarov, P.; Nikolova, M.; Iliev, I.; Peychev, L.; Trica, B.; Oancea, F.; Delattre, C.; Kokova, V. Immunomodulatory and anti-inflammatory effects of fucoidan: A review. Polymers (Basel), 2020, 12(10), 2338.
[http://dx.doi.org/10.3390/polym12102338] [PMID: 33066186]
[187]
Maruyama, H.; Tamauchi, H.; Hashimoto, M.; Nakano, T. Suppression of Th2 immune responses by mekabu fucoidan from Undaria pinnatifida sporophylls. Int. Arch. Allergy Immunol., 2005, 137(4), 289-294.
[http://dx.doi.org/10.1159/000086422] [PMID: 15970637]
[188]
Mateos, R.; Pérez-Correa, J.R.; Domínguez, H. Bioactive properties of marine phenolics. Mar. Drugs, 2020, 18(10), 501.
[http://dx.doi.org/10.3390/md18100501] [PMID: 33007997]
[189]
Montuori, E.; de Pascale, D.; Lauritano, C. Recent discoveries on marine organism immunomodulatory activities. Mar. Drugs, 2022, 20(7), 4.
[http://dx.doi.org/10.3390/md20070422] [PMID: 35877715]
[190]
Yang, L.; Andersen, R.J. Absolute configuration of the antiinflammatory sponge natural product contignasterol. J. Nat. Prod., 2002, 65(12), 1924-1926.
[http://dx.doi.org/10.1021/np020297+] [PMID: 12502341]
[191]
Galeano, E.; Rojas, J.J.; Martínez, A. Pharmacological developments obtained from marine natural products and current pipeline perspective. Nat. Prod. Commun., 2011, 6(2), 287-300.
[PMID: 21425696]
[192]
Woo, J.K.; Ha, T.K.Q.; Oh, D.C.; Oh, W.K.; Oh, K.B.; Shin, J. Polyoxygenated steroids from the sponge clathria gombawuiensis. J. Nat. Prod., 2017, 80(12), 3224-3233.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00651] [PMID: 29182331]
[193]
Ninomiya, M.; Satoh, H.; Yamaguchi, Y.; Takenaka, H.; Koketsu, M. Antioxidative activity and chemical constituents of edible terrestrial alga Nostoc commune Vauch. Biosci. Biotechnol. Biochem., 2011, 75(11), 2175-2177.
[http://dx.doi.org/10.1271/bbb.110466] [PMID: 22056440]
[194]
Soule, T.; Stout, V.; Swingley, W.D.; Meeks, J.C.; Garcia-Pichel, F. Molecular genetics and genomic analysis of scytonemin biosynthesis in Nostoc punctiforme ATCC 29133. J. Bacteriol., 2007, 189(12), 4465-4472.
[http://dx.doi.org/10.1128/JB.01816-06] [PMID: 17351042]
[195]
Stevenson, C.S.; Capper, E.A.; Roshak, A.K.; Marquez, B.; Eichman, C.; Jackson, J.R.; Mattern, M.; Gerwick, W.H.; Jacobs, R.S.; Marshall, L.A. The identification and characterization of the marine natural product scytonemin as a novel antiproliferative pharmacophore. J. Pharmacol. Exp. Ther., 2002, 303(2), 858-866.
[http://dx.doi.org/10.1124/jpet.102.036350] [PMID: 12388673]
[196]
Singh, R.S.; Walia, A.K. Lectins from red algae and their biomedical potential. J. Appl. Phycol., 2018, 30(3), 1833-1858.
[http://dx.doi.org/10.1007/s10811-017-1338-5] [PMID: 32214665]
[197]
Riccio, G.; Lauritano, C. Microalgae with immunomodulatory activities. Mar. Drugs, 2019, 18(1), 2.
[http://dx.doi.org/10.3390/md18010002] [PMID: 31861368]
[198]
Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol., 2014, 6(10), a016295.
[http://dx.doi.org/10.1101/cshperspect.a016295] [PMID: 25190079]
[199]
Ismail, M.M.; Alotaibi, B.S.; EL-Sheekh, M.M. Therapeutic uses of red macroalgae. Molecules, 2020, 25(19), 4411.
[http://dx.doi.org/10.3390/molecules25194411] [PMID: 32992919]
[200]
Hong, S.; Kim, S.H.; Rhee, M.H.; Kim, A.R.; Jung, J.H.; Chun, T.; Yoo, E.S.; Cho, J.Y. In vitro anti-inflammatory and proaggregative effects of a lipid compound, petrocortyne A, from marine sponges. Naunyn Schmiedebergs Arch. Pharmacol., 2003, 368(6), 448-456.
[http://dx.doi.org/10.1007/s00210-003-0848-7] [PMID: 14615882]
[201]
Di, X.; Rouger, C.; Hardardottir, I.; Freysdottir, J.; Molinski, T.; Tasdemir, D.; Omarsdottir, S. 6-bromoindole derivatives from the icelandic marine sponge Geodia barretti: isolation and antiinflammatory activity. Mar. Drugs, 2018, 16(11), 437.
[http://dx.doi.org/10.3390/md16110437] [PMID: 30413031]
[202]
El-Shorbagi, A.N.; Chaudhary, S.; Chaudhary, A.; Agarwal, G.; Tripathi, P.N.; Dumoga, S.; Aljarad, A.A.; Mahmoud, F.; Omer, E.; Gupta, R.K.; Mohamed, M.H. Marine antineoplastic templates: clinical trials (I-III) and motifs carried via antibodies to target specific cancerous tissues. Biomed. Pharmacol. J., 2022, 15(2), 579-603.
[http://dx.doi.org/10.13005/bpj/2398]