Current Understanding of Dried Spots Platform for Blood Proteomics

Page: [81 - 90] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Dry Blood Spots (DBS) have been used in combination with liquid chromatography-mass spectrometry for targeted proteomics to identify sensitive and specific novel biomarkers. DBS presents several advantages over other traditional blood sampling methods. This review discusses the past, present and future of the technology, focusing on studies with clinical and population relevance. Arguments for and against DBS are presented by discussing technological advances, particularly those related to Mass Spectrometry (MS) and Multiple Reaction Monitoring (MRM), sample preparation issues, disease biomarkers, pharmacokinetics, and pharmacodynamics. There will be a focus on proteomic studies that rely on DBS as a sampling method. In this context, numerous studies on the diagnosis and treatment of several diseases. To date, proteomic reports of studies using DBS have shown that DBS can facilitate diagnosis and prognosis. DBS offers several advantages that make it a viable option for many fields. Moreover, some of its disadvantages can be easily overcome through automation to increase reproducibility and reduce protocol variability and standardization of parameters such as the volume of sample used. Within this context, here we propose to review the advantages and disadvantages of using DBS for blood proteomics and provide an understanding of how current DBS-based protocols are being conducted for future standardization and protocol optimization.

Graphical Abstract

[1]
(a) Déglon, J.; Thomas, A.; Mangin, P.; Staub, C. Direct analysis of dried blood spots coupled with mass spectrometry: Concepts and biomedical applications. Anal. Bioanal. Chem., 2012, 402(8), 2485-2498.
[http://dx.doi.org/10.1007/s00216-011-5161-6] [PMID: 21706235];
(b) Scriver, C.R. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants, by Robert Guthrie and Ada Susi, Pediatrics, 1963;32:318-343. Pediatrics, 1998, 102(1 Pt 2)(1), 236-237.
[http://dx.doi.org/10.1542/peds.102.S1.236] [PMID: 9651440]
[2]
(a) Sander, J.; Niehaus, C. Deutsche medizinische Wochenschrift (1946). 1980, 105(23), 827-829.;
(b) Farzadegan, H.; Noori, K.H.; Ala, F. Detection of hepatitis-B surface antigen in blood and blood products dried on filter paper. Lancet, 1978, 311(8060), 362-363.
[http://dx.doi.org/10.1016/S0140-6736(78)91085-1] [PMID: 75399]
[3]
George, R.S.; Moat, S.J. Effect of dried blood spot quality on newborn screening analyte concentrations and recommendations for minimum acceptance criteria for sample analysis. Clin. Chem., 2016, 62(3), 466-475.
[http://dx.doi.org/10.1373/clinchem.2015.247668] [PMID: 26647314]
[4]
Choi, E.H.; Lee, S.K.; Ihm, C.; Sohn, Y.H. Rapid DNA extraction from dried blood spots on filter paper: Potential applications in biobanking. Osong Public Health Res. Perspect., 2014, 5(6), 351-357.
[http://dx.doi.org/10.1016/j.phrp.2014.09.005] [PMID: 25562044]
[5]
Lim, M.D. Dried blood spots for global health diagnostics and surveillance: Opportunities and challenges. Am. J. Trop. Med. Hyg., 2018, 99(2), 256-265.
[http://dx.doi.org/10.4269/ajtmh.17-0889] [PMID: 29968557]
[6]
Crimmins, E.M.; Zhang, Y.S.; Kim, J.K. Dried blood spots: Effects of less than optimal collection, shipping time, heat, and humidity. Am. J. Hum. Biol., 2020, 35(5), e23390.
[7]
Martin, N.J.; Cooper, H.J. Challenges and opportunities in mass spectrometric analysis of proteins from dried blood spots. Expert Rev. Proteomics, 2014, 11(6), 685-695.
[http://dx.doi.org/10.1586/14789450.2014.965158] [PMID: 25308552]
[8]
(a) Nageswara Rao, R. Emerging liquid chromatography–mass spectrometry technologies improving dried blood spot analysis. Expert Rev. Proteomics, 2014, 11(4), 425-430.
[http://dx.doi.org/10.1586/14789450.2014.904204] [PMID: 24697571];
(b) Gaissmaier, T.; Siebenhaar, M.; Todorova, V.; Hüllen, V.; Hopf, C. Therapeutic drug monitoring in dried blood spots using liquid microjunction surface sampling and high resolution mass spectrometry. Analyst, 2016, 141(3), 892-901.
[http://dx.doi.org/10.1039/C5AN02302E]
[9]
(a) Xie, F.; De Thaye, E.; Vermeulen, A.; Van Bocxlaer, J.; Colin, P. A dried blood spot assay for paclitaxel and its metabolites. J. Pharm. Biomed. Anal., 2018, 148, 307-315.
[http://dx.doi.org/10.1016/j.jpba.2017.10.007] [PMID: 29078175];
(b) Zhao, J.; Sharat, C.; Mehta, P.A.; Mizuno, K.; Vinks, A.A.; Setchell, K.D.R. Paperspray ionization mass spectrometry as a tool for predicting real-time optimized dosing of the chemotherapeutic drug melphalan. J. Appl. Lab. Med., 2021, 6(3), 625-636.
[http://dx.doi.org/10.1093/jalm/jfaa237] [PMID: 33582807]
[10]
(a) Martial, L.C.; Kerkhoff, J.; Martinez, N.; Rodríguez, M.; Coronel, R.; Molinas, G.; Roman, M.; Gomez, R.; Aguirre, S.; Jongedijk, E.; Huisman, J.; Touw, D.J.; Pérez, D.; Chaparro, G.; Gonzalez, F.; Aarnoutse, R.E.; Alffenaar, J.W.; Magis-Escurra, C. Evaluation of dried blood spot sampling for pharmacokinetic research and therapeutic drug monitoring of anti-tuberculosis drugs in children. Int. J. Antimicrob. Agents, 2018, 52(1), 109-113.
[http://dx.doi.org/10.1016/j.ijantimicag.2018.04.020] [PMID: 29751121];
(b) Dodin, Y.I.; Suyagh, M.F.; Saleh, M.I.; Nuseir, Z.T.; Aburuz, S.M.; Al-Qudah, A.A.; Masri, A.T.; Younes, A.M.; Al-Ghazawi, M.A. Population pharmacokinetics modeling of lamotrigine in jordanian epileptic patients using dried blood spot sampling. Drug Res., 2021, 71(8), 429-437.
[http://dx.doi.org/10.1055/a-1524-0913]
[11]
Lange, T.; Thomas, A.; Walpurgis, K.; Thevis, M. Fully automated dried blood spot sample preparation enables the detection of lower molecular mass peptide and non-peptide doping agents by means of LC-HRMS. Anal. Bioanal. Chem., 2020, 412(15), 3765-3777.
[http://dx.doi.org/10.1007/s00216-020-02634-4] [PMID: 32300840]
[12]
deWilde, A.; Sadilkova, K.; Sadilek, M.; Vasta, V.; Hahn, S.H. Tryptic peptide analysis of ceruloplasmin in dried blood spots using liquid chromatography-tandem mass spectrometry: Application to newborn screening. Clin. Chem., 2008, 54(12), 1961-1968.
[http://dx.doi.org/10.1373/clinchem.2008.111989] [PMID: 18845768]
[13]
Eshghi, A.; Pistawka, A.J.; Liu, J.; Chen, M.; Sinclair, N.J.T.; Hardie, D.B.; Elliott, M.; Chen, L.; Newman, R.; Mohammed, Y.; Borchers, C.H. Concentration determination of >200 proteins in dried blood spots for biomarker discovery and validation. Mol. Cell. Proteomics, 2020, 19(3), 540-553.
[http://dx.doi.org/10.1074/mcp.TIR119.001820] [PMID: 31896676]
[14]
Hewawasam, E.; Liu, G.; Jeffery, D.W.; Gibson, R.A.; Muhlhausler, B.S. Estimation of the volume of blood in a small disc punched from a dried blood spot card. Eur. J. Lipid Sci. Technol., 2018, 120(3), 1700362.
[http://dx.doi.org/10.1002/ejlt.201700362]
[15]
(a) Francke, M.I.; van Domburg, B.; van de Velde, D.; Hesselink, D.A.; de Winter, B.C.M. The use of freeze-dried blood samples affects the results of a dried blood spot analysis. Clin. Biochem., 2022, 104, 70-73.
[http://dx.doi.org/10.1016/j.clinbiochem.2022.03.007] [PMID: 35346637];
(b) Carpentieri, D.; Colvard, A.; Petersen, J.; Marsh, W.; David-Dirgo, V.; Huentelman, M.; Pirrotte, P.; Sivakumaran, T.A. Mind the quality gap when banking on dry blood spots. Biopreserv. Biobank., 2021, 19(2), 136-142.
[http://dx.doi.org/10.1089/bio.2020.0131] [PMID: 33567235];
(c) Rincón, J.P.; Meesters, R.J.W. Evaluation of peripheral blood microsampling techniques in combination with liquid chromatography-high resolution mass spectrometry for the determination of drug pharmacokinetics in clinical studies. Drug Test. Anal., 2014, 6(6), 568-577.
[http://dx.doi.org/10.1002/dta.1582] [PMID: 24259410]
[16]
Elbin, C. S.; Olivova, P.; Marashio, C. A.; Cooper, S. K.; Cullen, E.; Keutzer, J. M.; Zhang, X. K. Clinica chimica acta. int. j. cli. chem., 2011, 412(13-14), 1207-1212.
[17]
Batterman, S.; Chernyak, S. Performance and storage integrity of dried blood spots for PCB, BFR and pesticide measurements. Sci. Total Environ., 2014, 494-495, 252-260.
[http://dx.doi.org/10.1016/j.scitotenv.2014.06.142] [PMID: 25058892]
[18]
(a) Okai, C. A.; Wölter, M.; Russ, M.; Koy, C.; Petre, B. A.; Rath, W.; Pecks, U.; Glocker, M. O. 2021, 35(14), e9121.;
(b) Eick, G.N.; Kowal, P.; Barrett, T.; Thiele, E.A.; Snodgrass, J.J. Enzyme-linked immunoassay-based quantitative measurement of apolipoprotein B (ApoB) in dried blood spots, a biomarker of cardiovascular disease risk. Biodemogr. Soc. Biol., 2017, 63(2), 116-130.
[http://dx.doi.org/10.1080/19485565.2017.1283582]
[19]
Freer, D.E. Observations on heat/humidity denaturation of enzymes in filter-paper blood spots from newborns. Clin. Chem., 2005, 51(6), 1060-1062.
[http://dx.doi.org/10.1373/clinchem.2005.049270] [PMID: 15845800]
[20]
García-Lerma, J.G.; McNulty, A.; Jennings, C.; Huang, D.; Heneine, W.; Bremer, J.W. Rapid decline in the efficiency of HIV drug resistance genotyping from dried blood spots (DBS) and dried plasma spots (DPS) stored at 37 C and high humidity. J. Antimicrob. Chemother., 2009, 64(1), 33-36.
[http://dx.doi.org/10.1093/jac/dkp150] [PMID: 19403653]
[21]
Buxton, O.M.; Malarick, K.; Wang, W.; Seeman, T. Changes in dried blood spot Hb A1c with varied postcollection conditions. Clin. Chem., 2009, 55(5), 1034-1036.
[http://dx.doi.org/10.1373/clinchem.2008.111641] [PMID: 19299546]
[22]
McDade, T.W.; Burhop, J.; Dohnal, J. High-sensitivity enzyme immunoassay for C-reactive protein in dried blood spots. Clin. Chem., 2004, 50(3), 652-654.
[http://dx.doi.org/10.1373/clinchem.2003.029488] [PMID: 14981035]
[23]
Björkesten, J.; Enroth, S.; Shen, Q.; Wik, L.; Hougaard, D.M.; Cohen, A.S.; Sörensen, L.; Giedraitis, V.; Ingelsson, M.; Larsson, A.; Kamali-Moghaddam, M.; Landegren, U. Stability of proteins in dried blood spot biobanks. Mol. Cell. Proteomics, 2017, 16(7), 1286-1296.
[http://dx.doi.org/10.1074/mcp.RA117.000015] [PMID: 28501802]
[24]
Grauholm, J.; Khoo, S.K.; Nickolov, R.Z.; Poulsen, J.B.; Bækvad-Hansen, M.; Hansen, C.S.; Hougaard, D.M.; Hollegaard, M.V. Gene expression profiling of archived dried blood spot samples from the danish neonatal screening biobank. Mol. Genet. Metab., 2015, 116(3), 119-124.
[http://dx.doi.org/10.1016/j.ymgme.2015.06.011] [PMID: 26212339]
[25]
Gardner, R.M.; Lee, B.K.; Brynge, M.; Sjöqvist, H.; Dalman, C.; Karlsson, H. Neonatal levels of acute phase proteins and risk of autism spectrum disorder. Biol. Psychiatry, 2021, 89(5), 463-475.
[http://dx.doi.org/10.1016/j.biopsych.2020.09.005] [PMID: 33187600]
[26]
Lai, Y.; Zhang, G.; Inhaber, N.; Bernstein, J.A.; Cwik, M.; Zhou, Z.; Chockalingam, P.S.; Wu, J. A robust multiplexed assay to quantify C1-inhibitor, C1q, and C4 proteins for in vitro diagnosis of hereditary angioedema from dried blood spot. J. Pharm. Biomed. Anal., 2021, 195, 113844.
[http://dx.doi.org/10.1016/j.jpba.2020.113844] [PMID: 33388640]
[27]
(a) Ignjatovic, V.; Pitt, J.; Monagle, P.; Craig, J.M. The utility of dried blood spots for proteomic studies: Looking forward to looking back. Proteomics Clin. Appl., 2014, 8(11-12), 896-900.
[http://dx.doi.org/10.1002/prca.201400042] [PMID: 25220422];
(b) Anderson, D.N.; Anderson, C.; Lanka, N.; Sharma, R.; Butson, C.R.; Baker, B.W.; Dorval, A.D. The μDBS: Multiresolution, directional deep brain stimulation for improved targeting of small diameter fibers. Front. Neurosci., 2019, 13, 1152.
[http://dx.doi.org/10.3389/fnins.2019.01152] [PMID: 31736693];
(c) Hogeling, S.M.; Cox, M.T.; Bradshaw, R.M.; Smith, D.P.; Duckett, C.J. Quantification of proteins in whole blood, plasma and DBS, with element-labelled antibody detection by ICP-MS. Anal. Biochem., 2019, 575, 10-16.
[http://dx.doi.org/10.1016/j.ab.2019.03.006] [PMID: 30902647]
[28]
(a) Nakajima, D.; Kawashima, Y. Simple and sensitive analysis for dried blood spot proteins by sodium carbonate precipitation for clinical proteomics. J. Proteome Res., 2020, 19(7), 2821-2827.;
(b) Nakajima, D.; Ohara, O.; Kawashima, Y. Data-independent acquisition mass spectrometry-based deep proteome analysis for hydrophobic proteins from dried blood spots enriched by sodium carbonate precipitation. Methods Mol. Biol., 2022, 2420, 39-52.
[http://dx.doi.org/10.1007/978-1-0716-1936-0_4] [PMID: 34905164]
[29]
Rosting, C.; Yu, J.; Cooper, H.J. High field asymmetric waveform ion mobility. Spectro.J. Proteome Res., 2018, 17(6), 1997-2004.
[30]
Martin, N.J.; Bunch, J.; Cooper, H.J. Dried blood spot proteomics: surface extraction of endogenous proteins coupled with automated sample preparation and mass spectrometry analysis. J. Am. Soc. Mass Spectrom., 2013, 24(8), 1242-1249.
[http://dx.doi.org/10.1007/s13361-013-0658-1] [PMID: 23728546]
[31]
Edwards, R.L.; Griffiths, P.; Bunch, J.; Cooper, H.J. Top-down proteomics and direct surface sampling of neonatal dried blood spots: Diagnosis of unknown hemoglobin variants. J. Am. Soc. Mass Spectrom., 2012, 23(11), 1921-1930.
[http://dx.doi.org/10.1007/s13361-012-0477-9] [PMID: 22993042]
[32]
Edwards, R.L.; Griffiths, P.; Bunch, J.; Cooper, H.J. Compound heterozygotes and beta-thalassemia: Top-down mass spectrometry for detection of hemoglobinopathies. Proteomics, 2014, 14(10), 1232-1238.
[http://dx.doi.org/10.1002/pmic.201300316] [PMID: 24482221]
[33]
Chambers, A.G.; Percy, A.J.; Hardie, D.B.; Borchers, C.H. Comparison of proteins in whole blood and dried blood spot samples by LC/MS/MS. J. Am. Soc. Mass Spectrom., 2013, 24(9), 1338-1345.
[http://dx.doi.org/10.1007/s13361-013-0678-x] [PMID: 23821375]
[34]
Tiambeng, T.N.; Roberts, D.S.; Brown, K.A.; Zhu, Y.; Chen, B.; Wu, Z.; Mitchell, S.D.; Guardado-Alvarez, T.M.; Jin, S.; Ge, Y. Nanoproteomics enables proteoform-resolved analysis of low-abundance proteins in human serum. Nat. Commun., 2020, 11(1), 3903.
[http://dx.doi.org/10.1038/s41467-020-17643-1] [PMID: 32764543]
[35]
Smith, L.M.; Kelleher, N.L. Proteoform: A single term describing protein complexity. Nat. Methods, 2013, 10(3), 186-187.
[http://dx.doi.org/10.1038/nmeth.2369] [PMID: 23443629]
[36]
Chambers, A.G.; Percy, A.J.; Yang, J.; Camenzind, A.G.; Borchers, C.H. Multiplexed quantitation of endogenous proteins in dried blood spots by multiple reaction monitoring-mass spectrometry. Mol. Cell. Proteomics, 2013, 12(3), 781-791.
[http://dx.doi.org/10.1074/mcp.M112.022442] [PMID: 23221968]
[37]
Ozcan, S.; Cooper, J.D.; Lago, S.G.; Kenny, D.; Rustogi, N.; Stocki, P.; Bahn, S. Towards reproducible MRM based biomarker discovery using dried blood spots. Sci. Rep., 2017, 7(1), 45178.
[http://dx.doi.org/10.1038/srep45178] [PMID: 28345601]
[38]
Chambers, A.G.; Percy, A.J.; Yang, J.; Borchers, C.H. Multiple reaction monitoring enables precise quantification of 97 proteins in dried blood spots. Mol. Cell. Proteomics, 2015, 14(11), 3094-3104.
[http://dx.doi.org/10.1074/mcp.O115.049957] [PMID: 26342038]
[39]
Percy, A.J.; Chambers, A.G.; Parker, C.E.; Borchers, C.H. Absolute quantitation of proteins in human blood by multiplexed multiple reaction monitoring mass spectrometry. Methods Mol. Biol., 2013, 1000, 167-189.
[http://dx.doi.org/10.1007/978-1-62703-405-0_13] [PMID: 23585092]
[40]
(a) Jain, R.; Quraishi, R.; Ambekar, A.; Verma, A.; Gupta, P. Dried urine spots for detection of benzodiazepines. Indian J. Pharmacol., 2017, 49(6), 465-469.
[http://dx.doi.org/10.4103/ijp.IJP_578_16] [PMID: 29674802];
(b) Moretti, M.; Freni, F.; Carelli, C.; Previderé, C.; Grignani, P.; Vignali, C.; Cobo-Golpe, M.; Morini, L. Analysis of cannabinoids and metabolites in dried urine spots (DUS). Molecules, 2021, 26(17), 5334.
[http://dx.doi.org/10.3390/molecules26175334] [PMID: 34500772]
[41]
Adachi, J.; Kumar, C.; Zhang, Y.; Olsen, J.V.; Mann, M. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol., 2006, 7(9), R80.
[http://dx.doi.org/10.1186/gb-2006-7-9-r80] [PMID: 16948836]
[42]
Haider, M.Z.; Aslam, A. Proteinuria. In: StatPearls, StatPearls Publishing Copyright © 2022; StatPearls Publishing LLC: Treasure Island, FL, 2022.
[43]
(a) Carreño Balcázar, J.S.; Meesters, R.J.W. Bioanalytical comparison between dried urine spots and liquid urine bioassays used for the quantitative analysis of urinary creatinine concentrations. Bioanalysis, 2014, 6(21), 2803-2814.
[http://dx.doi.org/10.4155/bio.14.197] [PMID: 25486228];
(b) Preece, R.L.; Han, S.Y.S.; Bahn, S. Proteomic approaches to identify blood-based biomarkers for depression and bipolar disorders. Expert Rev. Proteomics, 2018, 15(4), 325-340.
[http://dx.doi.org/10.1080/14789450.2018.1444483] [PMID: 29466886]
[44]
(a) Yu, C.; Huang, S.; Wang, M.; Zhang, J.; Liu, H.; Yuan, Z.; Wang, X.; He, X.; Wang, J.; Zou, L. A novel tandem mass spectrometry method for first-line screening of mainly beta-thalassemia from dried blood spots. J. Proteomics, 2017, 154, 78-84.
[http://dx.doi.org/10.1016/j.jprot.2016.12.008] [PMID: 28007617];
(b) Cooper, J.D.; Ozcan, S.; Gardner, R.M.; Rustogi, N.; Wicks, S.; van Rees, G.F.; Leweke, F.M.; Dalman, C.; Karlsson, H.; Bahn, S. Schizophrenia-risk and urban birth are associated with proteomic changes in neonatal dried blood spots. Transl. Psychiatry, 2017, 7(12), 1290.
[http://dx.doi.org/10.1038/s41398-017-0027-0] [PMID: 29249827];
(c) Han, M.; Jun, S.H.; Song, S.H.; Park, H.D.; Park, K.U.; Song, J. Ultra-performance liquid chromatography/tandem mass spectrometry for determination of sulfatides in dried blood spots from patients with metachromatic leukodystrophy. Rapid Commun. Mass Spectrom., 2014, 28(6), 587-594.
[http://dx.doi.org/10.1002/rcm.6823] [PMID: 24519821];
(d) Meesters, R.J.W.; van Kampen, J.J.A.; Reedijk, M.L.; Scheuer, R.D.; Dekker, L.J.M.; Burger, D.M.; Hartwig, N.G.; Osterhaus, A.D.M.E.; Luider, T.M.; Gruters, R.A. Ultrafast and high-throughput mass spectrometric assay for therapeutic drug monitoring of antiretroviral drugs in pediatric HIV-1 infection applying dried blood spots. Anal. Bioanal. Chem., 2010, 398(1), 319-328.
[http://dx.doi.org/10.1007/s00216-010-3952-9] [PMID: 20632164];
(e) Krone, C.; Oja, A.; van de Groep, K.; Sanders, E.; Bogaert, D.; Trzciński, K. Dried saliva spots: A robust method for detecting streptococcus pneumoniae carriage by PCR. Int. J. Mol. Sci., 2016, 17(3), 343.
[http://dx.doi.org/10.3390/ijms17030343] [PMID: 26959014];
(f) Rao, R.N.; Prasad, K.G.; Naidu, C.G.; Saida, S.; Agwane, S.B. Development of a validated LC-MS/MS method for determination of doxofylline on rat dried blood spots and urine: Application to pharmacokinetics. J. Pharm. Biomed. Anal., 2013, 78-79, 211-216.
[http://dx.doi.org/10.1016/j.jpba.2013.02.017] [PMID: 23501441]
[45]
Freeman, J.D.; Rosman, L.M.; Ratcliff, J.D.; Strickland, P.T.; Graham, D.R.; Silbergeld, E.K. State of the science in dried blood spots. Clin. Chem., 2018, 64(4), 656-679.
[http://dx.doi.org/10.1373/clinchem.2017.275966] [PMID: 29187355]
[46]
Luginbühl, M.; Gaugler, S. The application of fully automated dried blood spot analysis for liquid chromatography-tandem mass spectrometry using the CAMAG DBS-MS 500 autosampler. Clin. Biochem., 2020, 82, 33-39.
[http://dx.doi.org/10.1016/j.clinbiochem.2020.02.007] [PMID: 32087137]
[47]
Lehmann, S.; Picas, A.; Tiers, L.; Vialaret, J.; Hirtz, C. Clinical perspectives of dried blood spot protein quantification using mass spectrometry methods. Crit. Rev. Clin. Lab. Sci., 2017, 54(3), 173-184.
[http://dx.doi.org/10.1080/10408363.2017.1297358] [PMID: 28393579]
[48]
Wagner, M.; Tonoli, D.; Varesio, E.; Hopfgartner, G. The use of mass spectrometry to analyze dried blood spots. Mass Spectrom. Rev., 2016, 35(3), 361-438.
[http://dx.doi.org/10.1002/mas.21441] [PMID: 25252132]