Synthesis, Characterization, Acute Dermal Toxicity, Anti-inflammatory, and Wound Healing Potential of Biogenic Silver Nanoparticles in Balb C Mice

Page: [1452 - 1465] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Aim: The current study aimed to develop an economic plant-based therapeutic agent to improve the treatment strategies for diseases at the nano-scale.

Methods: In the current research, silver nanoparticles were synthesized using Trillium govanianum aqueous extract. Characterizations were done using UV–visible spectrophotometer, X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. In vivo biological activities such as acute dermal toxicity, wound healing, and anti-inflammatory were done on Balb C mice. Absorbance at 295 nm corresponds to the out-of-plane quadrupole Plasmonresonance while at 350 nm corresponds to in-plane dipole resonance. SEM images showed the morphology of TGAgNPs is not exactly spherical while XRD analysis shows that highly crystalline TGAgNPs with an average size of 27.94 nm. The FTIR spectrum represents sharp peaks of aldehyde, amide I, aromatic rings, and polysaccharides. The microscopic assessment did not find any epidermal and dermal layer abnormalities in Blab C mice when exposed to TGAgNPs during acute dermal toxicity.

Results & Discussion: Results revealed that 1000 mg/kg is not a lethal dose. In the wound healing activity, no mortality and no abnormal signs were observed when petroleum jelly, nitrofuranose, TGaqu, and TGAgNPs-based ointments were applied. Enhanced epithelization was recorded in TGaqu and TGAgNPs treated mice (p≤0.001). The wound contraction percentage was higher in nitrofuranose-treated mice (74%) followed by TGAgNPs (71%), and TGaqu (69%) compared to vehicle-treated and open-wounded mice. The paw edema model proved the potential use of TGAgNPs and TGaqu as anti-inflammatory agents.

Conclusion: Hence, the results proved that both TGaqu and TGAgNPs are not toxic and possessed strong anti-inflammatory and wound-healing effects due to the presence of phytochemical constituents and could be used in various drug production as a therapeutic agent.

Graphical Abstract

[1]
Kulkarni, N.; Muddapur, U. Biosynthesis of metal nanoparticles, a review. J. Nanotechnol., 2014, 2014(510246), 1-8.
[http://dx.doi.org/10.1155/2014/510246]
[2]
Pandey, S.; Oza, G.; Mewada, A.; Sharon, M. Green synthesis of highly stable gold nanoparticles using, Momordica charantia as nano fabricator. Arch. Appl. Sci. Res., 2012, 4(2), 1135-1141.
[3]
Giannossa, L.C.; Longano, D.; Ditaranto, N.; Nitti, M.A.; Paladini, F.; Pollini, M.; Rai, M.; Sannino, A.; Valentini, A.; Cioffi, N. Metal nanoantimicrobials for textile applications. Nanotechnol. Rev., 2013, 2(3), 307-331.
[http://dx.doi.org/10.1515/ntrev-2013-0004]
[4]
Prasad, R.G.S.V.; Basavaraju, D.; Rao, K.N.; Naveen, C.S.; Endrino, J.; Phani, A.R. Nanostructured TiO2 and TiO2–Ag antimicrobial thin films (NSTSI). International Conference on Nanoscience, Technology and Societal Implications, 08-10 December 2011Bhubaneswar, India2011, pp. 1-6.
[5]
Shankar, S.; Jaiswal, L.; Aparna, R.S.L.; Prasad, R.G.V.; Kumar, G.P.; Manohara, C.M. Wound healing potential of green synthesized silver nanoparticles prepared from Lansium domesticum fruit peel extract. Mater. Express, 2015, 5(2), 159-164.
[http://dx.doi.org/10.1166/mex.2015.1225]
[6]
Tian, J.; Wong, K.K.Y.; Ho, C.M.; Lok, C.N.; Yu, W.Y.; Che, C.M.; Chiu, J.F.; Tam, P.K.H. Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem, 2007, 2(1), 129-136.
[http://dx.doi.org/10.1002/cmdc.200600171] [PMID: 17075952]
[7]
Garg, S.; Chandra, A.; Mazumder, A.; Mazumder, R. Green synthesis of silver nanoparticles using Arnebia nobilis root extract and wound healing potential of its hydrogel. AJPP, 2014, 8(2), 95.
[8]
Arunachalam, K.D.; Annamalai, S.K.; Arunachalam, A.M.; Kennedy, S. Green synthesis of crystalline silver nanoparticles using Indigofera aspalathoides-medicinal plant extract for wound healing applications. Asian J. Chem., 2013, 25, 311-314.
[9]
Shanmugasundaram, R.; Kalpana Devi, V.; Tresina Soris, P.; Maruthupandian, A. Antidiabetic, antihyperlipidaemic and antioxidant activity of Senna auriculata (L.) Roxb. Leaves in alloxan induced diabetic rats. Int. J. Pharm. Tech. Res., 2011, 3, 747-756.
[10]
Kumaran, N.S.; Vijayaraj, R. Biosynthesis of silver nano particles from Leucas aspera (willd.) link and its anti-inflammatory potential against carrageen induced paw edema in rats. IJPSR, 2017, 8, 2588-2593.
[11]
El-Rafie, H.M.; Hamed, M.A. Antioxidant and anti-inflammatory activities of silver nanoparticles biosynthesized from aqueous leaves extracts of four terminalia species. ANSN, 2014, 5(3), 035008.
[12]
David, L.; Moldovan, B.; Vulcu, A.; Olenic, L.; Perde-Schrepler, M.; Fischer-Fodor, E.; Florea, A.; Crisan, M.; Chiorean, I.; Clichici, S.; Filip, G.A. Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract. Colloids Surf. B Biointerfaces, 2014, 122, 767-777.
[http://dx.doi.org/10.1016/j.colsurfb.2014.08.018] [PMID: 25174985]
[13]
Vijayaraj, R.; Vijayaraj, K.; Kumar, N.; Mani, P.; Senthil, J.; Kumar, G.D.; Jayaseelan, T. Green synthesis of silver nanoparticles from ethanolic seed extract of Acranythes aspera (linn.) and its anti-inflammatory activities. Int. J.P&T., 2016, 7(1), 42-48.
[14]
Umapathy, E.; Ndebia, E.J.; Meeme, A.; Adam, B. An experimental evaluation of Albuca setosa aqueous extract on membrane stabilization, protein denaturation and white blood cell migration during acute inflammation. J. Med. Plants Res., 2010, 4(9), 789-795.
[15]
Khedir, B.S.; Mzid, M.; Bardaa, S.; Moalla, D.; Sahnoun, Z.; Rebai, T. In vivo evaluation of the anti-inflammatory effect of pistacia lentiscus fruit oil and its effects on oxidative stress. Evid. Based Complement. Alternat. Med., 2016, 2016, 6108203.
[16]
Shanmugasundaram, T.; Radhakrishnan, M.; Gopikrishnan, V.; Kadirvelu, K.; Balagurunathan, R. Biocompatible silver, gold and silver/gold alloy nanoparticles for enhanced cancer therapy: In vitro and in vivo perspectives. Nanoscale, 2017, 9(43), 16773-16790.
[http://dx.doi.org/10.1039/C7NR04979J] [PMID: 29072767]
[17]
Mahmood, A.; Mahmood, A.; Malik, R.N.; Shinwari, Z.K. Indigenous knowledge of medicinal plants from Gujranwala district, Pakistan. J. Ethnopharmacol., 2013, 148(2), 714-723.
[http://dx.doi.org/10.1016/j.jep.2013.05.035] [PMID: 23707336]
[18]
Khan, S.M.; Page, S.; Ahmad, H.; Shaheen, H.; Ullah, Z.; Ahmad, M.; Harper, D.M. Medicinal flora and ethnoecological knowledge in the Naran valley, Western Himalaya, Pakistan. J. Ethnobiol. Ethnomed., 2013, 9(1), 4.
[http://dx.doi.org/10.1186/1746-4269-9-4] [PMID: 23302393]
[19]
Rojas, J.J.; Ochoa, V.J.; Ocampo, S.A.; Muñoz, J.F. Screening for antimicrobial activity of ten medicinal plants used in colombian folkloric medicine, a possible alternative in the treatment of non-nosocomial infections. BMC Complement. Altern. Med., 2006, 6, 2.
[http://dx.doi.org/10.1186/1472-6882-6-2]
[20]
Mukerjee, T.; Bhalla, N.; Singh, G.; Aulakh, H.C. Herbal drugs for urinary stones. Literature Appraisal Indian Drugs, 1984, 21(6), 224-228.
[21]
Sofowora, A. Medicinal plants and traditional medicine in africa; Spectrum Books: Ibadan, 1993, p. 150.
[22]
Harborne, J.B. Phytochemical methods-A guide to modern techniques of plant analysis; Chapman and Hall: London, 1984, pp. 4-16.
[23]
Iyengar, M.A. Study of drugs; Manipal Power Press: Manipal, India, 1995, p. 2.
[24]
Trease, G.; Evans, S.M. Pharmacognosy; Bailer Tindal: London, 2002, pp. 23-67.
[25]
Wagner, H.; Bladt, S. Plant drug analysis-A thin layer chromatography atlas; Thompson Press Ltd: New Delhi, 2004.
[26]
Bhawani, S.; Ibrahim, M.N.M.; Sulaiman, O.; Hashim, R. Thin-layer chromatography of amino acids: A review. J.Liq. Chromato. Rel.Tech, 2012, 35(11), 1497-1516.
[http://dx.doi.org/10.1080/10826076.2011.619039]
[27]
Moore, J.; Yin, J.J.; Yu, L.L. Novel fluorometric assay for hydroxyl radical scavenging capacity (HOSC) estimation. J. Agric. Food Chem., 2006, 54(3), 617-626.
[http://dx.doi.org/10.1021/jf052555p] [PMID: 16448158]
[28]
Shah, N.A.; Khan, M.R.; Ahmad, B.; Noureen, F.; Rashid, U.; Khan, R.A. Investigation on flavonoid composition and anti free radical potential of Sida cordata. BMC Complement. Altern. Med., 2013, 13(1), 276-288.
[http://dx.doi.org/10.1186/1472-6882-13-276] [PMID: 24148097]
[29]
Sari, L.M.; Suyatna, F.D.; Subita, G.P.; Auerkar, E.I. Acute dermal toxicity study of Areca catechu Linn. Extract in sprague-dawley rats. Asian J. Pharm. Clin. Res., 2016, 9(9), 209.
[http://dx.doi.org/10.22159/ajpcr.2016.v9s3.14462]
[30]
British pharmacopoeia. In: Department of Health and Social Security Scottish Home and Health Department; Office of the British Pharmacopoeia Commission.: UK, 1988; 2, p. 713.
[31]
Sadeghi, H.; Zarezade, V.; Sadeghi, H.; Akbartabar Toori, M.; Jafari Barmak, M.; Azizi, A.; Ghavamizadeh, M.; Mostafazadeh, M. Anti-inflammatory Activity of Stachys Pilifera Benth. Iran. Red Crescent Med. J., 2014, 16(9), e19259.
[http://dx.doi.org/10.5812/ircmj.19259] [PMID: 25593730]
[32]
Sasidharan, S.; Logeswaran, S.; Latha, L.Y. Wound healing activity of Elaeis guineensis leaf extract ointment. Int. J. Mol. Sci., 2011, 13(1), 336-347.
[http://dx.doi.org/10.3390/ijms13010336] [PMID: 22312255]
[33]
Armour, D.F.E.; Blood, F.R.; Belden, D.A. In the manual of laboratory work in mammalian physiology; The University of Chicago Press: Liilious, Chicago, 1965, pp. 4-6.
[34]
Amresh, G.; Reddy, G.D.; Rao, C.V.; Singh, P.N. Evaluation of anti-inflammatory activity of Cissampelos pareira root in rats. J. Ethnopharmacol., 2007, 110(3), 526-531.
[http://dx.doi.org/10.1016/j.jep.2006.10.009] [PMID: 17097249]
[35]
King, J. The hydrolases acid and alkaline phosphatase. In: Practical Clinical Enzymology; Van, D., Ed.; Kerstin Company Ltd: London, 1965; p. 191-208.
[36]
Gulzar, N.; Saiqa, A.; Shaukat, A.; Sadia, N.; Tariq, I.; Muhammad, A.R.K.; Abida, R. Screening of antibacterial, anti-biofilm, cell proliferation inhibition, and synergistic effects of biogenic synthesized silver nanostructures using Trillium govanianum with antibiotics. J. Chem. Soc. Pak., 2020, 42(1), 120-133.
[37]
Sahadevan, R.; Sivakumar, P.; Karthika, P. Biosynthesis of silver nanoparticles from active compounds quacetin –3-o-b-d-galactopyranoside containing plant extract and its antifungal application. AJPCR, 2013, 6, 76-79.
[38]
Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. Green nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Nat., 2014, 6(1), 35-44.
[http://dx.doi.org/10.32607/20758251-2014-6-1-35-44] [PMID: 24772325]
[39]
Ahmad, N.; Sharma, S.; Alam, M.K.; Singh, V.N.; Shamsi, S.F.; Mehta, B.R.; Fatma, A. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf. B Biointerfaces, 2010, 81(1), 81-86.
[http://dx.doi.org/10.1016/j.colsurfb.2010.06.029] [PMID: 20656463]
[40]
Paudel, A. Phytochemical and biological screening of rhododendron campanulatum; Nepal Tribhuvan University, 2005.
[41]
Iqbal, T.; Mukhtar, M.; Khan, M.A.; Khan, R.; Zaman, R.; Mahmood, H.; Zaka-ul-Islam, M. Atmospheric pressure microplasma assisted growth of silver nanosheets and their inhibitory action against bacteria of clinical interest. Mater. Res. Express, 2016, 3(12), 125019.
[http://dx.doi.org/10.1088/2053-1591/3/12/125019]
[42]
Vanaja, M.; Annadurai, G. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl. Nanosci., 2013, 3(3), 217-223.
[http://dx.doi.org/10.1007/s13204-012-0121-9]
[43]
Raju, D.; Paneliya, N.; Mehta, U.J. Extracellular synthesis of silver nanoparticles using living peanut seedling. Appl. Nanosci., 2014, 4(7), 875-879.
[http://dx.doi.org/10.1007/s13204-013-0269-y]
[44]
Roy, K.; Sarkar, C.K.; Ghosh, C.K. Plant-mediated synthesis of silver nanoparticles using parsley (Petroselinum crispum) leaf extract: Spectral analysis of the particles and antibacterial study. Appl. Nanosci., 2014, 8, 945-951.
[45]
Bose, D.; Chatterjee, S. Antibacterial activity of green synthesized silver nanoparticles using vasaka (Justicia adhatoda L.) leaf extract. Indian J. Microbiol., 2015, 55(2), 163-167.
[http://dx.doi.org/10.1007/s12088-015-0512-1] [PMID: 25805902]
[46]
Song, J.Y.; Jang, H.K.; Kim, B.S. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem., 2009, 44(10), 1133-1138.
[http://dx.doi.org/10.1016/j.procbio.2009.06.005]
[47]
Susanto, H.; Feng, Y.; Ulbricht, M. Fouling behavior of aqueous solutions of polyphenolic compounds during ultrafiltration. J. Food Eng., 2009, 91(2), 333-340.
[http://dx.doi.org/10.1016/j.jfoodeng.2008.09.011]
[48]
Kanatt, S.R.; Chander, R.; Sharma, A. Antioxidant potential of mint (Mentha spicata l.) in radiation-processed lamb meat. Food Chem., 2007, 100(2), 451-458.
[http://dx.doi.org/10.1016/j.foodchem.2005.09.066]
[49]
Kharat, S.N.; Mendhulkar, V.D. Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Mater. Sci. Eng. C, 2016, 62, 719-724.
[http://dx.doi.org/10.1016/j.msec.2016.02.024] [PMID: 26952477]
[50]
Graßmann, J. Terpenoids as plant antioxidants. Vitam. Horm., 2005, 72, 505-535.
[http://dx.doi.org/10.1016/S0083-6729(05)72015-X] [PMID: 16492481]
[51]
Subramoniam, A.; Subhisha, S. Antifungal activities of a steroid from Ppallavicinia lyellii, a liverwort. Indian J. Pharmacol., 2005, 37(5), 304-308.
[http://dx.doi.org/10.4103/0253-7613.16854]
[52]
Pereira, J.A.; Oliveira, I.; Sousa, A.; Valentão, P.; Andrade, P.B.; Ferreira, I.C.F.R.; Ferreres, F.; Bento, A.; Seabra, R.; Estevinho, L. Walnut (Juglans regia L.) leaves: Phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food Chem. Toxicol., 2007, 45(11), 2287-2295.
[http://dx.doi.org/10.1016/j.fct.2007.06.004] [PMID: 17637491]
[53]
Oliveira, I.; Sousa, A.; Ferreira, I.C.F.R.; Bento, A.; Estevinho, L.; Pereira, J.A. Total phenols, antioxidant potential and antimicrobial activity of walnut (Juglans regia L.) green husks. Food Chem. Toxicol., 2008, 46(7), 2326-2331.
[http://dx.doi.org/10.1016/j.fct.2008.03.017] [PMID: 18448225]
[54]
Liu, X.P.; Luan, J.J.; Goldring, C.E. Comparison of the antioxidant activity amongst Gingko biloba extract and its main components. Zhong Yao Cai, 2009, 32(5), 736-740.
[PMID: 19771849]
[55]
Sengul, M.; Yildiz, H.; Gungor, N.; Cetin, B.; Eser, Z.; Ercisli, S. Total phenolic content, antioxidant and antimicrobial activities of some medicinal plants. Pak. J. Pharm. Sci., 2009, 22(1), 102-106.
[PMID: 19168430]
[56]
Biapa, P-C.; Agbor, G.A.; Oben, J.E.; Ngogang, J.Y. Phytochemical studies and antioxidant properties of four medicinal plants used in cameroon. Afr. J. Tradit. Complement. Altern. Med., 2008, 4(4), 495-500.
[http://dx.doi.org/10.4314/ajtcam.v4i4.31243] [PMID: 20161918]
[57]
Stebounova, L.V.; Adamcakova-Dodd, A.; Kim, J.S.; Park, H.; O’Shaughnessy, P.T.; Grassian, V.H.; Thorne, P.S. Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part. Fibre Toxicol., 2011, 8(1), 5.
[http://dx.doi.org/10.1186/1743-8977-8-5] [PMID: 21266073]
[58]
Kim, Y.S.; Song, M.Y.; Park, J.D.; Song, K.S.; Ryu, H.R.; Chung, Y.H.; Chang, H.K.; Lee, J.H.; Oh, K.H.; Kelman, B.J.; Hwang, I.K.; Yu, I.J. Subchronic oral toxicity of silver nanoparticles. Part. Fibre Toxicol., 2010, 7(1), 20.
[http://dx.doi.org/10.1186/1743-8977-7-20] [PMID: 20691052]
[59]
Benn, T.; Cavanagh, B.; Hristovski, K.; Posner, J.D.; Westerhoff, P. The release of nanosilver from consumer products used in the home. J. Environ. Qual., 2010, 39(6), 1875-1882.
[http://dx.doi.org/10.2134/jeq2009.0363] [PMID: 21284285]
[60]
Chen, K.L.; Elimelech, M. Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir, 2006, 22(26), 10994-11001.
[http://dx.doi.org/10.1021/la062072v] [PMID: 17154576]
[61]
Korani, M.; Rezayat, S.M.; Arbabi Bidgoli, S. Sub-chronic dermal toxicity of silver nanoparticles in guinea pig: Special emphasis to heart, bone and kidney toxicities. Iran. J. Pharm. Res., 2013, 12(3), 511-519.
[PMID: 24250657]
[62]
Oberdörster, G.; Maynard, A.; Donaldson, K.; Castranova, V.; Fitzpatrick, J.; Ausman, K.; Carter, J.; Karn, B.; Kreyling, W.; Lai, D.; Olin, S. Monteiro, Riviere; Warheit, D.; Yang, H. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part. Fibre Toxicol., 2005, 2(8), 35.
[63]
Paddle-Ledinek, J.E.; Nasa, Z.; Cleland, H.J. Effect of different wound dressings on cell viability and proliferation. Plast. Reconstr. Surg., 2006, 117(7), 110S-118S.
[http://dx.doi.org/10.1097/01.prs.0000225439.39352.ce] [PMID: 16799377]
[64]
Arora, S.; Jain, J.; Rajwade, J.M.; Paknikar, K.M. Cellular responses induced by silver nanoparticles: In vitro studies. Toxicol. Lett., 2008, 179(2), 93-100.
[http://dx.doi.org/10.1016/j.toxlet.2008.04.009] [PMID: 18508209]
[65]
Kumar, B.; Vijayakumar, M.; Govindarajan, R.; Pushpangadan, P. Ethno pharmacological approaches to wound healing-exploring medicinal plants of India. J. Ethnopharmacol., 2007, 1-114(2), 103-113.
[66]
Mulisa, E.; Asres, K.; Engidawork, E. Evaluation of wound healing and anti-inflammatory activity of the rhizomes of rumex abyssinicus J. (Polygonaceae) in mice. BMC Complement. Altern. Med., 2015, 15(1), 341.
[http://dx.doi.org/10.1186/s12906-015-0878-y] [PMID: 26423525]
[67]
Qu, J.; Zhao, X.; Liang, Y.; Zhang, T.; Ma, P.X.; Guo, B. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials, 2018, 183, 185-199.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.044] [PMID: 30172244]
[68]
Deldar, Y.; Pilehvar-Soltanahmadi, Y.; Dadashpour, M.; Montazer Saheb, S.; Rahmati-Yamchi, M.; Zarghami, N. An in vitro examination of the antioxidant, cytoprotective and anti-inflammatory properties of chrysin-loaded nanofibrous mats for potential wound healing applications. Artif. Cells Nanomed. Biotechnol., 2018, 46(4), 706-716.
[http://dx.doi.org/10.1080/21691401.2017.1337022] [PMID: 28595461]
[69]
Zhao, W.; Qiu, M.; Ma, C.; Gong, P.; Liu, Y.; Yan, M.; Shao, S.; Zhao, D. Promote healing and anti-inflammatory and anti-bacterial activities of jinjianling cream. J. Pharmacol.and Therap. Res., 2018, 2(1)
[http://dx.doi.org/10.35841/pharmacology.2.1.17-23]
[70]
Liu, X.; Zhang, F.; Zhang, S.; He, X.; Fang, R.; Feng, Z.; Wang, Y.J. Effects of nano-ferric oxide on the growth and nutrients absorption of peanut. Plant Nutr. Fertil. Sci, 2010, 11, 14-18.
[71]
Nam, G.; Purushothaman, B.; Rangasamy, S.; Song, J.M. Investigating the versatility of multifunctional silver nanoparticles: Preparation and inspection of their potential as wound treatment agents. Int. Nano Lett., 2016, 6(1), 51-63.
[http://dx.doi.org/10.1007/s40089-015-0168-1]
[72]
Hebeish, A.; El-Rafie, M.H. EL-Sheikh, M.A.; Seleem, A.A.; El-Naggar, M.E. Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int. J. Biol. Macromol., 2014, 65, 509-515.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.01.071] [PMID: 24530328]
[73]
Orlowski, P.; Zmigrodzka, M.; Tomaszewska, E.; Ranoszek-soliwoda, K.; Czupryn, M; Antos-bielska, M.; Szemraj, J.; Celichowski, G.; Grobelny, J.; Krzyzowska, M. Tannic acid-modified silver nanoparticles for wound healing: The importance of size. Int. J. Nanomed., 2018, 991-1007.
[74]
Naraginti, S.; Kumari, P.L.; Das, R.K.; Sivakumar, A.; Patil, S.H.; Andhalkar, V.V. Amelioration of excision wounds by topical application of green synthesized, formulated silver and gold nanoparticles in albino wistar rats. Mater. Sci. Eng. C, 2016, 62, 293-300.
[http://dx.doi.org/10.1016/j.msec.2016.01.069] [PMID: 26952426]
[75]
Medzhitov, R. Inflammation 2010: New adventures of an old flame. Cell, 2010, 140(6), 771-776.
[http://dx.doi.org/10.1016/j.cell.2010.03.006] [PMID: 20303867]
[76]
Soehnlein, O.; Lindbom, L. Phagocyte partnership during the onset and resolution of inflammation. Nat. Rev. Immunol., 2010, 10(6), 427-439.
[http://dx.doi.org/10.1038/nri2779] [PMID: 20498669]
[77]
Alexander, M.; O’Connell, R.M. Noncoding RNAs and chronic inflammation: Micro-managing the fire within. BioEssays, 2015, 37(9), 1005-1015.
[http://dx.doi.org/10.1002/bies.201500054] [PMID: 26249326]
[78]
Das, R.K.; Gogoi, N.; Babu, P.J.; Sharma, P.; Mahanta, C.; Bora, U. The synthesis of gold nanoparticles using <i>amaranthus spinosus</i> leaf extract and study of their optical properties. Adv Mat. Phy. Chem., 2012, 2(4), 275-281.
[http://dx.doi.org/10.4236/ampc.2012.24040]
[79]
Elinav, E.; Nowarski, R.; Thaiss, C.A.; Hu, B.; Jin, C.; Flavell, R.A. Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer, 2013, 13(11), 759-771.
[http://dx.doi.org/10.1038/nrc3611] [PMID: 24154716]
[80]
Moldovan, B.; David, L.; Vulcu, A.; Olenic, L.; Perde-Schrepler, M.; Fischer-Fodor, E.; Baldea, I.; Clichici, S.; Filip, G.A. In vitro and in vivo anti-inflammatory properties of green synthesized silver nanoparticles using Viburnum opulus L. fruits extract. Mater. Sci. Eng. C, 2017, 79, 720-727.
[http://dx.doi.org/10.1016/j.msec.2017.05.122] [PMID: 28629073]
[81]
Agarwal, H.; Nakara, A.; Shanmugam, V.K. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomed. Pharmacother., 2019, 109, 2561-2572.
[http://dx.doi.org/10.1016/j.biopha.2018.11.116] [PMID: 30551516]
[82]
Oudghiri, M.; Azza, Z. In vivo anti-inflammatory and antiarthritic activities of aqueous extracts from Thymelaea hirsuta. Pharmacognosy Res., 2015, 7(2), 213-216.
[http://dx.doi.org/10.4103/0974-8490.150510] [PMID: 25829798]
[83]
John, A.A.N.; Shobana, G. Anti-inflammatory activity of Talinum fruticosum L. on formalin induced paw edema in albino rat. J. Appl. Pharm. Sci., 2012, 02(01), 123-127.
[84]
Sridharan, S.; Venkatramani, M.; Janakiraman, K.; Pemiah, B.; Chinnagounder, S.K. Anti-inflammatory screening of ethanolic leaf extract of Vernonia arborea Buch. –Ham.in formalin induced albino wistar rats. Indian J Pharma Educ Res, 2016, 50, 638-648.
[85]
Agnel, A.J.N.; Shobana, G. Anti-inflammatory activity of Talinum fruticosum L. on formalin induced paw edema in albino rats. J. Appl. Pharm. Sci., 2012, 2(1), 123-127.
[86]
Goel, A.; Boland, C.R.; Chauhan, D.P. Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett., 2001, 172(2), 111-118.
[http://dx.doi.org/10.1016/S0304-3835(01)00655-3] [PMID: 11566484]
[87]
Yazdanparast, R.; Bahramikia, S.; Ardestani, A. Nasturtium officinale reduces oxidative stress and enhances antioxidant capacity in hypercholesterolaemic rats. Chem. Biol. Interact., 2008, 172(3), 176-184.
[http://dx.doi.org/10.1016/j.cbi.2008.01.006] [PMID: 18325487]
[88]
Savita, R.; Rana, J.C.; Rana, P.K. Ethno medicinal plants of chamba district, himachal pradesh, india. J. Med. Plants Res., 2013, 7, 3147-3157.
[89]
Jeyaraj, M.; Rajesh, M.; Arun, R. MubarakAli, D.; Sathishkumar, G.; Sivanandhan, G.; Dev, G.K.; Manickavasagam, M.; Premkumar, K.; Thajuddin, N.; Ganapathi, A. An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloids Surf. B Biointerfaces, 2013, 102(102), 708-717.
[http://dx.doi.org/10.1016/j.colsurfb.2012.09.042]
[90]
Ying, S.; Guan, Z.; Ofoegbu, P.C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green synthesis of nanoparticles: Current developments and limitations. Environ. Tech. Innov., 2022, 26, 102336.
[http://dx.doi.org/10.1016/j.eti.2022.102336]
[91]
Perveen, R.; Shujaat, S.; Qureshi, Z.; Nawaz, S.; Khan, M.I.; Iqbal, M. Green versus sol-gel synthesis of ZnO nanoparticles and antimicrobial activity evaluation against panel of pathogens. J. Mater. Res. Technol., 2020, 9(4), 7817-7827.
[http://dx.doi.org/10.1016/j.jmrt.2020.05.004]