A Mini-review on Recent Strategies and Applications of Nanomedicines to Combat Antimicrobial Resistance

Page: [406 - 421] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

One of the key factors contributing to mortality and morbidity globally is infectious ailments. According to recent statistics from WHO, amplified antimicrobial resistance occurrence among bacteria signifies the utmost threat to global public health. Bacteria have developed various strategies to resist antimicrobials, including enzymatic inactivation of antibiotics, drug efflux, modifications of the antibiotic molecule or chemical alteration of the antibiotic, limited drug uptake, etc. Furthermore, the inefficiency of antimicrobial drugs against resistant bacteria due to low solubility, instability, and associated side effects augments challenges to combat these resistant pathogens. This has attracted the attention of researchers to create nano-delivery and targeting techniques. This review presents an overview of antimicrobial resistance (AMR), its various subtypes, as well as mechanisms involved in AMR. This review also describes current strategies and applications of various nanocarriers, including nanoparticles, liposomes, lipid-based nanoparticles, micelles, and polymeric nanoparticles.

Graphical Abstract

[1]
Hernando-Amado, S.; Coque, T.M.; Baquero, F.; Martínez, J.L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol., 2019, 4(9), 1432-1442.
[http://dx.doi.org/10.1038/s41564-019-0503-9] [PMID: 31439928]
[2]
Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog. Glob. Health, 2015, 109(7), 309-318.
[http://dx.doi.org/10.1179/2047773215Y.0000000030] [PMID: 26343252]
[3]
Shinu, P.; Mouslem, A.K.A.; Nair, A.B.; Venugopala, K.N.; Attimarad, M.; Singh, V.A.; Nagaraja, S.; Alotaibi, G.; Deb, P.K. Progress Report: Antimicrobial Drug Discovery in the resistance era. Pharmaceuticals (Basel), 2022, 15(4), 413.
[http://dx.doi.org/10.3390/ph15040413] [PMID: 35455410]
[4]
World Health, O., The evolving threat of antimicrobial resistance: options for action; World Health Organization: Geneva, 2012.
[5]
Acar, J.; Röstel, B. Antimicrobial resistance: An overview. Rev. Sci. Tech., 2001, 20(3), 797-810.
[http://dx.doi.org/10.20506/rst.20.3.1309] [PMID: 11732423]
[6]
Mubeen, B.; Ansar, A.N.; Rasool, R.; Ullah, I.; Imam, S.S.; Alshehri, S.; Ghoneim, M.M.; Alzarea, S.I.; Nadeem, M.S.; Kazmi, I. Nano-technology as a novel approach in combating microbes providing an alternative to antibiotics. Antibiotics (Basel), 2021, 10(12), 1473.
[http://dx.doi.org/10.3390/antibiotics10121473] [PMID: 34943685]
[7]
Han, H.W.; Patel, K.D.; Kwak, J.H.; Jun, S.K.; Jang, T.S.; Lee, S.H.; Knowles, J.C.; Kim, H.W.; Lee, H.H.; Lee, J.H. Selenium nanoparticles as candidates for antibacterial substitutes and supplements against multidrug-resistant bacteria. Biomolecules, 2021, 11(7), 1028.
[http://dx.doi.org/10.3390/biom11071028] [PMID: 34356651]
[8]
Hetta, H.F.; Ramadan, Y.N.; Al-Harbi, A.I.; A Ahmed, E. ; Battah, B. ; Abd Ellah, N.H.; Zanetti, S. ; Donadu, M.G Nanotechnology as a promising approach to combat multidrug resistant bacteria: A comprehensive review and future perspectives. Biomedicines, 2023, 11(2), 413.
[http://dx.doi.org/10.3390/biomedicines11020413] [PMID: 36830949]
[9]
Hetta, H.F.; Al-Kadmy, I.M.S.; Khazaal, S.S.; Abbas, S.; Suhail, A.; El-Mokhtar, M.A.; Ellah, N.H.A.; Ahmed, E.A.; Abd-ellatief, R.B.; El-Masry, E.A.; Batiha, G.E.S.; Elkady, A.A.; Mohamed, N.A.; Algammal, A.M. Antibiofilm and antivirulence potential of silver nanoparti-cles against multidrug-resistant Acinetobacter baumannii. Sci. Rep., 2021, 11(1), 10751.
[http://dx.doi.org/10.1038/s41598-021-90208-4] [PMID: 34031472]
[10]
Eleraky, N.E.; Allam, A.; Hassan, S.B.; Omar, M.M. Nanomedicine fight against antibacterial resistance: An overview of the recent phar-maceutical innovations. Pharmaceutics, 2020, 12(2), 142.
[http://dx.doi.org/10.3390/pharmaceutics12020142] [PMID: 32046289]
[11]
Tripathi, N.; Goshisht, M.K. Recent advances and mechanistic insights into antibacterial activity, antibiofilm activity, and cytotoxicity of silver nanoparticles. ACS Appl. Bio Mater., 2022, 5(4), 1391-1463.
[http://dx.doi.org/10.1021/acsabm.2c00014] [PMID: 35358388]
[12]
Jiang, L.; Lin, J.; Taggart, C.C.; Bengoechea, J.A.; Scott, C.J. Nanodelivery strategies for the treatment of multidrug-resistant bacterial infec-tions. J. Interdiscip. Nanomed., 2018, 3(3), 111-121.
[http://dx.doi.org/10.1002/jin2.48] [PMID: 30443410]
[13]
Zong, T.X.; Silveira, A.P.; Morais, J.A.V.; Sampaio, M.C.; Muehlmann, L.A.; Zhang, J.; Jiang, C.S.; Liu, S.K. Recent advances in antimi-crobial nano-drug delivery systems. Nanomaterials (Basel), 2022, 12(11), 1855.
[http://dx.doi.org/10.3390/nano12111855] [PMID: 35683711]
[14]
Frieden, T.J.C.D.C.P. Antibiotic resistance threats in the United States; Centers for Disease Control and Prevention: U.S.A, 2013.
[15]
Eliopoulos, G.M.; Cosgrove, S.E.; Carmeli, Y. The impact of antimicrobial resistance on health and economic outcomes. Clin. Infect. Dis., 2003, 36(11), 1433-1437.
[http://dx.doi.org/10.1086/375081] [PMID: 12766839]
[16]
Friedman, N.D.; Temkin, E.; Carmeli, Y. The negative impact of antibiotic resistance. Clin. Microbiol. Infect., 2016, 22(5), 416-422.
[http://dx.doi.org/10.1016/j.cmi.2015.12.002] [PMID: 26706614]
[17]
Lautenbach, E.; Strom, B.L.; Bilker, W.B.; Patel, J.B.; Edelstein, P.H.; Fishman, N.O. Epidemiological investigation of fluoroquinolone resistance in infections due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Clin. Infect. Dis., 2001, 33(8), 1288-1294.
[http://dx.doi.org/10.1086/322667] [PMID: 11565067]
[18]
Falagas, M.E.; Kasiakou, S.K.; Saravolatz, L.D. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin. Infect. Dis., 2005, 40(9), 1333-1341.
[http://dx.doi.org/10.1086/429323] [PMID: 15825037]
[19]
Williamson, D.A.; Barrett, L.K.; Rogers, B.A.; Freeman, J.T.; Hadway, P.; Paterson, D.L. Infectious complications following transrectal ultrasound-guided prostate biopsy: New challenges in the era of multidrug-resistant Escherichia coli. Clin. Infect. Dis., 2013, 57(2), 267-274.
[http://dx.doi.org/10.1093/cid/cit193] [PMID: 23532481]
[20]
Holmes, N.E.; Turnidge, J.D.; Munckhof, W.J.; Robinson, J.O.; Korman, T.M.; O’Sullivan, M.V.N.; Anderson, T.L.; Roberts, S.A.; Gao, W.; Christiansen, K.J.; Coombs, G.W.; Johnson, P.D.R.; Howden, B.P. Antibiotic choice may not explain poorer outcomes in patients with Staphylococcus aureus bacteremia and high vancomycin minimum inhibitory concentrations. J. Infect. Dis., 2011, 204(3), 340-347.
[http://dx.doi.org/10.1093/infdis/jir270] [PMID: 21742831]
[21]
Andersson, D.I.; Balaban, N.Q.; Baquero, F.; Courvalin, P.; Glaser, P.; Gophna, U.; Kishony, R.; Molin, S.; Tønjum, T. Antibiotic re-sistance: Turning evolutionary principles into clinical reality. FEMS Microbiol. Rev., 2020, 44(2), 171-188.
[http://dx.doi.org/10.1093/femsre/fuaa001] [PMID: 31981358]
[22]
Aljanaby, A.A.J.; Aljanaby, I.A.J.J.F. Prevalence of aerobic pathogenic bacteria isolated from patients with burn infection and their antimi-crobial susceptibility patterns in Al-Najaf City, Iraq-a three-year cross-sectional study. F1000 Res., 2018, 7, 1157.
[http://dx.doi.org/10.12688/f1000research.15088.1]
[23]
Harmoosh, A. Detection of efflux pumps genes in clinical isolates of Acinetobacter baumannii. Res. J. Pharm. Technol., 2017, 10(12), 4231-4236.
[24]
Thomas, C.; Frost, L.J.M.L.S. Plasmid Genomes, Introduction to.Molecular Life Sciences; Springer: New York, NY, 2014.
[25]
Etebu, E.; Arikekpar, I. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. Int. J. Appl. Mi-crobiol. Biotechnol. Res., 2016, 4, 90-101.
[26]
Jahne, M.A.; Rogers, S.W.; Ramler, I.P.; Holder, E.; Hayes, G. Hierarchal clustering yields insight into multidrug-resistant bacteria isolated from a cattle feedlot wastewater treatment system. Environ. Monit. Assess., 2015, 187(1), 4168.
[http://dx.doi.org/10.1007/s10661-014-4168-9] [PMID: 25504186]
[27]
Ng, H.F. Selection and characterization of a tigecycline-resistant mutant of Mycobacterium abscessus to identify possible resistance determi-nants; UTAR, 2019.
[28]
Fuh, H.N. Mechanisms of antibiotics resistance in bacteria., 2020. PhD Thesis, UTAR.
[29]
C Reygaert, W. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol., 2018, 4(3), 482-501.
[http://dx.doi.org/10.3934/microbiol.2018.3.482] [PMID: 31294229]
[30]
Vehreschild, M.J.G.T.; Haverkamp, M.; Biehl, L.M.; Lemmen, S.; Fätkenheuer, G. Vancomycin-resistant enterococci (VRE): A reason to isolate? Infection, 2019, 47(1), 7-11.
[http://dx.doi.org/10.1007/s15010-018-1202-9] [PMID: 30178076]
[31]
Escudero, J.A.; Loot, C.; Mazel, D. Integrons as adaptive devices. Molecular Mechanisms of Microbial Evolution; Springer, 2018, pp. 199-239.
[http://dx.doi.org/10.1007/978-3-319-69078-0_9]
[32]
Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front. Microbiol., 2019, 10, 539.
[http://dx.doi.org/10.3389/fmicb.2019.00539] [PMID: 30988669]
[33]
Willems, R.J.L.; Top, J.; van Santen, M.; Robinson, D.A.; Coque, T.M.; Baquero, F.; Grundmann, H.; Bonten, M.J.M. Global spread of vancomycin-resistant Enterococcus faecium from distinct nosocomial genetic complex. Emerg. Infect. Dis., 2005, 11(6), 821-828.
[http://dx.doi.org/10.3201/1106.041204] [PMID: 15963275]
[34]
Frieri, M.; Kumar, K.; Boutin, A. Antibiotic resistance. J. Infect. Public Health, 2017, 10(4), 369-378.
[http://dx.doi.org/10.1016/j.jiph.2016.08.007] [PMID: 27616769]
[35]
O’Driscoll, T.; Crank, C.W. Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal manage-ment. Infect. Drug Resist., 2015, 8, 217-230.
[PMID: 26244026]
[36]
Heikens, E.; Bonten, M.J.M.; Willems, R.J.L. Enterococcal surface protein Esp is important for biofilm formation of Enterococcus faecium E1162. J. Bacteriol., 2007, 189(22), 8233-8240.
[http://dx.doi.org/10.1128/JB.01205-07] [PMID: 17827282]
[37]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[38]
Zaman, S.B.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A review on antibiotic resistance: Alarm bells are ringing. Cureus, 2017, 9(6), e1403.
[http://dx.doi.org/10.7759/cureus.1403] [PMID: 28852600]
[39]
French, G.L. The continuing crisis in antibiotic resistance. Int. J. Antimicrob. Agents, 2010, 36(Suppl. 3), S3-S7.
[http://dx.doi.org/10.1016/S0924-8579(10)70003-0] [PMID: 21129629]
[40]
Parikh, M.P.; Octaria, R.; Kainer, M.A. Methicillin-resistant Staphylococcus aureus Bloodstream Infections and Injection Drug Use, Tennessee, USA, 2015-2017. Emerg. Infect. Dis., 2020, 26(3), 446-453.
[http://dx.doi.org/10.3201/eid2603.191408] [PMID: 32091385]
[41]
Chambers, H.F. The changing epidemiology of Staphylococcus aureus? Emerg. Infect. Dis., 2001, 7(2), 178-182.
[http://dx.doi.org/10.3201/eid0702.010204]
[42]
Davies, J.; Davies, D. Resistance origins and evolution of antibiotic. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10]
[43]
Ashurst, J.V.; Dawson, A. Klebsiella PneumoniaStatPearls, 2022.
[44]
Vuotto, C.; Longo, F.; Balice, M.; Donelli, G.; Varaldo, P. Antibiotic resistance related to biofilm formation in Klebsiella pneumoniae. Pathogens, 2014, 3(3), 743-758.
[http://dx.doi.org/10.3390/pathogens3030743] [PMID: 25438022]
[45]
Nordmann, P.; Cuzon, G.; Naas, T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect. Dis., 2009, 9(4), 228-236.
[http://dx.doi.org/10.1016/S1473-3099(09)70054-4] [PMID: 19324295]
[46]
Gasink, L.B.; Edelstein, P.H.; Lautenbach, E.; Synnestvedt, M.; Fishman, N.O. Risk factors and clinical impact of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae. Infect. Control Hosp. Epidemiol., 2009, 30(12), 1180-1185.
[http://dx.doi.org/10.1086/648451] [PMID: 19860564]
[47]
Anderl, J.N.; Franklin, M.J.; Stewart, P.S. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother., 2000, 44(7), 1818-1824.
[http://dx.doi.org/10.1128/AAC.44.7.1818-1824.2000] [PMID: 10858336]
[48]
Maragakis, L.L.; Perl, T.M. Acinetobacter baumannii: Epidemiology, antimicrobial resistance, and treatment options. Clin. Infect. Dis., 2008, 46(8), 1254-1263.
[http://dx.doi.org/10.1086/529198] [PMID: 18444865]
[49]
Church, N.A.; McKillip, J.L.J.B. Antibiotic resistance crisis: Challenges and imperatives. Biologia, 2021, 76(5), 1535-1550.
[http://dx.doi.org/10.1007/s11756-021-00697-x]
[50]
Towner, K.J. Acinetobacter: an old friend, but a new enemy. J. Hosp. Infect., 2009, 73(4), 355-363.
[http://dx.doi.org/10.1016/j.jhin.2009.03.032] [PMID: 19700220]
[51]
Chuang, Y.C.; Sheng, W.H.; Li, S.Y.; Lin, Y.C.; Wang, J.T.; Chen, Y.C.; Chang, S.C. Influence of genospecies of Acinetobacter baumannii complex on clinical outcomes of patients with acinetobacter bacteremia. Clin. Infect. Dis., 2011, 52(3), 352-360.
[http://dx.doi.org/10.1093/cid/ciq154] [PMID: 21193494]
[52]
Vázquez-López, R.; Solano-Gálvez, S.G.; Juárez Vignon-Whaley, J.J.; Abello Vaamonde, J.A.; Padró Alonzo, L.A.; Rivera Reséndiz, A.; Muleiro Álvarez, M.; Vega López, E.N.; Franyuti-Kelly, G.; Álvarez-Hernández, D.A.; Moncaleano Guzmán, V.; Juárez Bañuelos, J.E.; Marcos Felix, J.; González Barrios, J.A.; Barrientos Fortes, T. Acinetobacter baumannii resistance: A real challenge for clinicians. Antibiotics (Basel), 2020, 9(4), 205.
[http://dx.doi.org/10.3390/antibiotics9040205] [PMID: 32340386]
[53]
Aloush, V.; Navon-Venezia, S.; Seigman-Igra, Y.; Cabili, S.; Carmeli, Y. Multidrug-resistant Pseudomonas aeruginosa: Risk factors and clinical impact. Antimicrob. Agents Chemother., 2006, 50(1), 43-48.
[http://dx.doi.org/10.1128/AAC.50.1.43-48.2006] [PMID: 16377665]
[54]
Strateva, T.; Yordanov, D. Pseudomonas aeruginosa - a phenomenon of bacterial resistance. J. Med. Microbiol., 2009, 58(9), 1133-1148.
[http://dx.doi.org/10.1099/jmm.0.009142-0] [PMID: 19528173]
[55]
Sadikot, R.T.; Blackwell, T.S.; Christman, J.W.; Prince, A.S. Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am. J. Respir. Crit. Care Med., 2005, 171(11), 1209-1223.
[http://dx.doi.org/10.1164/rccm.200408-1044SO] [PMID: 15695491]
[56]
Poole, K. Pseudomonas aeruginosa: Resistance to the max. Front. Microbiol., 2011, 2, 65.
[http://dx.doi.org/10.3389/fmicb.2011.00065] [PMID: 21747788]
[57]
Streeter, K.; Katouli, M. Pseudomonas aeruginosa: A review of their pathogenesis and prevalence in clinical settings and the environment. Infect. Epidemiol. Microbiol., 2016, 2(1), 25-32.
[http://dx.doi.org/10.18869/modares.iem.2.1.25]
[58]
Walsh, T.R.; Toleman, M.A.; Poirel, L.; Nordmann, P. Metallo-beta-lactamases: The quiet before the storm? Clin. Microbiol. Rev., 2005, 18(2), 306-325.
[http://dx.doi.org/10.1128/CMR.18.2.306-325.2005] [PMID: 15831827]
[59]
Marra, A.R.; Pereira, C.A.P.; Gales, A.C.; Menezes, L.C.; Cal, R.G.R.; de Souza, J.M.A.; Edmond, M.B.; Faro, C.; Wey, S.B. Bloodstream infections with metallo-beta-lactamase-producing Pseudomonas aeruginosa: Epidemiology, microbiology, and clinical outcomes. Antimicrob. Agents Chemother., 2006, 50(1), 388-390.
[http://dx.doi.org/10.1128/AAC.50.1.388-390.2006] [PMID: 16377720]
[60]
Pseudomonas aeruginosa. 2018. Available from: https://www.cdc.gov/hai/outbreaks/pseudomonas-aeruginosa.html=
[61]
Mezzatesta, M.L.; Gona, F.; Stefani, S. Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance. Future Microbiol., 2012, 7(7), 887-902.
[http://dx.doi.org/10.2217/fmb.12.61] [PMID: 22827309]
[62]
Schultsz, C.; Geerlings, S. Plasmid-mediated resistance in Enterobacteriaceae: Changing landscape and implications for therapy. Drugs, 2012, 72(1), 1-16.
[http://dx.doi.org/10.2165/11597960-000000000-00000] [PMID: 22191792]
[63]
Kanj, S.S.; Kanafani, Z.A. Current concepts in antimicrobial therapy against resistant gram-negative organisms: Extended-spectrum beta-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and multidrug-resistant Pseudomonas aeruginosa. Mayo Clin. Proc., 2011, 86(3), 250-259.
[http://dx.doi.org/10.4065/mcp.2010.0674] [PMID: 21364117]
[64]
Falagas, M.E. Antimicrobial susceptibility of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Enterobacteriaceae isolates to fosfomycin. Int. J. Antimicrob. Agents, 2010, 35(3), 240-243.
[65]
Kanj, S.S.; Kanafani, Z.A. Current concepts in antimicrobial therapy against resistant gram-negative organisms: extended-spectrum β-lactamase–producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and multidrug-resistant Pseudomonas aeruginosa. Mayo Clinic Proceedings; Elsevier, 2011.
[http://dx.doi.org/10.4065/mcp.2010.0674]
[66]
Castanheira, M. Meropenem-vaborbactam tested against contemporary gram-negative isolates collected worldwide during 2014, including carbapenem-resistant, kpc-producing, multidrug-resistant, and extensively drug-resistant enterobacteriaceae. Antimicrob. Agents Chemother., 2017, 61(9), e00567.
[67]
Thompson, T. The staggering death toll of drug-resistant bacteria. Nature, 2022.
[http://dx.doi.org/10.1038/d41586-022-00228-x] [PMID: 35102288]
[68]
Abushaheen, M.A. Muzaheed; Fatani, A.J.; Alosaimi, M.; Mansy, W.; George, M.; Acharya, S.; Rathod, S.; Divakar, D.D.; Jhugroo, C.; Vellappally, S.; Khan, A.A.; Shaik, J.; Jhugroo, P. Antimicrobial resistance, mechanisms and its clinical significance. Dis. Mon., 2020, 66(6), 100971.
[http://dx.doi.org/10.1016/j.disamonth.2020.100971] [PMID: 32201008]
[69]
Ramirez, M.S.; Tolmasky, M.E. Aminoglycoside modifying enzymes. Drug Resist. Updat., 2010, 13(6), 151-171.
[http://dx.doi.org/10.1016/j.drup.2010.08.003] [PMID: 20833577]
[70]
Southon, S.B.; Beres, S.B.; Kachroo, P.; Saavedra, M.O.; Erlendsdóttir, H.; Haraldsson, G.; Yerramilli, P.; Pruitt, L.; Zhu, L.; Musser, J.M.; Kristinsson, K.G. Population genomic molecular epidemiological study of macrolide-resistant Streptococcus pyogenes in Iceland, 1995 to 2016: Identification of a large clonal population with a pbp2x mutation conferring reduced in vitro β-lactam susceptibility. J. Clin. Microbiol., 2020, 58(9), e00638-e20.
[http://dx.doi.org/10.1128/JCM.00638-20] [PMID: 32522827]
[71]
Blair, J.M.A.; Richmond, G.E.; Piddock, L.J.V. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol., 2014, 9(10), 1165-1177.
[http://dx.doi.org/10.2217/fmb.14.66] [PMID: 25405886]
[72]
Bébéar, C.; Pereyre, S. Mechanisms of drug resistance in Mycoplasma pneumoniae. Curr. Drug Targets Infect. Disord., 2005, 5(3), 263-271.
[http://dx.doi.org/10.2174/1568005054880109] [PMID: 16181145]
[73]
Miller, W.R.; Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance in enterococci. Expert Rev. Anti Infect. Ther., 2014, 12(10), 1221-1236.
[http://dx.doi.org/10.1586/14787210.2014.956092] [PMID: 25199988]
[74]
Mah, T.F. Biofilm-specific antibiotic resistance. Future Microbiol., 2012, 7(9), 1061-1072.
[http://dx.doi.org/10.2217/fmb.12.76] [PMID: 22953707]
[75]
Soto, S.M. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence, 2013, 4(3), 223-229.
[http://dx.doi.org/10.4161/viru.23724] [PMID: 23380871]
[76]
Van Acker, H.; Van Dijck, P.; Coenye, T. Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol., 2014, 22(6), 326-333.
[http://dx.doi.org/10.1016/j.tim.2014.02.001] [PMID: 24598086]
[77]
Bush, K.; Bradford, P.A. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb. Perspect. Med., 2016, 6(8), a025247.
[http://dx.doi.org/10.1101/cshperspect.a025247] [PMID: 27329032]
[78]
Bush, K.; Jacoby, G.A. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother., 2010, 54(3), 969-976.
[http://dx.doi.org/10.1128/AAC.01009-09] [PMID: 19995920]
[79]
Villagra, N.A. The carbon source influences the efflux pump-mediated antimicrobial resistance in clinically important Gram-negative bac-teria. J. Antimicrob. Chemother., 2012, 67(4), 921-927.
[http://dx.doi.org/10.1093/jac/dkr573]
[80]
Ahmad, I. Bacterial multidrug efflux proteins: A major mechanism of antimicrobial resistance. Antibiotics, 2018, 11(4), 520.
[http://dx.doi.org/10.2174/1389450119666180426103300]
[81]
Jo, I. Stoichiometry and mechanistic implications of the MacAB-TolC tripartite efflux pump. Biochem. Biophys. Res. Commun, 2017, 494(3-3), 668-673.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.102]
[82]
Fitzpatrick, A.W. Structure of the MacAB-TolC ABC-type tripartite multidrug efflux pump. Nat. Microbiol., 2017, 2, 17070.
[http://dx.doi.org/10.1038/nmicrobiol.2017.70]
[83]
Lu, S.; Zgurskaya, H.I.J.J.o.b. MacA, a periplasmic membrane fusion protein of the macrolide transporter MacAB-TolC, binds lipopoly-saccharide core specifically and with high affinity. J. Bacteriol., 2013, 195(21), 4865-4872.
[http://dx.doi.org/10.1128/JB.00756-13]
[84]
Shi, K. Efflux proteins MacAB confer resistance to arsenite and penicillin/macrolide-type antibiotics in Agrobacterium tumefaciens 5A. World J. Microbiol. Biotechnol., 2019, 35(8), 115.
[85]
Du, D. Structure, mechanism and cooperation of bacterial multidrug transporters. Curr. Opin. Struct. Biol., 2015, 33, 76-91.
[http://dx.doi.org/10.1016/j.sbi.2015.07.015]
[86]
Lu, M.J.C. Structures of multidrug and toxic compound extrusion transporters and their mechanistic implications. Channels, 2016, 10(2), 88-100.
[http://dx.doi.org/10.1080/19336950.2015.1106654]
[87]
Kuroda, T.; Tsuchiya, T.J. Multidrug efflux transporters in the MATE family. Biochim. Biophys. Acta, 2009, 1794(5), 763-768.
[88]
Guelfo, J.R. MATE-Family Efflux Pump Rescues the Escherichia coli 8-Oxoguanine-Repair-Deficient Mutator Phenotype and Protects Against H2O2 Killing PLoS Genet., 2010, 6(5), e1000931.
[89]
Tocci, N. Functional analysis of pneumococcal drug efflux pumps associates the MATE DinF transporter with quinolone susceptibility. Antimicrob. Agents Chemother., 2013, 57(1), 248-253.
[http://dx.doi.org/10.1128/AAC.01298-12]
[90]
Bley, C.; van der Linden, M.; Reinert, R.R. mef(A) is the predominant macrolide resistance determinant in Streptococcus pneumoniae and Streptococcus pyogenes in Germany. Int. J. Antimicrob. Agents, 2011, 37(5), 425-431.
[91]
Nunez-Samudio, V.; Chesneau, O.J. Functional interplay between the ATP binding cassette Msr(D) protein and the membrane facilitator superfamily Mef(E) transporter for macrolide resistance in Escherichia coli. Res. Microbiol., 2013, 164(3), 226-235.
[92]
Pasqua, M. Host-Bacterial pathogen communication: The wily role of the multidrug efflux pumps of the MFS family. Front. Mol. Biosci., 2021, 8, 723274.
[http://dx.doi.org/10.3389/fmolb.2021.723274]
[93]
Routh, M.D.; Zalucki, Y.; Su, C.C.; Long, F.; Zhang, Q.; Shafer, W.M.; Yu, E.W. Efflux pumps of the resistance-nodulation-division fami-ly: A perspective of their structure, function, and regulation in gram-negative bacteria. Adv. Enzymol. Relat. Areas Mol. Biol., 2011, 77, 109-146.
[http://dx.doi.org/10.1002/9780470920541.ch3] [PMID: 21692368]
[94]
Puzari, M.; Chetia, P. RND efflux pump mediated antibiotic resistance in Gram-negative bacteria Escherichia coli and Pseudomonas aeru-ginosa: A major issue worldwide. World J. Microbiol. Biotechnol., 2017, 33(2), 24.
[http://dx.doi.org/10.1007/s11274-016-2190-5] [PMID: 28044273]
[95]
Zwama, M.; Nishino, K.J.A. Ever-adapting RND efflux pumps in gram-negative multidrug-resistant pathogens: A race against time. Antibiotics, 2021, 10(7), 774.
[http://dx.doi.org/10.3390/antibiotics10070774]
[96]
Bay, D.C.; Rommens, K.L.; Turner, R.J.J.B.B.A-B. Small multidrug resistance proteins: A multidrug transporter family that continues to grow. Biochim. Biophys. Acta, 2008, 1778(9), 1814-1838.
[http://dx.doi.org/10.1016/j.bbamem.2007.08.015]
[97]
Bay, D.C.; Turner, R.J.J.B.e.b. Diversity and evolution of the small multidrug resistance protein family. BMC Evol. Biol., 2009, 9, 140.
[http://dx.doi.org/10.1186/1471-2148-9-140]
[98]
Buffet-Bataillon, S. Efflux pump induction by quaternary ammonium compounds and fluoroquinolone resistance in bacteria. Future Microbiol., 2016, 11(1), 81-92.
[http://dx.doi.org/10.2217/fmb.15.131]
[99]
Bolla, J.R. Assembly and regulation of the chlorhexidine-specific efflux pump AceI. Biophy. Comput. Biol., 2020, 117(29), 17011-17018.
[http://dx.doi.org/10.1073/pnas.2003271117]
[100]
Hassan, K.A. An ace up their sleeve: a transcriptomic approach exposes the AceI efflux protein of Acinetobacter baumannii and reveals the drug efflux potential hidden in many microbial pathogens. Front. Microbiol., 2015, 6, 333.
[http://dx.doi.org/10.3389/fmicb.2015.00333]
[101]
Coenye, T. Molecular mechanisms of chlorhexidine tolerance in Burkholderia cenocepacia biofilms. Antimicrob. Agents Chemother., 2011, 55(5), 1912-1919.
[http://dx.doi.org/10.1128/AAC.01571-10]
[102]
Nde, C.W. Global transcriptomic response of Pseudomonas aeruginosa to chlorhexidine diacetate. Environ. Sci. Technol., 2009, 43(21), 8406-8415.
[http://dx.doi.org/10.1021/es9015475]
[103]
Parisi, O.I. Polymeric nanoparticle constructs as devices for antibacterial therapy. Curr. Opin. Pharmacol., 2017, 36, 72-77.
[http://dx.doi.org/10.1016/j.coph.2017.08.004]
[104]
Patra, J.K. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol., 2018, 16, 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8]
[105]
Lombardo, D.; Kiselev, M.A.; Caccamo, M.T.J.J.n. Smart nanoparticles for drug delivery application: development of versatile nanocar-rier platforms in biotechnology and nanomedicine. J. Nanomat., 2019, 2019, 26.
[http://dx.doi.org/10.1155/2019/3702518]
[106]
Abed, N.; Couvreur, P. Nanocarriers for antibiotics: A promising solution to treat intracellular bacterial infections. Int. J. Antimicrob. Agents, 2014, 43(6), 485-496.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.02.009] [PMID: 24721232]
[107]
Dacoba, T.G.; Olivera, A.; Torres, D.; Crecente-Campo, J.; Alonso, M.J. Modulating the immune system through nanotechnology. Semin. Immunol., 2017, 34, 78-102.
[http://dx.doi.org/10.1016/j.smim.2017.09.007] [PMID: 29032891]
[108]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobi-otechnol., 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[109]
Gustafson, H.H.; Holt-Casper, D.; Grainger, D.W.; Ghandehari, H. Nanoparticle uptake: The phagocyte problem. Nano Today, 2015, 10(4), 487-510.
[http://dx.doi.org/10.1016/j.nantod.2015.06.006] [PMID: 26640510]
[110]
Vallet-Regí, M.; González, B.; Izquierdo-Barba, I. Nanomaterials as Promising Alternative in the Infection Treatment. Int. J. Mol. Sci., 2019, 20(15), 3806.
[http://dx.doi.org/10.3390/ijms20153806] [PMID: 31382674]
[111]
Baptista, P.V.; McCusker, M.P.; Carvalho, A.; Ferreira, D.A.; Mohan, N.M.; Martins, M.; Fernandes, A.R. Nano-Strategies to Fight Multidrug Resistant Bacteria—“A Battle of the Titans”. Front. Microbiol., 2018, 9, 1441.
[http://dx.doi.org/10.3389/fmicb.2018.01441] [PMID: 30013539]
[112]
Ashik, U.; Kudo, S.; Hayashi, J-J.S.I.N. An overview of metal oxide nanostructures. Micro Nano Technol., 2018, 2018, 19-57.
[http://dx.doi.org/10.1016/B978-0-08-101975-7.00002-6]
[113]
Kurmi, B.D.; Paliwal, S.R. Development and optimization of TPGS-based stealth liposome of doxorubicin using Box–Behnken design: Characterization, hemocompatibility, and cytotoxicity evaluation in breast cancer cells. J. Liposome Res., 2022, 32(2), 129-145.
[http://dx.doi.org/10.1080/08982104.2021.1903034] [PMID: 33724151]
[114]
Kurmi, B.D.; Paliwal, R.; Paliwal, S.R. Dual cancer targeting using estrogen functionalized chitosan nanoparticles loaded with doxorubicin-estrone conjugate: A quality by design approach. Int. J. Biol. Macromol., 2020, 164, 2881-2894.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.172] [PMID: 32853621]
[115]
Al-Sayadi, G.M.H. Solid lipid nanoparticles (slns): Advancements in modification strategies toward drug delivery vehicle. Pharm. Nanotechnol., 2022.
[PMID: 36305142]
[116]
Bhatia, T.; Gupta, G.D.; Kurmi, B.D.; Singh, D. Role of solid lipid nanoparticle for the delivery of lipophilic drugs and herbal medicines in the treatment of pulmonary hypertension. Pharm. Nanotechnol., 2022.
[PMID: 36045536]
[117]
Wyszogrodzka, G.; Marszałek, B.; Gil, B.; Dorożyński, P. Metal-organic frameworks: Mechanisms of antibacterial action and potential applications. Drug Discov. Today, 2016, 21(6), 1009-1018.
[http://dx.doi.org/10.1016/j.drudis.2016.04.009] [PMID: 27091434]
[118]
Kurmi, B.D.; Gajbhiye, V.; Kayat, J.; Jain, N.K. Lactoferrin-conjugated dendritic nanoconstructs for lung targeting of methotrexate. J. Pharm. Sci., 2011, 100(6), 2311-2320.
[http://dx.doi.org/10.1002/jps.22469] [PMID: 21491447]
[119]
Imran, M.; Jha, S.K.; Hasan, N.; Insaf, A.; Shrestha, J.; Shrestha, J.; Devkota, H.P.; Khan, S.; Panth, N.; Warkiani, M.E.; Dua, K.; Hansbro, P.M.; Paudel, K.R.; Mohammed, Y. Overcoming multidrug resistance of antibiotics via nanodelivery systems. Pharmaceutics, 2022, 14(3), 586.
[http://dx.doi.org/10.3390/pharmaceutics14030586] [PMID: 35335962]
[120]
Pandey, R.P. Potential of nanoparticles encapsulated drugs for possible inhibition of the antimicrobial resistance development. Biomed. Pharmacother., 2021, 141, 111943.
[http://dx.doi.org/10.1016/j.biopha.2021.111943]
[121]
Tekchandani, P.; Kurmi, B.D.; Paliwal, R.; Paliwal, S.R. Galactosylated TPGS micelles for docetaxel targeting to hepatic carcinoma: Devel-opment, characterization, and biodistribution study. AAPS PharmSciTech, 2020, 21(5), 174.
[http://dx.doi.org/10.1208/s12249-020-01690-4] [PMID: 32548786]
[122]
Pandey, R.P.; Mukherjee, R.; Priyadarshini, A.; Gupta, A.; Vibhuti, A.; Leal, E.; Sengupta, U.; Katoch, V.M.; Sharma, P.; Moore, C.E.; Raj, V.S.; Lyu, X. Potential of nanoparticles encapsulated drugs for possible inhibition of the antimicrobial resistance development. Biomed. Pharmacother., 2021, 141, 111943.
[http://dx.doi.org/10.1016/j.biopha.2021.111943] [PMID: 34328105]
[123]
Clancy, J.P.; Dupont, L.; Konstan, M.W.; Billings, J.; Fustik, S.; Goss, C.H.; Lymp, J.; Minic, P.; Quittner, A.L.; Rubenstein, R.C.; Young, K.R.; Saiman, L.; Burns, J.L.; Govan, J.R.W.; Ramsey, B.; Gupta, R. Phase II studies of nebulised Arikace in CF patients with Pseudomo-nas aeruginosa infection. Thorax, 2013, 68(9), 818-825.
[http://dx.doi.org/10.1136/thoraxjnl-2012-202230] [PMID: 23749840]
[124]
Pignatello, R. Fusogenic liposomes as new carriers to enlarge the spectrum of action of antibiotic drugs against Gram-negative bacteria. Front. Pharmacol., 2011, 10, 1401.
[125]
Zhao, W.; Zhuang, S.; Qi, X.R. Comparative study of the in vitro and in vivo characteristics of cationic and neutral liposomes. Int. J. Na-nomed., 2011, 6, 3087-3098.
[PMID: 22163162]
[126]
Niu, N.K.; Yin, J.J.; Yang, Y.X.; Wang, Z.L.; Zhou, Z.W.; He, Z.X.; Chen, X.W.; Zhang, X.; Duan, W.; Yang, T.; Zhou, S.F. Novel targeting of PEGylated liposomes for codelivery of TGF-β1 siRNA and four antitubercular drugs to human macrophages for the treatment of my-cobacterial infection: A quantitative proteomic study. Drug Des. Devel. Ther., 2015, 9, 4441-4470.
[PMID: 26300629]
[127]
Plautz, G.E.; Yang, Z.Y.; Wu, B.Y.; Gao, X.; Huang, L.; Nabel, G.J. Immunotherapy of malignancy by in vivo gene transfer into tumors. Proc. Natl. Acad. Sci. USA, 1993, 90(10), 4645-4649.
[http://dx.doi.org/10.1073/pnas.90.10.4645] [PMID: 8506311]
[128]
Goss, C.H.; Kaneko, Y.; Khuu, L.; Anderson, G.D.; Ravishankar, S.; Aitken, M.L.; Lechtzin, N.; Zhou, G.; Czyz, D.M.; McLean, K.; Olakanmi, O.; Shuman, H.A.; Teresi, M.; Wilhelm, E.; Caldwell, E.; Salipante, S.J.; Hornick, D.B.; Siehnel, R.J.; Becker, L.; Britigan, B.E.; Singh, P.K. Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections. Sci. Transl. Med., 2018, 10(460), eaat7520.
[http://dx.doi.org/10.1126/scitranslmed.aat7520] [PMID: 30257953]
[129]
Liu, X-M. Preparation and Evaluation of Biomineral-Binding Antibiotic Liposomes.Liposome-Based Drug Delivery Systems; Lu, W-L.; Qi, X-R; Heidelberg, S.B., Ed.; Berlin, Heidelberg, 2021, pp. 277-292.
[http://dx.doi.org/10.1007/978-3-662-49320-5_17]
[130]
Sood, U.; Singh, D.N.; Hira, P.; Lee, J.K.; Kalia, V.C.; Lal, R.; Shakarad, M. Rapid and solitary production of mono-rhamnolipid biosur-factant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1. J. Biotechnol., 2020, 307, 98-106.
[http://dx.doi.org/10.1016/j.jbiotec.2019.11.004] [PMID: 31705932]
[131]
Li, P.; Chen, X.; Shen, Y.; Li, H.; Zou, Y.; Yuan, G.; Hu, P.; Hu, H. Mucus penetration enhanced lipid polymer nanoparticles improve the eradication rate of Helicobacter pylori biofilm. J. Control. Release, 2019, 300, 52-63.
[http://dx.doi.org/10.1016/j.jconrel.2019.02.039] [PMID: 30825476]
[132]
Sung, Y.K.; Kim, S.W. Recent advances in polymeric drug delivery systems. Biomater. Res., 2020, 24(1), 12.
[http://dx.doi.org/10.1186/s40824-020-00190-7] [PMID: 32537239]
[133]
Strassburg, S.; Mayer, K.; Scheibel, T.J.P.S.R. Functionalization of biopolymer fibers with magnetic nanoparticles. Phy. Sci. Rev., 2020, 7(10), 1091-1117.
[134]
Kumar, H.; Bhardwaj, K.; Nepovimova, E.; Kuča, K.; Singh Dhanjal, D.; Bhardwaj, S.; Bhatia, S.K.; Verma, R.; Kumar, D. Antioxidant functionalized nanoparticles: A combat against oxidative stress. Nanomaterials (Basel), 2020, 10(7), 1334.
[http://dx.doi.org/10.3390/nano10071334] [PMID: 32650608]
[135]
Kasithevar, M.; Periakaruppan, P.; Muthupandian, S.; Mohan, M. Antibacterial efficacy of silver nanoparticles against multi-drug resistant clinical isolates from post-surgical wound infections. Microb. Pathog., 2017, 107, 327-334.
[http://dx.doi.org/10.1016/j.micpath.2017.04.013] [PMID: 28411059]
[136]
Pati, R.; Mehta, R.K.; Mohanty, S.; Padhi, A.; Sengupta, M.; Vaseeharan, B.; Goswami, C.; Sonawane, A. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine, 2014, 10(6), 1195-1208.
[http://dx.doi.org/10.1016/j.nano.2014.02.012] [PMID: 24607937]
[137]
Martin-Serrano, Á.; Gómez, R.; Ortega, P.; de la Mata, F.J. Nanosystems as vehicles for the delivery of antimicrobial peptides (AMPs). Pharmaceutics, 2019, 11(9), 448.
[http://dx.doi.org/10.3390/pharmaceutics11090448] [PMID: 31480680]
[138]
Martínez-Carmona, M.; Gun’ko, Y.; Vallet-Regí, M. Mesoporous silica materials as drug delivery: “The nightmare” of bacterial infection. Pharmaceutics, 2018, 10(4), 279.
[http://dx.doi.org/10.3390/pharmaceutics10040279] [PMID: 30558308]
[139]
Flores-González, M.; Talavera-Rojas, M.; Soriano-Vargas, E.; Rodríguez-González, V. Practical mediated-assembly synthesis of silver nanowires using commercial Camellia sinensis extracts and their antibacterial properties. New J. Chem., 2018, 42(3), 2133-2139.
[http://dx.doi.org/10.1039/C7NJ03812G]
[140]
Madubuonu, N.; Aisida, S.O.; Ali, A.; Ahmad, I.; Zhao, T.; Botha, S.; Maaza, M.; Ezema, F.I. Biosynthesis of iron oxide nanoparticles via a composite of Psidium guavaja-Moringa oleifera and their antibacterial and photocatalytic study. J. Photochem. Photobiol. B, 2019, 199, 111601.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111601] [PMID: 31470270]
[141]
Petros, R.A.; DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov., 2010, 9(8), 615-627.
[http://dx.doi.org/10.1038/nrd2591] [PMID: 20616808]