Design, Synthesis, and Antiproliferative Activity of Quinazolin-4-One/Chalcone Hybrids via the EGFR Inhibition Pathway

Page: [1932 - 1943] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Quinazolinone scaffolds have drawn international attention due to their potent anticancer activity and therapeutic applications. Furthermore, Chalcone and Oxime are special chemical templates with a wide range of biological activities, including anti-cancer activity. As a result, the purpose of this research is to synthesize and develop a new series of 2-thioxo-3-substituted quinazolin-4-one/chalcone analogues and 2-thioxo-3-substituted quinazolin-4-one/oximes analogues in order to obtain a new cytotoxic agent that can target epidermal growth factor (EGFR) and/or V-Raf Murine Sarcoma Viral Oncogene Homolog B (BRAFV600E) oncogene.

Objective: All synthesised compounds were tested for anticancer activity against four human cancer cell lines. The new hybrids' potential anti-cancer mechanism was evaluated using EGFR and BRAF enzymatic tests. The most active molecules within the target enzyme's active site were studied using molecular docking. Apoptosis and cell cycle analysis were also investigated.

Methods: The target compounds 7a-j (series I) are obtained in high yields by alkylation of 2-mercapto-3-ethyl-(3H)- quinazolin-4-one 3a with acylated chalcones 6a-j. Alkylation of compounds 3b-c with N-(4-acetylphenyl)-2- bromoacetamide 8, the corresponding ketones intermediates 9b-c was produced in high yields. Compounds 7a-j, 9b-c, and 10b-c were tested for their antiproliferative activity against four human cancer cell lines using the MTT assay and doxorubicin as a control drug. The EGFR and BRAF assay tests were used to assess the inhibitory potency against EGFR and BRAF.

Results: Compounds 7c, 7d, 7f and 10c exhibited high proliferative activity and inhibited EGFR, which could serve as a potential target for antiproliferative activity. The most active hybrid, 7c, primarily caused cell cycle arrest in G0/G1 phase and S phase as well as cell apoptosis. Finally, the most active hybrids were docked well to the EGFR active site.

Conclusion: 2-thioxo-3-substituted quinazolin-4-one/chalcone derivatives have significant apoptotic and antiproliferative properties.

Graphical Abstract

[1]
Goffin, J.R.; Zbuk, K. Epidermal growth factor receptor: Pathway, therapies, and pipeline. Clin. Ther., 2013, 35(9), 1282-1303.
[http://dx.doi.org/10.1016/j.clinthera.2013.08.007] [PMID: 24054705]
[2]
Nadeem, A.M.; Kausar, S.; Wang, F.; Zhao, Y.; Cui, H. Advances in targeting the epidermal growth factor receptor pathway by synthetic products and its regulation by epigenetic modulators as a therapy for glioblastoma. Cells, 2019, 8(4), 350.
[http://dx.doi.org/10.3390/cells8040350] [PMID: 31013819]
[3]
Tebbutt, N.; Pedersen, M.W.; Johns, T.G. Targeting the ERBB family in cancer: Couples therapy. Nat. Rev. Cancer, 2013, 13(9), 663-673.
[http://dx.doi.org/10.1038/nrc3559] [PMID: 23949426]
[4]
Bhatia, P.; Sharma, V.; Alam, O.; Manaithiya, A.; Alam, P. Kahksha; Alam, M.T.; Imran, M. Novel quinazoline-based EGFR kinase inhibitors: A review focussing on SAR and molecular docking studies (2015-2019). Eur. J. Med. Chem., 2020, 204, 112640.
[http://dx.doi.org/10.1016/j.ejmech.2020.112640] [PMID: 32739648]
[5]
Mok, T.S.; Wu, Y.L.; Thongprasert, S.; Yang, C.H.; Chu, D.T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; Nishiwaki, Y.; Ohe, Y.; Yang, J.J.; Chewaskulyong, B.; Jiang, H.; Duffield, E.L.; Watkins, C.L.; Armour, A.A.; Fukuoka, M. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med., 2009, 361(10), 947-957.
[http://dx.doi.org/10.1056/NEJMoa0810699] [PMID: 19692680]
[6]
Bonola, G.; Da Re, P.; Magistretti, M.J.; Massarani, E.; Setnikar, I. 1-Aminoacyl-2,3-dihydro-4(1H)-quinazolinone derivatives with choleretic and antifibrillatory activity. J. Med. Chem., 1968, 11(6), 1136-1139.
[http://dx.doi.org/10.1021/jm00312a007] [PMID: 5680025]
[7]
Okumura, K.; Oine, T.; Yamada, Y.; Hayashi, G.; Nakama, M. 4-Oxo-1,2,3,4-tetrahydroquinazolines. I. Syntheses and pharmacological properties of 2-methyl-3-aryl-4-oxo-1,2,3,4-tetrahydroquinazolines and their 1-acyl derivatives. J. Med. Chem., 1968, 11(2), 348-352.
[http://dx.doi.org/10.1021/jm00308a036] [PMID: 4385706]
[8]
Osarumwense, O.P. Synthesis and antibacterial activity of 3-amino- 6-iodo-2-methyl quinazolin 4-(3H)-one and 6-iodo-2-methyl-4Hbenzo [D] [1, 3] oxazin-4-one. WJARR, 2019, 2(3), 014-020.
[http://dx.doi.org/10.30574/wjarr.2019.2.3.0041]
[9]
Dempcy, R.O.; Skibo, E.B. Rational design of quinazoline-based irreversible inhibitors of human erythrocyte purine nucleoside phosphorylase. Biochemistry, 1991, 30(34), 8480-8487.
[http://dx.doi.org/10.1021/bi00098a028] [PMID: 1909177]
[10]
Grover, G.; Kini, S.G. Synthesis and evaluation of new quinazolone derivatives of nalidixic acid as potential antibacterial and antifungal agents. Eur. J. Med. Chem., 2006, 41(2), 256-262.
[http://dx.doi.org/10.1016/j.ejmech.2005.09.002] [PMID: 16260068]
[11]
Pandey, V.; Misra, D.; Shukla, A. Synthesis and antiviral activity of 2-aryl-5-[3′-(2′-methyl-6: 8 substituted-quinazolyl)-phenyl]-pyrazoles. Indian Drugs-Bombay, 1994, 31, 532.
[12]
Shah, B.R.; Bhatt, J.J.; Patel, H.H.; Undavia, N.K.; Trivedi, P.B.; Desai, N.C. ChemInform abstract: Synthesis of 2,3-disubstituted-3,1-quinazolin-4(4H)-ones as potential anticancer and anti-HIV agents. ChemInform, 2010, 26(25)
[http://dx.doi.org/10.1002/chin.199525163]
[13]
Patel, N.; Lilakar, J. Synthesis of new substituted-4 (3H)-quinazolinones and their antibacterial activity. Indian J. Heterocycl. Chem., 2001, 11(1), 85-86.
[14]
Hisham, M.; Hassan, H.A.; Gomaa, H.A.M.; Youssif, B.G.M.; Hayallah, A.M.; Abdel-Aziz, M. Structure-based design, synthesis and antiproliferative action of new quinazoline-4-one/chalcone hybrids as EGFR inhibitors. J. Mol. Struct., 2022, 1254, 132422.
[http://dx.doi.org/10.1016/j.molstruc.2022.132422]
[15]
Wang, G.; Liu, W.; Gong, Z.; Huang, Y.; Li, Y.; Peng, Z. Synthesis, biological evaluation, and molecular modelling of new naphthalene-chalcone derivatives as potential anticancer agents on MCF-7 breast cancer cells by targeting tubulin colchicine binding site. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 139-144.
[http://dx.doi.org/10.1080/14756366.2019.1690479] [PMID: 31724435]
[16]
Madhavi, S.; Sreenivasulu, R.; Yazala, J.P.; Raju, R.R. Synthesis of chalcone incorporated quinazoline derivatives as anticancer agents. Saudi Pharm. J., 2017, 25(2), 275-279.
[http://dx.doi.org/10.1016/j.jsps.2016.06.005] [PMID: 28344479]
[17]
Rashid ur, H.; Xu, Y.; Ahmad, N.; Muhammad, Y.; Wang, L. Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. Bioorg. Chem., 2019, 87, 335-365.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.033] [PMID: 30921740]
[18]
Abdellatif, K.R.A.; Elshemy, H.A.H.; Salama, S.A.; Omar, H.A. Synthesis, characterization and biological evaluation of novel 4′-fluoro-2′-hydroxy-chalcone derivatives as antioxidant, anti-inflammatory and analgesic agents. J. Enzyme Inhib. Med. Chem., 2015, 30(3), 484-491.
[http://dx.doi.org/10.3109/14756366.2014.949255] [PMID: 25198887]
[19]
Wang, J.; Huang, L.; Cheng, C.; Li, G.; Xie, J.; Shen, M.; Chen, Q.; Li, W.; He, W.; Qiu, P.; Wu, J. Design, synthesis and biological evaluation of chalcone analogues with novel dual antioxidant mechanisms as potential anti-ischemic stroke agents. Acta Pharm. Sin. B, 2019, 9(2), 335-350.
[http://dx.doi.org/10.1016/j.apsb.2019.01.003] [PMID: 30972281]
[20]
Dan, W.; Dai, J. Recent developments of chalcones as potential antibacterial agents in medicinal chemistry. Eur. J. Med. Chem., 2020, 187111980.
[http://dx.doi.org/10.1016/j.ejmech.2019.111980] [PMID: 31877539]
[21]
Burmaoglu, S.; Algul, O.; Gobek, A.; Aktas, A.D.; Ulger, M.; Erturk, B.G.; Kaplan, E.; Dogen, A.; Aslan, G. Design of potent fluoro-substituted chalcones as antimicrobial agents. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 490-495.
[http://dx.doi.org/10.1080/14756366.2016.1265517] [PMID: 28118738]
[22]
Anandam, R.; Jadav, S.S.; Ala, V.B.; Ahsan, M.J.; Bollikolla, H.B. Synthesis of new C-dimethylated chalcones as potent antitubercular agents. Med. Chem. Res., 2018, 27(6), 1690-1704.
[http://dx.doi.org/10.1007/s00044-018-2183-z]
[23]
Al-Hazam, H.A.; Al-Shamkani, Z.A.; Al-Masoudi, N.A.; Saeed, B.A.; Pannecouque, C. New chalcones and thiopyrimidine analogues derived from mefenamic acid: microwave-assisted synthesis, anti-HIV activity and cytotoxicity as antileukemic agents. Z. Naturforsch. B. J. Chem. Sci., 2017, 72(4), 249-256.
[http://dx.doi.org/10.1515/znb-2016-0223]
[24]
Cole, A.L.; Hossain, S.; Cole, A.M.; Phanstiel, O.I.V. Synthesis and bioevaluation of substituted chalcones, coumaranones and other fla-vonoids as anti-HIV agents. Bioorg. Med. Chem., 2016, 24(12), 2768-2776.
[http://dx.doi.org/10.1016/j.bmc.2016.04.045] [PMID: 27161874]
[25]
Al-Anazi, M.; Al-Najjar, B.; Khairuddean, M. Structure-based drug design studies toward the discovery of novel chalcone derivatives as potential epidermal growth factor receptor (EGFR) inhibitors. Molecules, 2018, 23(12), 3203.
[http://dx.doi.org/10.3390/molecules23123203] [PMID: 30563058]
[26]
Rizvi, S.U.F.; Siddiqui, H.L.; Nisar, M.; Khan, N.; Khan, I. Discovery and molecular docking of quinolyl-thienyl chalcones as anti-angiogenic agents targeting VEGFR-2 tyrosine kinase. Bioorg. Med. Chem. Lett., 2012, 22(2), 942-944.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.017] [PMID: 22200597]
[27]
Li, Q.S.; Li, C.Y.; Lu, X.; Zhang, H.; Zhu, H.L. Design, synthesis and biological evaluation of novel (E)-α-benzylsulfonyl chalcone derivatives as potential BRAF inhibitors. Eur. J. Med. Chem., 2012, 50, 288-295.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.007] [PMID: 22361686]
[28]
Dantas, B.; Ribeiro, T.; Assis, V.; Furtado, F.; Assis, K.; Alves, J.; Silva, T.; Camara, C.; França-Silva, M.; Veras, R.; Medeiros, I.; Alencar, J.; Braga, V. Vasorelaxation induced by a new naphthoquinone-oxime is mediated by NO-sGC-cGMP pathway. Molecules, 2014, 19(7), 9773-9785.
[http://dx.doi.org/10.3390/molecules19079773] [PMID: 25006785]
[29]
Abdel-Aziz, M.; Abuo-Rahma, G.E.D.A.A.; Beshr, E.A.M.; Ali, T.F.S. New nitric oxide donating 1,2,4-triazole/oxime hybrids: Synthesis, investigation of anti-inflammatory, ulceroginic liability and antiproliferative activities. Bioorg. Med. Chem., 2013, 21(13), 3839-3849.
[http://dx.doi.org/10.1016/j.bmc.2013.04.022] [PMID: 23665142]
[30]
Hisham, M.; Youssif, B.G.M.; Osman, E.E.A.; Hayallah, A.M.; Abdel-Aziz, M. Synthesis and biological evaluation of novel xanthine derivatives as potential apoptotic antitumor agents. Eur. J. Med. Chem., 2019, 176, 117-128.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.015] [PMID: 31108261]
[31]
Moriya, R.; Uehara, T.; Nomura, Y. Mechanism of nitric oxide-induced apoptosis in human neuroblastoma SH-SY5Y cells. FEBS Lett., 2000, 484(3), 253-260.
[http://dx.doi.org/10.1016/S0014-5793(00)02167-0] [PMID: 11078888]
[32]
Brown, G.C.; Borutaite, V. Nitric oxide, mitochondria, and cell death. IUBMB Life, 2001, 52(3-5), 189-195.
[http://dx.doi.org/10.1080/15216540152845993] [PMID: 11798032]
[33]
Shin, H. Synthesis and evaluation of ornithine decarboxylase inhibitors with oxime moiety and MCF-7 breast cancer cells. Biochem. Pharmacol., 2013, 2(01), 2167-0501.
[http://dx.doi.org/10.4172/2167-0501.1000111]
[34]
Al-Rashood, S.T.; Aboldahab, I.A.; Nagi, M.N.; Abouzeid, L.A.; Abdel-Aziz, A.A.M.; Abdel-hamide, S.G.; Youssef, K.M.; Al-Obaid, A.M.; El-Subbagh, H.I. Synthesis, dihydrofolate reductase inhibition, antitumor testing, and molecular modeling study of some new 4(3H)-quinazolinone analogs. Bioorg. Med. Chem., 2006, 14(24), 8608-8621.
[http://dx.doi.org/10.1016/j.bmc.2006.08.030] [PMID: 16971132]
[35]
Monirah, A.; Danah, A.; Fatima, E. Synthesis of some-2-thioxo-3-substituted-2, 3-dihydro-1H-quinazolin-4-one derivatives as potential antibacterial and antifungal agents. Res. J. Chem. Environ., 2013, 17, 48-52.
[36]
Abou-Zied, H.A.; Youssif, B.G.M.; Mohamed, M.F.A.; Hayallah, A.M.; Abdel-Aziz, M. EGFR inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and docking studies of novel xanthine derivatives carrying chalcone moiety as hybrid molecules. Bioorg. Chem., 2019, 89102997.
[http://dx.doi.org/10.1016/j.bioorg.2019.102997] [PMID: 31136902]
[37]
Abuo-Rahma, G.E.D.A.A.; Abdel-Aziz, M.; Beshr, E.A.M.; Ali, T.F.S. 1,2,4-Triazole/oxime hybrids as new strategy for nitric oxide donors: Synthesis, anti-inflammatory, ulceroginicity and antiproliferative activities. Eur. J. Med. Chem., 2014, 71, 185-198.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.006] [PMID: 24308998]
[38]
Mahdy, H.A.; Ibrahim, M.K.; Metwaly, A.M.; Belal, A.; Mehany, A.B.M.; El-Gamal, K.M.A.; El-Sharkawy, A.; Elhendawy, M.A.; Radwan, M.M.; Elsohly, M.A.; Eissa, I.H. Design, synthesis, molecular modeling, in vivo studies and anticancer evaluation of quinazolin-4(3H)-one derivatives as potential VEGFR-2 inhibitors and apoptosis inducers. Bioorg. Chem., 2020, 94, 103422.
[http://dx.doi.org/10.1016/j.bioorg.2019.103422] [PMID: 31812261]
[39]
Abdelrahman, M.H.; Aboraia, A.S.; Youssif, B.G.M.; Elsadek, B.E.M. Design, synthesis and pharmacophoric model building of new 3-alkoxymethyl/3-phenyl indole-2-carboxamides with potential antiproliferative activity. Chem. Biol. Drug Des., 2017, 90(1), 64-82.
[http://dx.doi.org/10.1111/cbdd.12928] [PMID: 28019082]
[40]
Mohamed, F.A.M.; Gomaa, H.A.M.; Hendawy, O.M.; Ali, A.T.; Farghaly, H.S.; Gouda, A.M.; Abdelazeem, A.H.; Abdelrahman, M.H.; Trembleau, L.; Youssif, B.G.M. Design, synthesis, and biological evaluation of novel EGFR inhibitors containing 5-chloro-3-hydroxymethyl-indole-2-carboxamide scaffold with apoptotic antiproliferative activity. Bioorg. Chem., 2021, 112, 104960.
[http://dx.doi.org/10.1016/j.bioorg.2021.104960] [PMID: 34020242]
[41]
Cohen, G.M. Caspases: The executioners of apoptosis. Biochem. J., 1997, 326(Pt 1), 1-16.
[http://dx.doi.org/10.1042/bj3260001]
[42]
Youssif, B.G.M.; Abdelrahman, M.H.; Abdelazeem, A.H.; Abdelgawad, M.A.; Ibrahim, H.M.; Salem, O.I.A.; Mohamed, M.F.A.; Tream-bleau, L.; Bukhari, S.N.A. Design, synthesis, mechanistic and histopathological studies of small-molecules of novel indole-2-carboxamides and pyrazino[1,2-a]indol-1(2H)-ones as potential anticancer agents effecting the reactive oxygen species production. Eur. J. Med. Chem., 2018, 146, 260-273.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.042] [PMID: 29407956]
[43]
Abdelazeem, A.H.; El-Saadi, M.T.; Said, E.G.; Youssif, B.G.M.; Omar, H.A.; El-Moghazy, S.M. Novel diphenylthiazole derivatives with multi-target mechanism: Synthesis, docking study, anticancer and anti-inflammatory activities. Bioorg. Chem., 2017, 75, 127-138.
[http://dx.doi.org/10.1016/j.bioorg.2017.09.009] [PMID: 28938224]
[44]
Sun, M.; Behrens, C.; Feng, L.; Ozburn, N.; Tang, X.; Yin, G.; Komaki, R.; Varella-Garcia, M.; Hong, W.K.; Aldape, K.D.; Wistuba, I.I. HER family receptor abnormalities in lung cancer brain metastases and corresponding primary tumors. Clin. Cancer Res., 2009, 15(15), 4829-4837.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2921] [PMID: 19622585]
[45]
Urich, R.; Wishart, G.; Kiczun, M.; Richters, A.; Tidten-Luksch, N.; Rauh, D.; Sherborne, B.; Wyatt, P.G.; Brenk, R. De novo design of protein kinase inhibitors by in silico identification of hinge region-binding fragments. ACS Chem. Biol., 2013, 8(5), 1044-1052.
[http://dx.doi.org/10.1021/cb300729y] [PMID: 23534475]
[46]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[47]
Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods, 2000, 44(1), 235-249.
[http://dx.doi.org/10.1016/S1056-8719(00)00107-6] [PMID: 11274893]
[48]
Veber, D.F.; Johnson, S.R.; Cheng, H-Y.; Smith, B.R.; Ward, K.W. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[49]
Tsaioun, K.; Bottlaender, M.; Mabondzo, A. ADDME-avoiding drug development mistakes early: Central nervous system drug discovery perspective. BMC Neurol., 2009, 9(S1), S1.
[http://dx.doi.org/10.1186/1471-2377-9-S1-S1]
[50]
Mustafa, M.; Mostafa, Y.A. A facile synthesis, drug-likeness, and in silico molecular docking of certain new azidosulfonamide–chalcones and their in vitro antimicrobial activity. Chemical Monthly, 2020, 151(3), 417-427.
[http://dx.doi.org/10.1007/s00706-020-02568-8]