Quorum Sensing in Gram-Negative Bacteria: Strategies to Overcome Antibiotic Resistance in Ocular Infections

Page: [876 - 888] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Truly miraculous medications and antibiotics have helped save untold millions of lives. Antibiotic resistance, however, is a significant issue related to health that jeopardizes the effectiveness of antibiotics and could harm everyone's health. Bacteria, not humans or animals, become antibiotic-resistant. Bacteria use quorum-sensing communication routes to manage an assortment of physiological exercises. Quorum sensing is significant for appropriate biofilm development. Antibiotic resistance occurs when bacteria establish a biofilm on a surface, shielding them from the effects of infection-fighting drugs. Acylated homoserine lactones are used as autoinducers by gram-negative microscopic organisms to impart. However, antibiotic resistance among ocular pathogens is increasing worldwide. Bacteria are a significant contributor to ocular infections around the world. Gram-negative microscopic organisms are dangerous to ophthalmic tissues. This review highlights the use of elective drug targets and treatments, for example, combinational treatment, to vanquish antibiotic-resistant bacteria. Also, it briefly portrays anti-biotic resistance brought about by gram-negative bacteria and approaches to overcome resistance with the help of quorum sensing inhibitors and nanotechnology as a promising medication conveyance approach to give insurance of anti-microbials and improve pathways for the administration of inhibitors of quorum sensing with a blend of anti-microbials to explicit target destinations and penetration through biofilms for treatment of ocular infections. It centres on the methodologies to sidestep the confinements of ocular anti-biotic delivery with new visual innovation.

[1]
Bertino JS Jr. Impact of antibiotic resistance in the management of ocular infections: The role of current and future antibiotics. Clin Ophthalmol 2009; 3: 507-21.
[http://dx.doi.org/10.2147/OPTH.S5778] [PMID: 19789660]
[2]
Davies J. Origins and evolution of antibiotic resistance. Microbiologia 1996; 12(1): 9-16.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 9019139]
[3]
Thomas RK, Melton R, Asbell PA. Antibiotic resistance among ocular pathogens: Current trends from the ARMOR surveillance study (2009–2016). Clin Optom 2019; 11: 15-26.
[http://dx.doi.org/10.2147/OPTO.S189115] [PMID: 30881168]
[4]
Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature 2016; 529(7586): 336-43.
[http://dx.doi.org/10.1038/nature17042] [PMID: 26791724]
[5]
Gebreyohannes G, Nyerere A, Bii C, Sbhatu DB. Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon 2019; 5(8): e02192.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02192] [PMID: 31463386]
[6]
Smith M. Antibiotic resistance mechanisms. World Sci 2017; 2017(95): 99.
[http://dx.doi.org/10.1142/9789813209558_0015]
[7]
Wang CH, Hsieh YH, Powers ZM, Kao CY. Defeating antibiotic-resistant bacteria: Exploring alternative therapies for a post-antibiotic era. Int J Mol Sci 2020; 21(3): 1061.
[http://dx.doi.org/10.3390/ijms21031061] [PMID: 32033477]
[8]
Belyhun Y, Moges F, Endris M, et al. Ocular bacterial infections and antibiotic resistance patterns in patients attending Gondar Teaching Hospital, Northwest Ethiopia. BMC Res Notes 2018; 11(1): 597.
[http://dx.doi.org/10.1186/s13104-018-3705-y] [PMID: 30119696]
[9]
Das S, D’Souza S, Gorimanipalli B, Shetty R, Ghosh A, Deshpande V. Ocular surface infection mediated molecular stress responses: A review. Int J Mol Sci 2022; 23(6): 3111.
[http://dx.doi.org/10.3390/ijms23063111] [PMID: 35328532]
[10]
McDonald M, Blondeau JM. Emerging antibiotic resistance in ocular infections and the role of fluoroquinolones. J Cataract Refract Surg 2010; 36(9): 1588-98.
[http://dx.doi.org/10.1016/j.jcrs.2010.06.028] [PMID: 20692574]
[11]
Snyder RW, Glasser DB. Antibiotic therapy for ocular infection. West J Med 1994; 161(6): 579-84.
[PMID: 7856158]
[12]
Tasneem U, Yasin N, Nisa I, et al. Biofilm producing bacteria: A serious threat to public health in developing countries. Journal of Food Science and Nutrition 2018; 1(2): 1-8.
[http://dx.doi.org/10.35841/food-science.1.2.25-31]
[13]
Shih PC, Huang CT. Effects of quorum-sensing deficiency on Pseudomonas aeruginosa biofilm formation and antibiotic resistance. J Antimicrob Chemother 2002; 49(2): 309-14.
[http://dx.doi.org/10.1093/jac/49.2.309] [PMID: 11815572]
[14]
Zegans ME, Shanks RMQ, O’toole GA. Bacterial biofilms and ocular infections. Ocul Surf 2005; 3(2): 73-80.
[http://dx.doi.org/10.1016/S1542-0124(12)70155-6] [PMID: 17131010]
[15]
Bispo P, Haas W, Gilmore M. Biofilms in infections of the eye. Pathogens 2015; 4(1): 111-36.
[http://dx.doi.org/10.3390/pathogens4010111] [PMID: 25806622]
[16]
Yam JKH, Aung TT, Chua SL, et al. Elevated c-di-GMP levels and expression of the type III secretion system promote corneal infection by Pseudomonas aeruginosa. Infect Immun 2022; 90(8): e00061-22.
[http://dx.doi.org/10.1128/iai.00061-22] [PMID: 35913171]
[17]
Shanks RMQ, Stella NA, Brothers KM, Romanowski EG. ranscriptomic and Proteomic analysis identifies a role for a bacterial stress response regulator in cytotoxicity to corneal epithelial cells and biofilm formation. Invest Ophthalmol Vis Sci 2022; 63(7): 1673.
[18]
Romanowski EG, Stella NA, Brazile BL, et al. Predatory bacteria can reduce Pseudomonas aeruginosa induced corneal perforation and proliferation in a rabbit keratitis model. Ocul Surf 2023; 28: 254-61.
[http://dx.doi.org/10.1016/j.jtos.2023.05.002] [PMID: 37146902]
[19]
Singh S, Singh SK, Chowdhury I, Singh R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J 2017; 11(1): 53-62.
[http://dx.doi.org/10.2174/1874285801711010053] [PMID: 28553416]
[20]
Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 2017; 41(3): 276-301.
[http://dx.doi.org/10.1093/femsre/fux010] [PMID: 28369412]
[21]
Saeki EK, Kobayashi RKT, Nakazato G. Quorum sensing system: Target to control the spread of bacterial infections. Microb Pathog 2020; 142: 104068.
[http://dx.doi.org/10.1016/j.micpath.2020.104068] [PMID: 32061914]
[22]
Windsor J. How quorum sensing works. Am Soc Microbiol 2020; 2020: 1-7.
[23]
Skindersoe ME, Alhede M, Phipps R, et al. Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2008; 52(10): 3648-63.
[http://dx.doi.org/10.1128/AAC.01230-07] [PMID: 18644954]
[24]
Mohamed E, Nawar A, Hegazy E. Insight into quorum sensing genes LasR and RhlR, their related virulence factors and antibiotic resistance pattern in Pseudomonas aeruginosa isolated from ocular Infections. Microbes and Infectious Diseases 2023; 0(0): 0.
[http://dx.doi.org/10.21608/mid.2023.197968.1480]
[25]
Zhu H, Bandara R, Conibear TCR, et al. Pseudomonas aeruginosa with lasI quorum-sensing deficiency during corneal infection. Invest Ophthalmol Vis Sci 2004; 45(6): 1897-903.
[http://dx.doi.org/10.1167/iovs.03-0980] [PMID: 15161855]
[26]
Nadell CD, Xavier JB, Levin SA, Foster KR. The evolution of quorum sensing in bacterial biofilms. PLoS Biol 2008; 6(1): e14.
[http://dx.doi.org/10.1371/journal.pbio.0060014]
[27]
Parsek MR, Greenberg EP. Sociomicrobiology: The connections between quorum sensing and biofilms. Trends Microbiol 2005; 13(1): 27-33.
[http://dx.doi.org/10.1016/j.tim.2004.11.007] [PMID: 15639629]
[28]
Shivaji S, Nagapriya B, Ranjith K. Differential susceptibility of mixed polymicrobial biofilms involving ocular coccoid bacteria (Staphylococcus aureus and S. epidermidis) and a filamentous fungus (Fusarium solani) on ex vivo human corneas. Microorganisms 2023; 11(2): 413.
[http://dx.doi.org/10.3390/microorganisms11020413] [PMID: 36838378]
[29]
Donné J, Dewilde S. The challenging world of biofilm physiology. (1st ed.). United Kingdom: Elsevier Ltd. 2015; p. 67.
[http://dx.doi.org/10.1016/bs.ampbs.2015.09.003]
[30]
Di Domenico EG, Oliva A, Guembe M. The current knowledge on the pathogenesis of tissue and medical device-related biofilm infections. Microorganisms 2022; 10(7): 1259.
[http://dx.doi.org/10.3390/microorganisms10071259] [PMID: 35888978]
[31]
Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 2002; 292(2): 107-13.
[http://dx.doi.org/10.1078/1438-4221-00196] [PMID: 12195733]
[32]
Bjarnsholt T. The role of bacterial biofilms in chronic infections. Acta Pathol Microbiol Scand Suppl 2013; 121(136): 1-58.
[http://dx.doi.org/10.1111/apm.12099] [PMID: 23635385]
[33]
Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N. A review on antibiotic resistance: Alarm bells are ringing. Cureus 2017; 9(6): e1403.
[http://dx.doi.org/10.7759/cureus.1403] [PMID: 28852600]
[34]
Wang S, Li J, Cao Y, Gu J, Wang Y, Chen S. Non-Leaching, Rapid bactericidal and biocompatible polyester fabrics finished with benzophenone Terminated N-halamine. Adv Fiber Mater 2022; 4(1): 119-28.
[http://dx.doi.org/10.1007/s42765-021-00100-z] [PMID: 35359822]
[35]
Chen S, Zhang S, Galluzzi M, et al. Insight into multifunctional polyester fabrics finished by one-step eco-friendly strategy. Chem Eng J 2019; 358: 634-42.
[http://dx.doi.org/10.1016/j.cej.2018.10.070]
[36]
Li N, Pranantyo D, Kang ET, Wright DS, Luo HK. In Situ Self-Assembled polyoxotitanate cages on flexible cellulosic substrates: Multifunctional coating for hydrophobic, antibacterial, and UV-Blocking applications. Adv Funct Mater 2018; 28(23): 1800345.
[http://dx.doi.org/10.1002/adfm.201800345]
[37]
Zhou M, Qian Y, Xie J, et al. Poly(2-Oxazoline)-Based Functional Peptide Mimics: Eradicating MRSA infections and persisters while alleviating antimicrobial resistance. Angew Chem Int Ed 2020; 59(16): 6412-9.
[http://dx.doi.org/10.1002/anie.202000505] [PMID: 32083767]
[38]
Wang M, Zhang M, Pang L, Yang C, Zhang Y, Hu J, et al. Fabrication of highly durable polysiloxane-zinc oxide (ZnO) coated polyethylene terephthalate (PET) fabric with improved ultraviolet resistance, hydrophobicity, and thermal resistance In:J Colloid Interface Sci. Amsterdam: Elsevier Inc. 2019; p. 537.
[http://dx.doi.org/10.1016/j.jcis.2018.10.105]
[39]
Brindhadevi K. LewisOscar F, Mylonakis E, Shanmugam S, Verma TN, Pugazhendhi A. Biofilm and Quorum sensing mediated pathogenicity in Pseudomonas aeruginosa. Process Biochem 2020; 96: 49-57.
[http://dx.doi.org/10.1016/j.procbio.2020.06.001]
[40]
Ouyang J, Sun F, Feng W, et al. Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. J Appl Microbiol 2016; 120(4): 966-74.
[http://dx.doi.org/10.1111/jam.13073] [PMID: 26808465]
[41]
Das R, Mehta DK. Microbial biofilm and quorum sensing inhibition: Endowment of medicinal plants to combat multidrug-resistant bacteria. Curr Drug Targets 2018; 19(16): 1916-32.
[http://dx.doi.org/10.2174/1389450119666180406111143] [PMID: 29623836]
[42]
Asfour H. Anti-quorum sensing natural compounds. J Microsc Ultrastruct 2018; 6(1): 1-10.
[http://dx.doi.org/10.4103/JMAU.JMAU_10_18] [PMID: 30023261]
[43]
Manner S, Fallarero A. Screening of natural product derivatives identifies two structurally related flavonoids as potent quorum sensing inhibitors against gram-negative bacteria. Int J Mol Sci 2018; 19(5): 1346.
[http://dx.doi.org/10.3390/ijms19051346] [PMID: 29751512]
[44]
Thabit AK, Eljaaly K, Zawawi A, et al. Muting bacterial communication: evaluation of prazosin anti-quorum sensing activities against gram-negative bacteria Pseudomonas aeruginosa, Proteus mirabilis, and Serratia marcescens. Biology 2022; 11(9): 1349.
[http://dx.doi.org/10.3390/biology11091349] [PMID: 36138828]
[45]
Kalia VC, Patel SKS, Kang YC, Lee JK. Quorum sensing inhibitors as antipathogens: Biotechnological applications. Biotechnol Adv 2019; 37(1): 68-90.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.006] [PMID: 30471318]
[46]
Bose SK, Nirbhavane P, Batra M, Chhibber S, Harjai K. Nanolipoidal α-terpineol modulates quorum sensing regulated virulence and biofilm formation in Pseudomonas aeruginosa. Nanomedicine 2020; 15(18): 1743-60.
[http://dx.doi.org/10.2217/nnm-2020-0134] [PMID: 32722996]
[47]
Skindersoe ME, Ettinger-Epstein P, Rasmussen TB, Bjarnsholt T, de Nys R, Givskov M. Quorum sensing antagonism from marine organisms. Mar Biotechnol 2008; 10(1): 56-63.
[http://dx.doi.org/10.1007/s10126-007-9036-y] [PMID: 17952508]
[48]
Musthafa KS, Ravi AV, Annapoorani A, Packiavathy ISV, Pandian SK. Evaluation of anti-quorum-sensing activity of edible plants and fruits through inhibition of the N-acyl-homoserine lactone system in Chromobacterium violaceum and Pseudomonas aeruginosa. Chemotherapy 2010; 56(4): 333-9.
[http://dx.doi.org/10.1159/000320185] [PMID: 20720417]
[49]
Niu C, Gilbert ES. Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Appl Environ Microbiol 2004; 70(12): 6951-6.
[http://dx.doi.org/10.1128/AEM.70.12.6951-6956.2004] [PMID: 15574886]
[50]
Girennavar B, Cepeda ML, Soni KA, et al. Grapefruit juice and its furocoumarins inhibits autoinducer signaling and biofilm formation in bacteria. Int J Food Microbiol 2008; 125(2): 204-8.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2008.03.028] [PMID: 18504060]
[51]
Vandeputte OM, Kiendrebeogo M, Rajaonson S, et al. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 2010; 76(1): 243-53.
[http://dx.doi.org/10.1128/AEM.01059-09] [PMID: 19854927]
[52]
Geske GD, Wezeman RJ, Siegel AP, Blackwell HE. Small molecule inhibitors of bacterial quorum sensing and biofilm formation. J Am Chem Soc 2005; 127(37): 12762-3.
[http://dx.doi.org/10.1021/ja0530321] [PMID: 16159245]
[53]
Yang L, Rybtke MT, Jakobsen TH, et al. Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors. Antimicrob Agents Chemother 2009; 53(6): 2432-43.
[http://dx.doi.org/10.1128/AAC.01283-08] [PMID: 19364871]
[54]
Pan J, Ren D. Quorum sensing inhibitors: A patent overview. Expert Opin Ther Pat 2009; 19(11): 1581-601.
[http://dx.doi.org/10.1517/13543770903222293] [PMID: 19732032]
[55]
Bhardwaj AK, Vinothkumar K, Rajpara N. Bacterial quorum sensing inhibitors: Attractive alternatives for control of infectious pathogens showing multiple drug resistance. Recent Pat Antiinfect Drug Discov 2013; 8(1): 68-83.
[http://dx.doi.org/10.2174/1574891X11308010012] [PMID: 23394143]
[56]
Yang L, Yi Y. Data PP. (12) US 2002/0198163 A1, 2018.
[57]
Swanson R. Non - lactone carbocyclic modulators of bacterial quorum sensing. US20170334835A1, 2021.
[58]
Shkodenko L, Kassirov I, Koshel E. Metal oxide nanoparticles against bacterial biofilms: Perspectives and limitations. Microorganisms 2020; 8(10): 1545.
[http://dx.doi.org/10.3390/microorganisms8101545] [PMID: 33036373]
[59]
Lee HW, Chye S, Loo J. Lipid-coated hybrid nanoparticles for enhanced bacterial biofilm penetration and antibiofilm efficacy. ACS Omega 2022; 7(40): 35814-24.
[http://dx.doi.org/10.1021/acsomega.2c04008]
[60]
Hallan SS, Marchetti P, Bortolotti D, et al. Design of nanosystems for the delivery of quorum sensing inhibitors: A preliminary study. Molecules 2020; 25(23): 5655.
[http://dx.doi.org/10.3390/molecules25235655] [PMID: 33266241]
[61]
Liu Y, Shi L, Su L, et al. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem Soc Rev 2019; 48(2): 428-46.
[http://dx.doi.org/10.1039/C7CS00807D] [PMID: 30601473]
[62]
Dos Santos Ramos MA, Da Silva P, Spósito L, et al. Nanotechnology-based drug delivery systems for control of microbial biofilms: A review. Int J Nanomedicine 2018; 13: 1179-213.
[http://dx.doi.org/10.2147/IJN.S146195] [PMID: 29520143]
[63]
Ramasamy M, Lee J. Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. BioMed Res Int 2016; 2016: 1-17.
[http://dx.doi.org/10.1155/2016/1851242] [PMID: 27872845]
[64]
Makabenta JMV, Park J, Li CH, et al. Polymeric nanoparticles active against dual-species bacterial biofilms. Molecules 2021; 26(16): 4958.
[http://dx.doi.org/10.3390/molecules26164958] [PMID: 34443542]
[65]
Li C, Cornel EJ, Du J. Advances and prospects of polymeric particles for the treatment of bacterial biofilms. ACS Appl Polym Mater 2021; 3(5): 2218-32.
[http://dx.doi.org/10.1021/acsapm.1c00003]
[66]
Rade PP, Giram PS, Shitole AA, Sharma N, Garnaik B. Physicochemical and in vitro antibacterial evaluation of metronidazole loaded eudragit s-100 nanofibrous mats for the intestinal drug delivery. Advanced Fiber Materials 2022; 4(1): 76-88.
[http://dx.doi.org/10.1007/s42765-021-00090-y]
[67]
Bonadies I, Maglione L, Ambrogi V, et al. Electrospun core/shell nanofibers as designed devices for efficient Artemisinin delivery. Eur Polym J 2017; 89: 211-20.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.02.015]
[68]
Shitole AA, Giram PS, Raut PW, et al. Clopidogrel eluting electrospun polyurethane/polyethylene glycol thromboresistant, hemocompatible nanofibrous scaffolds. J Biomater Appl 2019; 33(10): 1327-47.
[http://dx.doi.org/10.1177/0885328219832984] [PMID: 30880549]
[69]
Xia GX, Wu YM, Bi YF, Chen K, Zhang WW, Liu SQ, et al. Antimicrobial properties and application of polysaccharides and their derivatives. Chin J Polym Sci 2020; 39(2): 1-14.
[http://dx.doi.org/10.1007/s10118-021-2506-2]
[70]
Khan F, Manivasagan P, Pham DTN, Oh J, Kim SK, Kim YM. Antibiofilm and antivirulence properties of chitosan-polypyrrole nanocomposites to Pseudomonas aeruginosa. Microb Pathog 2019; 128: 363-73.
[http://dx.doi.org/10.1016/j.micpath.2019.01.033] [PMID: 30684638]
[71]
Ghafoorianfar S, Ghorani-Azam A, Mohajeri SA, Farzin D. Efficiency of nanoparticles for treatment of ocular infections: Systematic literature review. J Drug Deliv Sci Technol 2020; 57: 101765.
[http://dx.doi.org/10.1016/j.jddst.2020.101765]
[72]
Bandara HMHN, Hewavitharana AK, Shaw PN, Smyth HDC, Samaranayake LP. A novel, quorum sensor-infused liposomal drug delivery system suppresses Candida albicans biofilms. Int J Pharm 2020; 578: 119096.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119096] [PMID: 32006626]
[73]
Olar R, Badea M, Chifiriuc MC. Metal complexes—a promising approach to target biofilm associated infections. Molecules 2022; 27(3): 758.
[http://dx.doi.org/10.3390/molecules27030758] [PMID: 35164021]
[74]
Alhajlan M, Alhariri M, Omri A. Efficacy and safety of liposomal clarithromycin and its effect on Pseudomonas aeruginosa virulence factors. Antimicrob Agents Chemother 2013; 57(6): 2694-704.
[http://dx.doi.org/10.1128/AAC.00235-13] [PMID: 23545534]
[75]
Teixeira PC, Leite GM, Domingues RJ, Silva J, Gibbs PA, Ferreira JP. Antimicrobial effects of a microemulsion and a nanoemulsion on enteric and other pathogens and biofilms. Int J Food Microbiol 2007; 118(1): 15-9.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2007.05.008] [PMID: 17610974]
[76]
Al-Adham ISI, Al-Hmoud ND, Khalil E, Kierans M, Collier PJ. Microemulsions are highly effective anti-biofilm agents. Lett Appl Microbiol 2003; 36(2): 97-100.
[http://dx.doi.org/10.1046/j.1472-765X.2003.01266.x] [PMID: 12535129]
[77]
Brackman G, Garcia-Fernandez MJ, Lenoir J, et al. Dressings loaded with cyclodextrin-hamamelitannin complexes Increase Staphylococcus aureus susceptibility toward antibiotics both in single as well as in mixed biofilm communities. Macromol Biosci 2016; 16(6): 859-69.
[http://dx.doi.org/10.1002/mabi.201500437] [PMID: 26891369]
[78]
Alayande AB, Kim LH, Kim IS. Cleaning efficacy of hydroxypropyl-beta-cyclodextrin for biofouling reduction on reverse osmosis membranes. Biofouling 2016; 32(4): 359-70.
[http://dx.doi.org/10.1080/08927014.2016.1151008] [PMID: 26923225]
[79]
Shanmuga Priya A, Sivakamavalli J, Vaseeharan B, Stalin T. Improvement on dissolution rate of inclusion complex of Rifabutin drug with β-cyclodextrin. Int J Biol Macromol 2013; 62: 472-80.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.09.006] [PMID: 24076034]
[80]
Nafee N, Husari A, Maurer CK, et al. Antibiotic-free nanotherapeutics: Ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J Control Release 2014; 192: 131-40.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.055] [PMID: 24997276]
[81]
Taylor EN, Kummer KM, Dyondi D, Webster TJ, Banerjee R. Multi-scale strategy to eradicate Pseudomonas aeruginosa on surfaces using solid lipid nanoparticles loaded with free fatty acids. Nanoscale 2014; 6(2): 825-32.
[http://dx.doi.org/10.1039/C3NR04270G] [PMID: 24264141]
[82]
Scott C, Abdelghany , Quinn , et al. Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection. Int J Nanomedicine 2012; 7: 4053-63.
[http://dx.doi.org/10.2147/IJN.S34341] [PMID: 22915848]
[83]
Gurunathan S, Han JW, Kwon DN, Kim JH. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res Lett 2014; 9(1): 373.
[http://dx.doi.org/10.1186/1556-276X-9-373] [PMID: 25136281]
[84]
Boda SK, Broda J, Schiefer F, et al. Cytotoxicity of ultrasmall gold nanoparticles on planktonic and biofilm encapsulated gram-positive staphylococci. Small 2015; 11(26): 3183-93.
[http://dx.doi.org/10.1002/smll.201403014] [PMID: 25712910]
[85]
Sathyanarayanan MB, Balachandranath R, Genji Srinivasulu Y, Kannaiyan SK, Subbiahdoss G. The effect of gold and iron-oxide nanoparticles on biofilm-forming pathogens. ISRN Microbiol 2013; 2013: 1-5.
[http://dx.doi.org/10.1155/2013/272086] [PMID: 24187645]
[86]
Wang G, Wang L, Meng Z, et al. Visual detection of COVID-19 from materials aspect. Adv Fiber Mater 2022; 4(6): 1304-33.
[http://dx.doi.org/10.1007/s42765-022-00179-y] [PMID: 35966612]
[87]
Zhou Y, Wu J, Li Y, et al. Fabrication of sulfated silk fibroin-based blend nanofibrous membranes for Lysozyme adsorption. Adv Fiber Mater 2022; 4(1): 89-97.
[http://dx.doi.org/10.1007/s42765-021-00104-9]
[88]
Reda R, Wen MM, El-Kamel A. Ketoprofen-loaded Eudragit electrospun nanofibers for the treatment of oral mucositis. Int J Nanomedicine 2017; 12: 2335-51.
[http://dx.doi.org/10.2147/IJN.S131253] [PMID: 28392691]
[89]
Alhajj N, Reilly NJO, Cathcart H. Development and characterization of a spray-dried inhalable ciprofloxacin-quercetin co-amorphous system. Int J Pharm 2022; 618: 121657.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121657]
[90]
Vasudevan S, Swamy SS, Kaur G, Princy SA, Balamurugan P. Synergism between quorum sensing inhibitors and antibiotics: Combating the antibiotic resistance crisis Biotechnological Applications of Quorum Sensing Inhibitors. Amsterdam: Elsevier 2018; pp. 209-25.
[http://dx.doi.org/10.1007/978-981-10-9026-4_10]
[91]
Bari AK, Belalekar TS, Poojary A, Rohra S. Combination drug strategies for biofilm eradication using synthetic and natural agents in KAPE pathogens. Front Cell Infect Microbiol 2023; 13: 1155699.
[http://dx.doi.org/10.3389/fcimb.2023.1155699] [PMID: 37139491]
[92]
Subhaswaraj P, Barik S, Macha C, Chiranjeevi PV, Siddhardha B. Anti quorum sensing and anti biofilm efficacy of cinnamaldehyde encapsulated chitosan nanoparticles against Pseudomonas aeruginosa PAO1. Lebensm Wiss Technol 2018; 97: 752-9.
[http://dx.doi.org/10.1016/j.lwt.2018.08.011]
[93]
Badawy MSEM, Riad OKM, Taher FA, Zaki SA. Chitosan and chitosan-zinc oxide nanocomposite inhibit expression of LasI and RhlI genes and quorum sensing dependent virulence factors of Pseudomonas aeruginosa. Int J Biol Macromol 2020; 149: 1109-17.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.019] [PMID: 32032711]
[94]
Kalishwaralal K. BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B Biointerfaces 2010; 79(2): 340-4.
[http://dx.doi.org/10.1016/j.colsurfb.2010.04.014] [PMID: 20493674]
[95]
Mishra NM, Briers Y, Lamberigts C, et al. Evaluation of the antibacterial and antibiofilm activities of novel CRAMP–vancomycin conjugates with diverse linkers. Org Biomol Chem 2015; 13(27): 7477-86.
[http://dx.doi.org/10.1039/C5OB00830A] [PMID: 26068402]
[96]
Singh N, Romero M, Travanut A, et al. Dual bioresponsive antibiotic and quorum sensing inhibitor combination nanoparticles for treatment of Pseudomonas aeruginosa biofilms in vitro and ex vivo. Biomater Sci 2019; 7(10): 4099-111.
[http://dx.doi.org/10.1039/C9BM00773C] [PMID: 31355397]
[97]
Han H, Gao Y, Chai M, et al. Biofilm microenvironment activated supramolecular nanoparticles for enhanced photodynamic therapy of bacterial keratitis. J Control Release 2020; 327: 676-87.
[http://dx.doi.org/10.1016/j.jconrel.2020.09.014] [PMID: 32920078]
[98]
Alakkad A, Stapleton P, Schlosser C, et al. Amphotericin B polymer nanoparticles show efficacy against Candida species biofilms. Pathogens 2022; 11(1): 73.
[http://dx.doi.org/10.3390/pathogens11010073] [PMID: 35056021]
[99]
Werneburg GT, Hettel D, Adler A, et al. Biofilms on indwelling artificial urinary sphincter devices harbor complex microbe–metabolite interaction networks and reconstitute differentially in vitro by material type. Biomedicines 2023; 11(1): 215.
[http://dx.doi.org/10.3390/biomedicines11010215] [PMID: 36672723]
[100]
Shamim A, Ali A, Iqbal Z, et al. Natural medicine a promising candidate in combating microbial biofilm. Antibiotics 2023; 12(2): 299.
[http://dx.doi.org/10.3390/antibiotics12020299] [PMID: 36830210]
[101]
Mishra S, Gupta A, Upadhye V, Singh SC, Sinha RP, Häder DP. Therapeutic strategies against biofilm infections. Life 2023; 13(1): 172.
[http://dx.doi.org/10.3390/life13010172] [PMID: 36676121]
[102]
Christensen LD, van Gennip M, Jakobsen TH, et al. Synergistic antibacterial efficacy of early combination treatment with tobramycin and quorum-sensing inhibitors against Pseudomonas aeruginosa in an intraperitoneal foreign-body infection mouse model. J Antimicrob Chemother 2012; 67(5): 1198-206.
[http://dx.doi.org/10.1093/jac/dks002] [PMID: 22302561]
[103]
Abreu AC, Serra SC, Borges A, et al. Combinatorial activity of flavonoids with antibiotics against drug-resistant staphylococcus aureus. Microb Drug Resist 2015; 21(6): 600-9.
[http://dx.doi.org/10.1089/mdr.2014.0252] [PMID: 25734256]
[104]
Usman Amin M, Khurram M, Khan T, et al. Effects of luteolin and quercetin in combination with some conventional antibiotics against methicillin-resistant Staphylococcus aureus. Int J Mol Sci 2016; 17(11): 1947.
[http://dx.doi.org/10.3390/ijms17111947] [PMID: 27879665]
[105]
Si Z, Li J, Ruan L, et al. Designer co-beta-peptide copolymer selectively targets resistant and biofilm Gram-negative bacteria. Biomaterials 2023; 294: 122004.
[http://dx.doi.org/10.1016/j.biomaterials.2023.122004] [PMID: 36669302]