[4]
World Health, O., The evolving threat of antimicrobial resistance: options for action; World Health Organization: Geneva, 2012.
[14]
Frieden, T.J.C.D.C.P. Antibiotic resistance threats in the United States; Centers for Disease Control and Prevention: U.S.A, 2013.
[23]
Harmoosh, A. Detection of efflux pumps genes in clinical isolates of Acinetobacter baumannii. Res. J. Pharm. Technol., 2017, 10(12), 4231-4236.
[24]
Thomas, C.; Frost, L.J.M.L.S. Plasmid Genomes, Introduction to.Molecular Life Sciences; Springer: New York, NY, 2014.
[25]
Etebu, E.; Arikekpar, I. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. Int. J. Appl. Mi-crobiol. Biotechnol. Res., 2016, 4, 90-101.
[27]
Ng, H.F. Selection and characterization of a tigecycline-resistant mutant of Mycobacterium abscessus to identify possible resistance determi-nants; UTAR, 2019.
[28]
Fuh, H.N. Mechanisms of antibiotics resistance in bacteria., 2020. PhD Thesis, UTAR.
[43]
Ashurst, J.V.; Dawson, A. Klebsiella PneumoniaStatPearls, 2022.
[64]
Falagas, M.E. Antimicrobial susceptibility of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Enterobacteriaceae isolates to fosfomycin. Int. J. Antimicrob. Agents, 2010, 35(3), 240-243.
[66]
Castanheira, M. Meropenem-vaborbactam tested against contemporary gram-negative isolates collected worldwide during 2014, including carbapenem-resistant, kpc-producing, multidrug-resistant, and extensively drug-resistant enterobacteriaceae. Antimicrob. Agents Chemother., 2017, 61(9), e00567.
[84]
Shi, K. Efflux proteins MacAB confer resistance to arsenite and penicillin/macrolide-type antibiotics in Agrobacterium tumefaciens 5A. World J. Microbiol. Biotechnol., 2019, 35(8), 115.
[87]
Kuroda, T.; Tsuchiya, T.J. Multidrug efflux transporters in the MATE family. Biochim. Biophys. Acta, 2009, 1794(5), 763-768.
[88]
Guelfo, J.R. MATE-Family Efflux Pump Rescues the Escherichia coli 8-Oxoguanine-Repair-Deficient Mutator Phenotype and Protects Against H2O2 Killing PLoS Genet., 2010, 6(5), e1000931.
[90]
Bley, C.; van der Linden, M.; Reinert, R.R. mef(A) is the predominant macrolide resistance determinant in Streptococcus pneumoniae and Streptococcus pyogenes in Germany. Int. J. Antimicrob. Agents, 2011, 37(5), 425-431.
[91]
Nunez-Samudio, V.; Chesneau, O.J. Functional interplay between the ATP binding cassette Msr(D) protein and the membrane facilitator superfamily Mef(E) transporter for macrolide resistance in Escherichia coli. Res. Microbiol., 2013, 164(3), 226-235.
[124]
Pignatello, R. Fusogenic liposomes as new carriers to enlarge the spectrum of action of antibiotic drugs against Gram-negative bacteria. Front. Pharmacol., 2011, 10, 1401.
[133]
Strassburg, S.; Mayer, K.; Scheibel, T.J.P.S.R. Functionalization of biopolymer fibers with magnetic nanoparticles. Phy. Sci. Rev., 2020, 7(10), 1091-1117.