Computational Methods for Functional Characterization of lncRNAS in Human Diseases: A Focus on Co-Expression Networks

Page: [21 - 38] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Treatment of many human diseases involves small-molecule drugs.Some target proteins, however, are not druggable with traditional strategies. Innovative RNA-targeted therapeutics may overcome such a challenge. Long noncoding RNAs (lncRNAs) are transcribed RNAs that do not translate into proteins. Their ability to interact with DNA, RNA, microRNAs (miRNAs), and proteins makes them an interesting target for regulating gene expression and signaling pathways.In the past decade, a catalog of lncRNAs has been studied in several human diseases. One of the challenges with lncRNA studies include their lack of coding potential, making, it difficult to characterize them in wet-lab experiments functionally. Several computational tools have thus been designed to characterize functions of lncRNAs centered around lncRNA interaction with proteins and RNA, especially miRNAs. This review comprehensively summarizes the methods and tools for lncRNA-RNA interactions and lncRNA-protein interaction prediction.We discuss the tools related to lncRNA interaction prediction using commonlyused models: ensemble-based, machine-learning-based, molecular-docking and network-based computational models. In biology, two or more genes co-expressed tend to have similar functions. Coexpression network analysis is, therefore, one of the most widely-used methods for understanding the function of lncRNAs. A major focus of our study is to compile literature related to the functional prediction of lncRNAs in human diseases using co-expression network analysis. In summary, this article provides relevant information on the use of appropriate computational tools for the functional characterization of lncRNAs that help wet-lab researchers design mechanistic and functional experiments.

[1]
Bolha L, Ravnik-Glavač M, Glavač D. Long noncoding RNAs as biomarkers in cancer. Dis Markers 2017; 2017: 1-14.
[http://dx.doi.org/10.1155/2017/7243968] [PMID: 28634418]
[2]
Viereck J, Thum T. Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ Res 2017; 120(2): 381-99.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308434] [PMID: 28104771]
[3]
Cen D, Huang H, Yang L, Guo K, Zhang J. Long noncoding RNA STXBP5-AS1 inhibits cell proliferation, migration, and invasion through inhibiting the PI3K/AKT signaling pathway in gastric cancer cells. OncoTargets Ther 2019; 12: 1929-36.
[http://dx.doi.org/10.2147/OTT.S194463] [PMID: 30881044]
[4]
Wright MW, Bruford EA. Naming ‘junk’: Human non-protein coding RNA (ncRNA) gene nomenclature. Hum Genomics 2011; 5(2): 90-8.
[http://dx.doi.org/10.1186/1479-7364-5-2-90] [PMID: 21296742]
[5]
Kornfeld JW, Brüning JC. Regulation of metabolism by long, non-coding RNAs. Front Genet 2014; 5: 57.
[http://dx.doi.org/10.3389/fgene.2014.00057] [PMID: 24723937]
[6]
Gu J, Xu F, Dang Y, Bu X. Long non-coding RNA 001089 is a prognostic marker and inhibits glioma cells proliferation and invasion. Clin Lab 2019; 65(03/2019)
[http://dx.doi.org/10.7754/Clin.Lab.2018.180817] [PMID: 30868865]
[7]
Jha PK, Vijay A, Prabhakar A, et al. Transcriptome profiling reveals the endogenous sponging role of LINC00659 and UST-AS1 in high-altitude induced thrombosis. Thromb Haemost 2021; 121(11): 1497-511.
[http://dx.doi.org/10.1055/a-1390-1713] [PMID: 33580494]
[8]
Qi M, Yu B, Yu H, Li F. Integrated analysis of a ceRNA network reveals potential prognostic lncRNAs in gastric cancer. Cancer Med 2020; 9(5): 1798-817.
[http://dx.doi.org/10.1002/cam4.2760] [PMID: 31923354]
[9]
Umu SU, Gardner PP. A comprehensive benchmark of RNA–RNA interaction prediction tools for all domains of life. Bioinformatics 2017; 33(7): 988-96.
[http://dx.doi.org/10.1093/bioinformatics/btw728] [PMID: 27993777]
[10]
Wenzel A, Akbaşli E, Gorodkin J. RIsearch: fast RNA–RNA interaction search using a simplified nearest-neighbor energy model. Bioinformatics 2012; 28(21): 2738-46.
[http://dx.doi.org/10.1093/bioinformatics/bts519] [PMID: 22923300]
[11]
Seemann SE, Richter AS, Gesell T, Backofen R, Gorodkin J. PETcofold: Predicting conserved interactions and structures of two multiple alignments of RNA sequences. Bioinformatics 2011; 27(2): 211-9.
[http://dx.doi.org/10.1093/bioinformatics/btq634] [PMID: 21088024]
[12]
Wekesa JS, Meng J, Luan Y. A deep learning model for plant lncRNA-protein interaction prediction with graph attention. Mol Genet Genomics 2020; 295(5): 1091-102.
[http://dx.doi.org/10.1007/s00438-020-01682-w] [PMID: 32409904]
[13]
Stuart JM, Segal E, Koller D, Kim SK. A gene-coexpression network for global discovery of conserved genetic modules. Science 2003; 302(5643): 249-55.
[http://dx.doi.org/10.1126/science.1087447] [PMID: 12934013]
[14]
Weirauch MT. Gene Coexpression Networks for the Analysis of DNA Microarray Data. Applied Statistics for Network Biology. Wiley oneline library. 2011; pp. 215-50. Available from: https://onlinelibrary.wiley.com/doi/10.1002/9783527638079.ch11.
[http://dx.doi.org/10.1002/9783527638079.ch11]
[15]
Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 2005; 4(17)
[http://dx.doi.org/10.2202/1544-6115.1128]
[16]
Zhang Z, Salisbury D, Sallam T. Long noncoding RNAs in atherosclerosis. J Am Coll Cardiol 2018; 72(19): 2380-90.
[http://dx.doi.org/10.1016/j.jacc.2018.08.2161] [PMID: 30384894]
[17]
Bian W, Jing X, Yang Z, et al. Downregulation of LncRNA NORAD promotes Ox-LDL-induced vascular endothelial cell injury and atherosclerosis. Aging 2020; 12(7): 6385-400.
[http://dx.doi.org/10.18632/aging.103034] [PMID: 32267831]
[18]
Pan JX. LncRNA H19 promotes atherosclerosis by regulating MAPK and NF-kB signaling pathway. Eur Rev Med Pharmacol Sci 2017; 21(2): 322-8.
[PMID: 28165553]
[19]
Simion V, Zhou H, Haemmig S, et al. A macrophage-specific lncRNA regulates apoptosis and atherosclerosis by tethering HuR in the nucleus. Nat Commun 2020; 11(1): 6135.
[http://dx.doi.org/10.1038/s41467-020-19664-2] [PMID: 33262333]
[20]
Simion V, Zhou H, Pierce JB, et al. LncRNA VINAS regulates atherosclerosis by modulating NF-κB and MAPK signaling. JCI Insight 2020; 5(21): e140627.
[http://dx.doi.org/10.1172/jci.insight.140627] [PMID: 33021969]
[21]
Bai J, Liu J, Fu Z, et al. Silencing lncRNA AK136714 reduces endothelial cell damage and inhibits atherosclerosis. Aging 2021; 13(10): 14159-69.
[http://dx.doi.org/10.18632/aging.203031] [PMID: 34015766]
[22]
Guo FX, Wu Q, Li P, et al. The role of the LncRNA-FA2H-2-MLKL pathway in atherosclerosis by regulation of autophagy flux and inflammation through mTOR-dependent signaling. Cell Death Differ 2019; 26(9): 1670-87.
[http://dx.doi.org/10.1038/s41418-018-0235-z] [PMID: 30683918]
[23]
Yu XH, Deng WY, Chen JJ, et al. LncRNA kcnq1ot1 promotes lipid accumulation and accelerates atherosclerosis via functioning as a ceRNA through the miR-452-3p/HDAC3/ABCA1 axis. Cell Death Dis 2020; 11(12): 1043.
[http://dx.doi.org/10.1038/s41419-020-03263-6] [PMID: 33293505]
[24]
Ward Z, Schmeier S, Saddic L, et al. Novel and annotated long noncoding RNAs associated with ischemia in the human heart. Int J Mol Sci 2021; 22(21): 11324.
[http://dx.doi.org/10.3390/ijms222111324] [PMID: 34768754]
[25]
Wang L, Hu J, Zhou J, Guo F, Yao T, Zhang L. Weighed gene coexpression network analysis screens the potential long noncoding RNAs and genes associated with progression of coronary artery disease. Comput Math Methods Med 2020; 2020: 1-14.
[http://dx.doi.org/10.1155/2020/8183420] [PMID: 32695216]
[26]
Yin X, Wang P, Yang T, et al. Identification of key modules and genes associated with breast cancer prognosis using WGCNA and ceRNA network analysis. Aging 2021; 13(2): 2519-38.
[http://dx.doi.org/10.18632/aging.202285] [PMID: 33318294]
[27]
Li H, Liu L, Huang T, et al. Establishment of a novel ferroptosis-related lncRNA pair prognostic model in colon adenocarcinoma. Aging 2021; 13(19): 23072-95.
[http://dx.doi.org/10.18632/aging.203599] [PMID: 34610581]
[28]
Han C, Zhang C, Wang H, Li K, Zhao L. Angiogenesis-related lncRNAs predict the prognosis signature of stomach adenocarcinoma. BMC Cancer 2021; 21(1): 1312.
[http://dx.doi.org/10.1186/s12885-021-08987-y] [PMID: 34876056]
[29]
Wang W, Lou W, Ding B, et al. A novel mRNA-miRNA-lncRNA competing endogenous RNA triple sub-network associated with prognosis of pancreatic cancer. Aging 2019; 11(9): 2610-27.
[http://dx.doi.org/10.18632/aging.101933] [PMID: 31061236]
[30]
Zhou X, Dou M, Liu Z, et al. Screening prognosis-related lncRNAs based on WGCNA to establish a new risk score for predicting prognosis in patients with hepatocellular carcinoma. J Immunol Res 2021; 2021: 1-20.
[http://dx.doi.org/10.1155/2021/5518908] [PMID: 34426790]
[31]
He GN, Bao NR, Wang S, Xi M, Zhang TH, Chen FS. Ketamine induces ferroptosis of liver cancer cells by targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des Devel Ther 2021; 15: 3965-78.
[http://dx.doi.org/10.2147/DDDT.S332847] [PMID: 34566408]
[32]
Huang A, Li T, Xie X, Xia J. Computational identification of immune- and ferroptosis-related LncRNA signature for prognosis of hepatocellular carcinoma. Front Mol Biosci 2021; 8: 759173.
[http://dx.doi.org/10.3389/fmolb.2021.759173] [PMID: 34901153]
[33]
Zhang Y, Zhu B, He M, et al. N6-methylandenosine-related lncrnas predict prognosis and immunotherapy response in bladder cancer. Front Oncol 2021; 11: 710767.
[http://dx.doi.org/10.3389/fonc.2021.710767] [PMID: 34458149]
[34]
Zheng J, Guo J, Zhu L, Zhou Y, Tong J. Comprehensive analyses of glycolysis-related lncRNAs for ovarian cancer patients. J Ovarian Res 2021; 14(1): 124.
[http://dx.doi.org/10.1186/s13048-021-00881-2] [PMID: 34560889]
[35]
Cheng Y, Su Y, Wang S, et al. Identification of circRNA-lncRNA-miRNA-mRNA competitive endogenous rna network as novel prognostic markers for acute myeloid leukemia. Genes 2020; 11(8): 868.
[http://dx.doi.org/10.3390/genes11080868] [PMID: 32751923]
[36]
Tu Z, Wu L, Wang P, et al. N6-Methylandenosine-related lncRNAs are potential biomarkers for predicting the overall survival of lower-grade glioma patients. Front Cell Dev Biol 2020; 8: 642.
[http://dx.doi.org/10.3389/fcell.2020.00642] [PMID: 32793593]
[37]
He Y, Ye Y, Tian W, Qiu H. A novel lncRNA panel related to ferroptosis, tumor progression, and microenvironment is a robust prognostic indicator for glioma patients. Front Cell Dev Biol 2021; 9: 788451.
[http://dx.doi.org/10.3389/fcell.2021.788451] [PMID: 34950662]
[38]
Zhao J, Su Y, Jiao J, et al. Identification of lncRNA and mRNA biomarkers in osteoarthritic degenerative meniscus by weighted gene coexpression network and competing endogenous RNA network analysis. BioMed Res Int 2020; 2020: 1-10.
[http://dx.doi.org/10.1155/2020/2123787] [PMID: 32685450]
[39]
Wang Q, Roy B, Dwivedi Y. Co-expression network modeling identifies key long non-coding RNA and mRNA modules in altering molecular phenotype to develop stress-induced depression in rats. Transl Psychiatry 2019; 9(1): 125.
[http://dx.doi.org/10.1038/s41398-019-0448-z] [PMID: 30944317]
[40]
Lengauer T, Rarey M. Computational methods for biomolecular docking. Curr Opin Struct Biol 1996; 6(3): 402-6.
[http://dx.doi.org/10.1016/S0959-440X(96)80061-3] [PMID: 8804827]
[41]
Suravajhala R, Gupta S, Kumar N, Suravajhala P. Deciphering LncRNA–protein interactions using docking complexes. J Biomol Struct Dyn 2022; 40(8): 3769-76.
[http://dx.doi.org/10.1080/07391102.2020.1850354] [PMID: 33280525]
[42]
Brooijmans N, Kuntz ID. Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct 2003; 32(1): 335-73.
[http://dx.doi.org/10.1146/annurev.biophys.32.110601.142532] [PMID: 12574069]
[43]
Liu X, Bai X, Liu H, et al. LncRNA LOC105378097 inhibits cardiac mitophagy in natural ageing mice. Clin Transl Med 2022; 12(6): e908.
[http://dx.doi.org/10.1002/ctm2.908] [PMID: 35758595]
[44]
Gao X, Zhang W, Jia Y, Xu H, Zhu Y, Pei X. Identification of a prognosis-related ceRNA network in cholangiocarcinoma and potentially therapeutic molecules using a bioinformatic approach and molecular docking. Sci Rep 2022; 12(1): 16247.
[http://dx.doi.org/10.1038/s41598-022-20362-w] [PMID: 36171401]
[45]
Zheng J, Hong X, Xie J, Tong X, Liu S. P3DOCK: a protein–RNA docking webserver based on template-based and template-free docking. Bioinformatics 2020; 36(1): 96-103.
[http://dx.doi.org/10.1093/bioinformatics/btz478] [PMID: 31173056]
[46]
Cheng TMK, Blundell TL, Fernandez-Recio J. pyDock: Electrostatics and desolvation for effective scoring of rigid-body protein-protein docking. Proteins 2007; 68(2): 503-15.
[http://dx.doi.org/10.1002/prot.21419] [PMID: 17444519]
[47]
Venables WN, Ripley BD. Tree-based Methods Modern Applied Statistics with S-PLUS. New York, NY: Springer 1999; pp. 303-27.
[http://dx.doi.org/10.1007/978-1-4757-3121-7_10]
[48]
James G, Witten D, Hastie T, Tibshirani R. Tree-Based Methods An Introduction to Statistical Learning: with Applications in R. New York, NY: Springer 2021; pp. 327-65.
[http://dx.doi.org/10.1007/978-1-0716-1418-1_8]
[49]
Breslow LA, Aha DW. Simplifying decision trees: A survey. Knowl Eng Rev 1997; 12(1): 1-40.
[http://dx.doi.org/10.1017/S0269888997000015]
[50]
Cutler A, Cutler DR, Stevens JR. Tree-based methods. In: Li X, Xu R, Eds. High-Dimensional Data Analysis in Cancer Research. New York, NY: Springer 2009; pp. 1-19.
[http://dx.doi.org/10.1007/978-0-387-69765-9_5]
[51]
Peng L, Yuan R, Shen L, Gao P, Zhou L. LPI-EnEDT: An ensemble framework with extra tree and decision tree classifiers for imbalanced lncRNA-protein interaction data classification. BioData Min 2021; 14(1): 50.
[http://dx.doi.org/10.1186/s13040-021-00277-4] [PMID: 34861891]
[52]
Shen C, Li H, Li M, et al. DLRAPom: A hybrid pipeline of Optimized XGBoost-guided integrative multiomics analysis for identifying targetable disease-related lncRNA–miRNA–mRNA regulatory axes. Brief Bioinform 2022; 23(2): bbac046.
[http://dx.doi.org/10.1093/bib/bbac046] [PMID: 35224615]
[53]
Zhou L, Wang Z, Tian X, Peng L. LPI-deepGBDT: A multiple-layer deep framework based on gradient boosting decision trees for lncRNA–protein interaction identification. BMC Bioinformatics 2021; 22(1): 479.
[http://dx.doi.org/10.1186/s12859-021-04399-8] [PMID: 34607567]
[54]
Li J, Zhao Y, Zhou S, Zhou Y, Lang L. Inferring lncRNA functional similarity based on integrating heterogeneous network data. Front Bioeng Biotechnol 2020; 8: 27.
[http://dx.doi.org/10.3389/fbioe.2020.00027] [PMID: 32117916]
[55]
Newman M. Networks: An Introduction. Oxford, England: Oxford University Press 2010.
[56]
Bass JIF, Diallo A, Nelson J, Soto JM, Myers CL, Walhout AJM. Using networks to measure similarity between genes: association index selection. Nat Methods 2013; 10(12): 1169-76.
[http://dx.doi.org/10.1038/nmeth.2728] [PMID: 24296474]
[57]
Atkinson HJ, Morris JH, Ferrin TE, Babbitt PC. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PLoS One 2009; 4(2): e4345.
[http://dx.doi.org/10.1371/journal.pone.0004345] [PMID: 19190775]
[58]
Liao J, Wang J, Liu Y, Li J, Duan L. Transcriptome sequencing of lncRNA, miRNA, mRNA and interaction network constructing in coronary heart disease. BMC Med Genomics 2019; 12(1): 124.
[http://dx.doi.org/10.1186/s12920-019-0570-z] [PMID: 31443660]
[59]
Bian W, Jiang XX, Wang Z, et al. Comprehensive analysis of the ceRNA network in coronary artery disease. Sci Rep 2021; 11(1): 24279.
[http://dx.doi.org/10.1038/s41598-021-03688-9] [PMID: 34930980]
[60]
Xu M, Chen Y, Lu W, et al. SPMLMI: Predicting lncRNA–miRNA interactions in humans using a structural perturbation method. PeerJ 2021; 9: e11426.
[http://dx.doi.org/10.7717/peerj.11426] [PMID: 34055486]
[61]
Sun X, Cheng L, Liu J, Xie C, Yang J, Li F. Predicting lncRNA–protein interaction with weighted graph-regularized matrix factorization. Front Genet 2021; 12: 690096.
[http://dx.doi.org/10.3389/fgene.2021.690096] [PMID: 34335693]
[62]
Iyer G, Chanussot J, Bertozzi AL. A graph-based approach for data fusion and segmentation of multimodal images. IEEE Trans Geosci Remote Sens 2021; 59(5): 4419-29.
[http://dx.doi.org/10.1109/TGRS.2020.2971395]
[63]
Xuan P, Pan S, Zhang T, Liu Y, Sun H. Graph convolutional network and convolutional neural network based method for predicting lncRNA-disease associations. Cells 2019; 8(9): 1012.
[http://dx.doi.org/10.3390/cells8091012] [PMID: 31480350]
[64]
Zhang J, Jiang Z, Hu X, Song B. A novel graph attention adversarial network for predicting disease-related associations. Methods 2020; 179: 81-8.
[http://dx.doi.org/10.1016/j.ymeth.2020.05.010] [PMID: 32446956]
[65]
Lan W, Wu X, Chen Q, Peng W, Wang J, Chen YP. GANLDA: Graph attention network for lncRNA-disease associations prediction. Neurocomputing 2022; 469: 384-93.
[http://dx.doi.org/10.1016/j.neucom.2020.09.094]
[66]
Wu X, Lan W, Chen Q, Dong Y, Liu J, Peng W. Inferring LncRNA-disease associations based on graph autoencoder matrix completion. Comput Biol Chem 2020; 87: 107282.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107282] [PMID: 32502934]
[67]
Shi H, Zhang X, Tang L, Liu L. Heterogeneous graph neural network for lncRNA-disease association prediction. Sci Rep 2022; 12(1): 17519.
[http://dx.doi.org/10.1038/s41598-022-22447-y] [PMID: 36266433]
[68]
Huang YA, Huang ZA, You ZH, et al. Predicting lncRNA-miRNA interaction via graph convolution auto-encoder. Front Genet 2019; 10: 758.
[http://dx.doi.org/10.3389/fgene.2019.00758] [PMID: 31555320]
[69]
Yang S, Wang Y, Lin Y, Shao D, He K, Huang L. LncMirNet: Predicting LncRNA–miRNA interaction based on deep learning of ribonucleic acid sequences. Molecules 2020; 25(19): 4372.
[http://dx.doi.org/10.3390/molecules25194372] [PMID: 32977679]
[70]
Ge M, Li A, Wang M. A bipartite network-based method for prediction of long non-coding rna–protein interactions. Genomics Proteomics Bioinformatics 2016; 14(1): 62-71.
[http://dx.doi.org/10.1016/j.gpb.2016.01.004] [PMID: 26917505]
[71]
Song L, Langfelder P, Horvath S. Comparison of co-expression measures: Mutual information, correlation, and model based indices. BMC Bioinformatics 2012; 13(1): 328.
[http://dx.doi.org/10.1186/1471-2105-13-328] [PMID: 23217028]
[72]
Butte AJ, Kohane IS. Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput 2000; 418-29.
[PMID: 10902190]
[73]
Khanin R, Wit E. How scale-free are biological networks. J Comput Biol 2006; 13(3): 810-8.
[http://dx.doi.org/10.1089/cmb.2006.13.810] [PMID: 16706727]
[74]
Clote P. Are RNA networks scale-free? J Math Biol 2020; 80(5): 1291-321.
[http://dx.doi.org/10.1007/s00285-019-01463-z] [PMID: 31950258]
[75]
Wang C, Shi H, Chen L, Li X, Cao G, Hu X. Identification of key lncRNAs associated with atherosclerosis progression based on public datasets. Front Genet 2019; 10: 123.
[http://dx.doi.org/10.3389/fgene.2019.00123] [PMID: 30873207]
[76]
Zhang J, Le TD, Liu L, Li J. Inferring and analyzing module-specific lncRNA–mRNA causal regulatory networks in human cancer. Brief Bioinform 2019; 20(4): 1403-19.
[http://dx.doi.org/10.1093/bib/bby008] [PMID: 29401217]
[77]
Gerlach W, Giegerich R. GUUGle: A utility for fast exact matching under RNA complementary rules including G–U base pairing. Bioinformatics 2006; 22(6): 762-4.
[http://dx.doi.org/10.1093/bioinformatics/btk041] [PMID: 16403789]
[78]
Mückstein U, Tafer H, Hackermüller J, Bernhart SH, Stadler PF, Hofacker IL. Thermodynamics of RNA–RNA binding. Bioinformatics 2006; 22(10): 1177-82.
[http://dx.doi.org/10.1093/bioinformatics/btl024] [PMID: 16446276]
[79]
Bernhart SH, Tafer H, Mückstein U, Flamm C, Stadler PF, Hofacker IL. Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol Biol 2006; 1(1): 3.
[http://dx.doi.org/10.1186/1748-7188-1-3] [PMID: 16722605]
[80]
Tafer H, Hofacker IL. RNAplex: A fast tool for RNA–RNA interaction search. Bioinformatics 2008; 24(22): 2657-63.
[http://dx.doi.org/10.1093/bioinformatics/btn193] [PMID: 18434344]
[81]
Busch A, Richter AS, Backofen R. IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 2008; 24(24): 2849-56.
[http://dx.doi.org/10.1093/bioinformatics/btn544] [PMID: 18940824]
[82]
Alkan F, Wenzel A, Palasca O, et al. RIsearch2: Suffix array-based large-scale prediction of RNA–RNA interactions and siRNA off-targets. Nucleic Acids Res 2017; 45(8): gkw1325.
[http://dx.doi.org/10.1093/nar/gkw1325] [PMID: 28108657]
[83]
Li J, Ma W, Zeng P, et al. LncTar: A tool for predicting the RNA targets of long noncoding RNAs. Brief Bioinform 2015; 16(5): 806-12.
[http://dx.doi.org/10.1093/bib/bbu048] [PMID: 25524864]
[84]
Hu R, Sun X. lncRNATargets: A platform for lncRNA target prediction based on nucleic acid thermodynamics. J Bioinform Comput Biol 2016; 14(4): 1650016.
[http://dx.doi.org/10.1142/S0219720016500165] [PMID: 27306075]
[85]
Fukunaga T, Hamada M. RIblast: An ultrafast RNA–RNA interaction prediction system based on a seed-and-extension approach. Bioinformatics 2017; 33(17): 2666-74.
[http://dx.doi.org/10.1093/bioinformatics/btx287] [PMID: 28459942]
[86]
Ye H, Meehan J, Tong W, Hong H. Alignment of short reads: A crucial step for application of next-generation sequencing data in precision medicine. Pharmaceutics 2015; 7(4): 523-41.
[http://dx.doi.org/10.3390/pharmaceutics7040523] [PMID: 26610555]
[87]
Kato Y, Sato K, Hamada M, Watanabe Y, Asai K, Akutsu T. RactIP: fast and accurate prediction of RNA-RNA interaction using integer programming. Bioinformatics 2010; 26(18): i460-6.
[http://dx.doi.org/10.1093/bioinformatics/btq372] [PMID: 20823308]
[88]
Terai G, Iwakiri J, Kameda T, Hamada M, Asai K. Comprehensive prediction of lncRNA-RNA interactions in human transcriptome. BMC Genomics 2016; 17(S1): 12.
[http://dx.doi.org/10.1186/s12864-015-2307-5]
[89]
Liao Q, Liu C, Yuan X, et al. Large-scale prediction of long non-coding RNA functions in a coding–non-coding gene co-expression network. Nucleic Acids Res 2011; 39(9): 3864-78.
[http://dx.doi.org/10.1093/nar/gkq1348] [PMID: 21247874]
[90]
Wang K, Lu Y, Zhao Z, Zhang C. Bioinformatics-based analysis of lncRNA-mRNA interaction network of mild hepatic encephalopathy in cirrhosis. Comput Math Methods Med 2021; 2021: 1-10.
[http://dx.doi.org/10.1155/2021/7777699] [PMID: 34938356]
[91]
Yu W, Wang W, Yu X. Investigation of lncRNA-mRNA co-expression network in ETV6-RUNX1-positive pediatric B-cell acute lymphoblastic leukemia. PLoS One 2021; 16(6): e0253012.
[http://dx.doi.org/10.1371/journal.pone.0253012] [PMID: 34101758]
[92]
Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 2011; 147(2): 358-69.
[http://dx.doi.org/10.1016/j.cell.2011.09.028] [PMID: 22000014]
[93]
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495(7441): 384-8.
[http://dx.doi.org/10.1038/nature11993] [PMID: 23446346]
[94]
Zhang X, Wang S, Wang H, et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer 2019; 18(1): 20.
[http://dx.doi.org/10.1186/s12943-018-0935-5] [PMID: 30717751]
[95]
Olgun G, Sahin O, Tastan O. Discovering lncRNA mediated sponge interactions in breast cancer molecular subtypes. BMC Genomics 2018; 19(1): 650.
[http://dx.doi.org/10.1186/s12864-018-5006-1] [PMID: 30180792]
[96]
Paci P, Colombo T, Farina L. Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer. BMC Syst Biol 2014; 8(1): 83.
[http://dx.doi.org/10.1186/1752-0509-8-83] [PMID: 25033876]
[97]
Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012; 81(1): 145-66.
[http://dx.doi.org/10.1146/annurev-biochem-051410-092902] [PMID: 22663078]
[98]
Peng L, Liu F, Yang J, et al. Probing lncRNA–protein interactions: Data repositories, models, and algorithms. Front Genet 2020; 10: 1346.
[http://dx.doi.org/10.3389/fgene.2019.01346] [PMID: 32082358]
[99]
Li A, Ge M, Zhang Y, Peng C, Wang M. Predicting long noncoding RNA and protein interactions using heterogeneous network model. BioMed Res Int 2015; 2015: 1-11.
[http://dx.doi.org/10.1155/2015/671950] [PMID: 26839884]
[100]
Hao Y, Wu W, Li H, Yuan J, Luo J, Zhao Y. NPInter v3.0: An upgraded database of noncoding RNA-associated interactions. Database 2016; 2016: baw057.
[101]
Zhao Y, Li H, Fang S, et al. NONCODE 2016: an informative and valuable data source of long non-coding RNAs. Nucleic Acids Res 2016; 44(D1): D203-8.
[http://dx.doi.org/10.1093/nar/gkv1252] [PMID: 26586799]
[102]
Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res 2017; 45(D1): D362-8.
[http://dx.doi.org/10.1093/nar/gkw937] [PMID: 27924014]
[103]
Zhang W, Qu Q, Zhang Y, Wang W. The linear neighborhood propagation method for predicting long non-coding RNA–protein interactions. Neurocomputing 2018; 273: 526-34.
[http://dx.doi.org/10.1016/j.neucom.2017.07.065]
[104]
Xie G, Wu C, Sun Y, Fan Z, Liu J. LPI-IBNRA: Long non-coding RNA-protein interaction prediction based on improved bipartite network recommender algorithm. Front Genet 2019; 10: 343.
[http://dx.doi.org/10.3389/fgene.2019.00343] [PMID: 31057602]
[105]
Bateman A, Martin M-J, Orchard S, et al. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res 2021; 49(D1): D480-9.
[http://dx.doi.org/10.1093/nar/gkaa1100] [PMID: 33237286]
[106]
Liu H, Ren G, Hu H, et al. LPI-NRLMF: lncRNA-protein interaction prediction by neighborhood regularized logistic matrix factorization. Oncotarget 2017; 8(61): 103975-84.
[http://dx.doi.org/10.18632/oncotarget.21934] [PMID: 29262614]
[107]
Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol 1981; 147(1): 195-7.
[http://dx.doi.org/10.1016/0022-2836(81)90087-5] [PMID: 7265238]
[108]
Hu H, Zhang L, Ai H, et al. HLPI-Ensemble: Prediction of human lncRNA-protein interactions based on ensemble strategy. RNA Biol 2018; 15(6): 1-10.
[http://dx.doi.org/10.1080/15476286.2018.1457935] [PMID: 29583068]
[109]
Zhang W, Yue X, Tang G, Wu W, Huang F, Zhang X. SFPEL-LPI: Sequence-based feature projection ensemble learning for predicting LncRNA-protein interactions. PLOS Comput Biol 2018; 14(12): e1006616.
[http://dx.doi.org/10.1371/journal.pcbi.1006616] [PMID: 30533006]
[110]
Pandurangan AP, Stahlhacke J, Oates ME, Smithers B, Gough J. The SUPERFAMILY 2.0 database: A significant proteome update and a new webserver. Nucleic Acids Res 2019; 47(D1): D490-4.
[http://dx.doi.org/10.1093/nar/gky1130] [PMID: 30445555]
[111]
Valdeolivas A, Tichit L, Navarro C, et al. Random walk with restart on multiplex and heterogeneous biological networks. Bioinformatics 2019; 35(3): 497-505.
[http://dx.doi.org/10.1093/bioinformatics/bty637] [PMID: 30020411]
[112]
Song J, Tian S, Yu L, et al. RLF-LPI: An ensemble learning framework using sequence information for predicting lncRNA-protein interaction based on AE-ResLSTM and fuzzy decision. Math Biosci Eng 2022; 19(5): 4749-64.
[http://dx.doi.org/10.3934/mbe.2022222] [PMID: 35430839]
[113]
Huang L, Jiao S, Yang S, et al. LGFC-CNN: Prediction of lncRNA-protein interactions by using multiple types of features through deep learning. Genes 2021; 12(11): 1689.
[http://dx.doi.org/10.3390/genes12111689] [PMID: 34828296]
[114]
Shaw D, Chen H, Xie M, Jiang T. DeepLPI: A multimodal deep learning method for predicting the interactions between lncRNAs and protein isoforms. BMC Bioinformatics 2021; 22(1): 24.
[http://dx.doi.org/10.1186/s12859-020-03914-7] [PMID: 33461501]
[115]
Hu H, Zhu C, Ai H, et al. LPI-ETSLP: LncRNA–protein interaction prediction using eigenvalue transformation-based semi-supervised link prediction. Mol Biosyst 2017; 13(9): 1781-7.
[http://dx.doi.org/10.1039/C7MB00290D] [PMID: 28702594]
[116]
Lu Q, Ren S, Lu M, et al. Computational prediction of associations between long non-coding RNAs and proteins. BMC Genomics 2013; 14(1): 651.
[http://dx.doi.org/10.1186/1471-2164-14-651] [PMID: 24063787]
[117]
Li Y, Sun H, Feng S, Zhang Q, Han S, Du W. Capsule-LPI: A LncRNA–protein interaction predicting tool based on a capsule network. BMC Bioinformatics 2021; 22(1): 246.
[http://dx.doi.org/10.1186/s12859-021-04171-y] [PMID: 33985444]
[118]
Li Y, Wei L, Wang C, et al. LPInsider: A webserver for lncRNA–protein interaction extraction from the literature. BMC Bioinformatics 2022; 23(1): 135.
[http://dx.doi.org/10.1186/s12859-022-04665-3] [PMID: 35428172]
[119]
Agostini F, Zanzoni A, Klus P, Marchese D, Cirillo D, Tartaglia GG. cat RAPID omics: A web server for large-scale prediction of protein–RNA interactions. Bioinformatics 2013; 29(22): 2928-30.
[http://dx.doi.org/10.1093/bioinformatics/btt495] [PMID: 23975767]
[120]
Tian Z, He W, Tang J, et al. Identification of important modules and biomarkers in breast cancer based on WGCNA. OncoTargets Ther 2020; 13: 6805-17.
[http://dx.doi.org/10.2147/OTT.S258439] [PMID: 32764968]
[121]
Rasila T, Saavalainen O, Attalla H, et al. Astroprincin (FAM171A1, C10orf38). Am J Pathol 2019; 189(1): 177-89.
[http://dx.doi.org/10.1016/j.ajpath.2018.09.006] [PMID: 30312582]
[122]
Layman AAK, Deng G, O’Leary CE, et al. Ndfip1 restricts mTORC1 signalling and glycolysis in regulatory T cells to prevent autoinflammatory disease. Nat Commun 2017; 8(1): 15677.
[http://dx.doi.org/10.1038/ncomms15677] [PMID: 28580955]
[123]
Liu YQ, Wang XL, Cheng X, et al. Skp1 in lung cancer: Clinical significance and therapeutic efficacy of its small molecule inhibitors. Oncotarget 2015; 6(33): 34953-67.
[http://dx.doi.org/10.18632/oncotarget.5547] [PMID: 26474281]
[124]
Ma N, Tie C, Yu B, Zhang W, Wan J. Identifying lncRNA–miRNA–mRNA networks to investigate Alzheimer’s disease pathogenesis and therapy strategy. Aging 2020; 12(3): 2897-920.
[http://dx.doi.org/10.18632/aging.102785] [PMID: 32035423]
[125]
Zhou M, Zhao H, Wang X, Sun J, Su J. Analysis of long noncoding RNAs highlights region-specific altered expression patterns and diagnostic roles in Alzheimer’s disease. Brief Bioinform 2019; 20(2): 598-608.
[http://dx.doi.org/10.1093/bib/bby021] [PMID: 29672663]
[126]
Liang JW, Fang ZY, Huang Y, et al. Application of weighted gene co-expression network analysis to explore the key genes in Alzheimer’s Disease. J Alzheimers Dis 2018; 65(4): 1353-64.
[http://dx.doi.org/10.3233/JAD-180400] [PMID: 30124448]
[127]
Miller JA, Oldham MC, Geschwind DH. A systems level analysis of transcriptional changes in Alzheimer’s disease and normal aging. J Neurosci 2008; 28(6): 1410-20.
[http://dx.doi.org/10.1523/JNEUROSCI.4098-07.2008] [PMID: 18256261]
[128]
Fukunaga T, Iwakiri J, Ono Y, Hamada M. LncRRIsearch: A web server for lncRNA-RNA interaction prediction integrated with tissue-specific expression and subcellular localization data. Front Genet 2019; 10: 462.
[http://dx.doi.org/10.3389/fgene.2019.00462] [PMID: 31191601]
[129]
Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015; 4: e05005.
[http://dx.doi.org/10.7554/eLife.05005] [PMID: 26267216]
[130]
Paraskevopoulou MD, Vlachos IS, Karagkouni D, et al. DIANA-LncBase v2: Indexing microRNA targets on non-coding transcripts. Nucleic Acids Res 2016; 44(D1): D231-8.
[http://dx.doi.org/10.1093/nar/gkv1270] [PMID: 26612864]
[131]
Wu T, Wang J, Liu C, et al. NPInter: The noncoding RNAs and protein related biomacromolecules interaction database. Nucleic Acids Res 2006; 34(90001): D150-2.
[http://dx.doi.org/10.1093/nar/gkj025] [PMID: 16381834]
[132]
Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 2014; 42(D1): D92-7.
[http://dx.doi.org/10.1093/nar/gkt1248] [PMID: 24297251]
[133]
Seemann SE, Menzel P, Backofen R, Gorodkin J. The PETfold and PETcofold web servers for intra- and intermolecular structures of multiple RNA sequences. Nucleic Acids Res 2011; 39(Web Server issue): W107-11.
[134]
Wong L, Huang YA, You ZH, Chen ZH, Cao MY. LNRLMI: Linear neighbour representation for predicting lncRNA‐miRNA interactions. J Cell Mol Med 2020; 24(1): 79-87.
[http://dx.doi.org/10.1111/jcmm.14583] [PMID: 31568653]
[135]
Jeggari A, Marks DS, Larsson E. miRcode: A map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics 2012; 28(15): 2062-3.
[http://dx.doi.org/10.1093/bioinformatics/bts344] [PMID: 22718787]
[136]
Furió-Tarí P, Tarazona S, Gabaldón T, Enright AJ, Conesa A. spongeScan: A web for detecting microRNA binding elements in lncRNA sequences. Nucleic Acids Res 2016; 44(W1): W176-80.
[http://dx.doi.org/10.1093/nar/gkw443] [PMID: 27198221]
[137]
Pian C, Zhang G, Tu T, Ma X, Li F. LncCeRBase: A database of experimentally validated human competing endogenous long non-coding RNAs. Database 2018; 2018: bay061.
[http://dx.doi.org/10.1093/database/bay061]
[138]
Zhao Q, Zhang Y, Hu H, Ren G, Zhang W, Liu H. IRWNRLPI: Integrating random walk and neighborhood regularized logistic matrix factorization for lncRNA-protein interaction prediction. Front Genet 2018; 9: 239.
[http://dx.doi.org/10.3389/fgene.2018.00239] [PMID: 30023002]
[139]
Han S, Yang X, Sun H, et al. LION: An integrated R package for effective prediction of ncRNA–protein interaction. Brief Bioinform 2022; 23(6): bbac420.
[http://dx.doi.org/10.1093/bib/bbac420] [PMID: 36155620]
[140]
Zhang T, Wang M, Xi J, Li A. LPGNMF: Predicting long noncoding RNA and protein interaction using graph regularized nonnegative matrix factorization. IEEE/ACM Trans Comput Biol Bioinform 2020; 17(1): 189-97.