Effect of Withaferin-A, Withanone, and Caffeic Acid Phenethyl Ester on DNA Methyltransferases: Potential in Epigenetic Cancer Therapy

Page: [379 - 391] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: DNA methyltransferases (DNMTs) have been reported to be potential drug targets in various cancers. The major hurdle in inhibiting DNMTs is the lack of knowledge about different DNMTs and their role in the hypermethylation of gene promoters in cancer cells. Lack of information on specificity, stability, and higher toxicity of previously reported DNMT inhibitors is the major reason for inadequate epigenetic cancer therapy. DNMT1 and DNMT3A are the two DNMTs that are majorly overexpressed in cancers.

Objective: In this study, we have presented computational and experimental analyses of the potential of some natural compounds, withaferin A (Wi-A), withanone (Wi-N), and caffeic acid phenethyl ester (CAPE), as DNMT inhibitors, in comparison to sinefungin (SFG), a known dual inhibitor of DNMT1 and DNMT3A.

Methods: We used classical simulation methods, such as molecular docking and molecular dynamics simulations, to investigate the binding potential and properties of the test compounds with DNMT1 and DNMT3A. Cell culture-based assays were used to investigate the inactivation of DNMTs and the resulting hypomethylation of the p16INK4A promoter, a key tumour suppressor that is inactivated by hypermethylation in cancer cells, resulting in upregulation of its expression.

Results: Among the three test compounds (Wi-A, Wi-N, and CAPE), Wi-A showed the highest binding affinity to both DNMT1 and DNMT3A; CAPE showed the highest affinity to DNMT3A, and Wi-N showed a moderate affinity interaction with both. The binding energies of Wi-A and CAPE were further compared with SFG. Expression analysis of DNMTs showed no difference between control and treated cells. Cell viability and p16INK4A expression analysis showed a dose-dependent decrease in viability, an increase in p16INK4A, and a stronger effect of Wi-A compared to Wi-N and CAPE.

Conclusion: The study demonstrated the differential binding ability of Wi-A, Wi-N, and CAPE to DNMT1 and DNMT3A, which was associated with their inactivation, leading to hypomethylation and desilencing of the p16INK4A tumour suppressor in cancer cells. The test compounds, particularly Wi-A, have the potential for cancer therapy.

Graphical Abstract

[1]
Jones, P.A.; Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet., 2002, 3(6), 415-428.
[http://dx.doi.org/10.1038/nrg816] [PMID: 12042769]
[2]
Baxter, E.; Windloch, K.; Gannon, F.; Lee, J.S. Epigenetic regulation in cancer progression. Cell Biosci., 2014, 4(1), 45.
[http://dx.doi.org/10.1186/2045-3701-4-45] [PMID: 25949794]
[3]
Lu, Y.; Chan, Y.T.; Tan, H.Y.; Li, S.; Wang, N.; Feng, Y. Epigenetic regulation in human cancer: The potential role of epi-drug in cancer therapy. Mol. Cancer, 2020, 19(1), 79.
[http://dx.doi.org/10.1186/s12943-020-01197-3] [PMID: 32340605]
[4]
Rotondo, J.C.; Borghi, A.; Selvatici, R.; Magri, E.; Bianchini, E.; Montinari, E.; Corazza, M.; Virgili, A.; Tognon, M.; Martini, F. Hypermethylation-induced inactivation of the IRF6 gene as a possible early event in progression of vulvar squamous cell carcinoma associated with lichen sclerosus. JAMA Dermatol., 2016, 152(8), 928-933.
[http://dx.doi.org/10.1001/jamadermatol.2016.1336] [PMID: 27223861]
[5]
Robertson, K.D.; Wolffe, A.P. DNA methylation in health and disease. Nat. Rev. Genet., 2000, 1(1), 11-19.
[http://dx.doi.org/10.1038/35049533] [PMID: 11262868]
[6]
Lopez-Serra, P.; Esteller, M. DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene, 2012, 31(13), 1609-1622.
[http://dx.doi.org/10.1038/onc.2011.354] [PMID: 21860412]
[7]
Singh, N.; Rashid, S.; Rashid, S.; Dash, N.R.; Gupta, S.; Saraya, A. Clinical significance of promoter methylation status of tumor suppressor genes in circulating DNA of pancreatic cancer patients. J. Cancer Res. Clin. Oncol., 2020, 146(4), 897-907.
[http://dx.doi.org/10.1007/s00432-020-03169-y] [PMID: 32146565]
[8]
Egger, G.; Liang, G.; Aparicio, A.; Jones, P.A. Epigenetics in human disease and prospects for epigenetic therapy. Nature, 2004, 429(6990), 457-463.
[http://dx.doi.org/10.1038/nature02625] [PMID: 15164071]
[9]
Falahi, F.; van Kruchten, M.; Martinet, N.; Hospers, G.; Rots, M.G. Current and upcoming approaches to exploit the reversibility of epigenetic mutations in breast cancer. Breast Cancer Res., 2014, 16(4), 412.
[http://dx.doi.org/10.1186/s13058-014-0412-z] [PMID: 25410383]
[10]
Okano, M.; Xie, S.; Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet., 1998, 19(3), 219-220.
[http://dx.doi.org/10.1038/890] [PMID: 9662389]
[11]
Struck, A.W.; Thompson, M.L.; Wong, L.S.; Micklefield, J. S-adenosyl-methionine-dependent methyltransferases: highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications. ChemBioChem, 2012, 13(18), 2642-2655.
[http://dx.doi.org/10.1002/cbic.201200556] [PMID: 23180741]
[12]
Abdel-Hafiz, H.A.; Horwitz, K.B. Role of epigenetic modifications in luminal breast cancer. Epigenomics, 2015, 7(5), 847-862.
[http://dx.doi.org/10.2217/epi.15.10] [PMID: 25689414]
[13]
Blair, L.P.; Yan, Q. Epigenetic mechanisms in commonly occurring cancers. DNA Cell Biol., 2012, 31(S1)(Suppl. 1), S-49-S-61.
[http://dx.doi.org/10.1089/dna.2012.1654] [PMID: 22519822]
[14]
Szyf, M.; Detich, N. Regulation of the DNA methylation machinery and its role in cellular transformation. Prog. Nucleic Acid Res. Mol. Biol., 2001, 69, 47-79.
[http://dx.doi.org/10.1016/S0079-6603(01)69044-5] [PMID: 11550798]
[15]
Robertson, K.D.; Keyomarsi, K.; Gonzales, F.A.; Velicescu, M.; Jones, P.A. Differential mRNA expression of the human DNA methyltransferases (DNMTs) 1, 3a and 3b during the G0/G1 to S phase transition in normal and tumor cells. Nucleic Acids Res., 2000, 28(10), 2108-2113.
[http://dx.doi.org/10.1093/nar/28.10.2108] [PMID: 10773079]
[16]
Mutze, K.; Langer, R.; Schumacher, F.; Becker, K.; Ott, K.; Novotny, A.; Hapfelmeier, A.; Höfler, H.; Keller, G. DNA methyltransferase 1 as a predictive biomarker and potential therapeutic target for chemotherapy in gastric cancer. Eur. J. Cancer, 2011, 47(12), 1817-1825.
[http://dx.doi.org/10.1016/j.ejca.2011.02.024] [PMID: 21458988]
[17]
Xie, T.; Yu, J.; Fu, W.; Wang, Z.; Xu, L.; Chang, S.; Wang, E.; Zhu, F.; Zeng, S.; Kang, Y.; Hou, T. Insight into the selective binding mechanism of DNMT1 and DNMT3A inhibitors: A molecular simulation study. Phys. Chem. Chem. Phys., 2019, 21(24), 12931-12947.
[http://dx.doi.org/10.1039/C9CP02024A] [PMID: 31165133]
[18]
Zagorac, S.; Alcala, S.; Fernandez Bayon, G.; Bou Kheir, T.; Schoenhals, M.; González-Neira, A.; Fernandez Fraga, M.; Aicher, A.; Heeschen, C.; Sainz, B., Jr DNMT1 inhibition reprograms pancreatic cancer stem cells via upregulation of the miR-17-92 cluster. Cancer Res., 2016, 76(15), 4546-4558.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3268] [PMID: 27261509]
[19]
Okano, M.; Bell, D.W.; Haber, D.A.; Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999, 99(3), 247-257.
[http://dx.doi.org/10.1016/S0092-8674(00)81656-6] [PMID: 10555141]
[20]
Choi, S.H.; Heo, K.; Byun, H.M.; An, W.; Lu, W.; Yang, A.S. Identification of preferential target sites for human DNA methyltransferases. Nucleic Acids Res., 2011, 39(1), 104-118.
[http://dx.doi.org/10.1093/nar/gkq774] [PMID: 20841325]
[21]
Jurkowska, R.Z.; Jurkowski, T.P.; Jeltsch, A. Structure and function of mammalian DNA methyltransferases. ChemBioChem, 2011, 12(2), 206-222.
[http://dx.doi.org/10.1002/cbic.201000195] [PMID: 21243710]
[22]
Ostler, K.R.; Davis, E.M.; Payne, S.L.; Gosalia, B.B.; Expósito-Céspedes, J.; Beau, M.M.L.; Godley, L.A. Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins. Oncogene, 2007, 26(38), 5553-5563.
[http://dx.doi.org/10.1038/sj.onc.1210351] [PMID: 17353906]
[23]
Gordon, C.A.; Hartono, S.R.; Chédin, F. Inactive DNMT3B splice variants modulate de novo DNA methylation. PLoS One, 2013, 8(7), e69486.
[http://dx.doi.org/10.1371/journal.pone.0069486] [PMID: 23894490]
[24]
Barau, J.; Teissandier, A.; Zamudio, N.; Roy, S.; Nalesso, V.; Hérault, Y.; Guillou, F.; Bourc’his, D. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science, 2016, 354(6314), 909-912.
[http://dx.doi.org/10.1126/science.aah5143] [PMID: 27856912]
[25]
Brueckner, B.; Garcia Boy, R.; Siedlecki, P.; Musch, T.; Kliem, H.C.; Zielenkiewicz, P.; Suhai, S.; Wiessler, M.; Lyko, F. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res., 2005, 65(14), 6305-6311.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2957] [PMID: 16024632]
[26]
Esteller, M. Epigenetics in cancer. N. Engl. J. Med., 2008, 358(11), 1148-1159.
[http://dx.doi.org/10.1056/NEJMra072067] [PMID: 18337604]
[27]
Liao, F. Discovery of Artemisinin (Qinghaosu). Molecules, 2009, 14(12), 5362-6.
[28]
Papadatos-Pastos, D.; Yuan, W.; Pal, A.; Crespo, M.; Ferreira, A.; Gurel, B.; Prout, T.; Ameratunga, M.; Chénard-Poirier, M.; Curcean, A.; Bertan, C.; Baker, C.; Miranda, S.; Masrour, N.; Chen, W.; Pereira, R.; Figueiredo, I.; Morilla, R.; Jenkins, B.; Zachariou, A.; Riisnaes, R.; Parmar, M.; Turner, A.; Carreira, S.; Yap, C.; Brown, R.; Tunariu, N.; Banerji, U.; Lopez, J.; de Bono, J.; Minchom, A. Phase 1, dose-escalation study of guadecitabine (SGI-110) in combination with pembrolizumab in patients with solid tumors. J. Immunother. Cancer, 2022, 10(6), e004495.
[http://dx.doi.org/10.1136/jitc-2022-004495] [PMID: 35717027]
[29]
Liu, Z.; Xie, Z.; Jones, W.; Pavlovicz, R.E.; Liu, S.; Yu, J.; Li, P.; Lin, J.; Fuchs, J.R.; Marcucci, G.; Li, C.; Chan, K.K. Curcumin is a potent DNA hypomethylation agent. Bioorg. Med. Chem. Lett., 2009, 19(3), 706-709.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.041] [PMID: 19112019]
[30]
Yu, J.; Peng, Y.; Wu, L.C.; Xie, Z.; Deng, Y.; Hughes, T.; He, S.; Mo, X.; Chiu, M.; Wang, Q.E.; He, X.; Liu, S.; Grever, M.R.; Chan, K.K.; Liu, Z. Curcumin down-regulates DNA methyltransferase 1 and plays an anti-leukemic role in acute myeloid leukemia. PLoS One, 2013, 8(2), e55934.
[http://dx.doi.org/10.1371/journal.pone.0055934] [PMID: 23457487]
[31]
Lee, W.J.; Shim, J.Y.; Zhu, B.T. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol. Pharmacol., 2005, 68(4), 1018-1030.
[http://dx.doi.org/10.1124/mol.104.008367] [PMID: 16037419]
[32]
Tan, S.; Wang, C.; Lu, C.; Zhao, B.; Cui, Y.; Shi, X.; Ma, X. Quercetin is able to demethylate the p16INK4a gene promoter. Chemotherapy, 2009, 55(1), 6-10.
[http://dx.doi.org/10.1159/000166383] [PMID: 18974642]
[33]
Weng, J.R.; Lai, I.L.; Yang, H.C.; Lin, C.N.; Bai, L.Y. Identification of kazinol Q, a natural product from Formosan plants, as an inhibitor of DNA methyltransferase. Phytother. Res., 2014, 28(1), 49-54.
[http://dx.doi.org/10.1002/ptr.4955] [PMID: 23447335]
[34]
Cherblanc, F.L.; Davidson, R.W.M.; Di Fruscia, P.; Srimongkolpithak, N.; Fuchter, M.J. Perspectives on natural product epigenetic modulators in chemical biology and medicine. Nat. Prod. Rep., 2013, 30(5), 605-624.
[http://dx.doi.org/10.1039/c3np20097c] [PMID: 23396528]
[35]
Kuck, D.; Caulfield, T.; Lyko, F.; Medina-Franco, J.L. Nanaomycin A selectively inhibits DNMT3B and reactivates silenced tumor suppressor genes in human cancer cells. Mol. Cancer Ther., 2010, 9(11), 3015-3023.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0609] [PMID: 20833755]
[36]
Mirza, S.; Sharma, G.; Parshad, R.; Gupta, S.D.; Pandya, P.; Ralhan, R. Expression of DNA methyltransferases in breast cancer patients and to analyze the effect of natural compounds on DNA methyltransferases and associated proteins. J. Breast Cancer, 2013, 16(1), 23-31.
[http://dx.doi.org/10.4048/jbc.2013.16.1.23] [PMID: 23593078]
[37]
Royston, K.; Udayakumar, N.; Lewis, K.; Tollefsbol, T. A novel combination of withaferin A and sulforaphane inhibits epigenetic machinery, cellular viability and induces apoptosis of breast cancer cells. Int. J. Mol. Sci., 2017, 18(5), 1092.
[http://dx.doi.org/10.3390/ijms18051092] [PMID: 28534825]
[38]
Su, Z.Y.; Khor, T.O.; Shu, L.; Lee, J.H.; Saw, C.L.L.; Wu, T.Y.; Huang, Y.; Suh, N.; Yang, C.S.; Conney, A.H.; Wu, Q.; Kong, A.N.T. Epigenetic reactivation of Nrf2 in murine prostate cancer TRAMP C1 cells by natural phytochemicals Z-ligustilide and Radix angelica sinensis via promoter CpG demethylation. Chem. Res. Toxicol., 2013, 26(3), 477-485.
[http://dx.doi.org/10.1021/tx300524p] [PMID: 23441843]
[39]
Xie, Q.; Bai, Q.; Zou, L.Y.; Zhang, Q.Y.; Zhou, Y.; Chang, H.; Yi, L.; Zhu, J.D.; Mi, M.T. Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human breast cancer cells. Genes Chromosomes Cancer, 2014, 53(5), 422-431.
[http://dx.doi.org/10.1002/gcc.22154] [PMID: 24532317]
[40]
Akyol, S.; Ozturk, G.; Ginis, Z.; Armutcu, F.; Yigitoglu, M.R.; Akyol, O. In vivo and in vitro antıneoplastic actions of caffeic acid phenethyl ester (CAPE): therapeutic perspectives. Nutr. Cancer, 2013, 65(4), 515-526.
[http://dx.doi.org/10.1080/01635581.2013.776693] [PMID: 23659443]
[41]
Gao, R.; Shah, N.; Lee, J.S.; Katiyar, S.P.; Li, L.; Oh, E.; Sundar, D.; Yun, C.O.; Wadhwa, R.; Kaul, S.C. Withanone-rich combination of Ashwagandha withanolides restricts metastasis and angiogenesis through hnRNP-K. Mol. Cancer Ther., 2014, 13(12), 2930-2940.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0324] [PMID: 25236891]
[42]
Grover, A.; Priyandoko, D.; Gao, R.; Shandilya, A.; Widodo, N.; Bisaria, V.S.; Kaul, S.C.; Wadhwa, R.; Sundar, D. Withanone binds to mortalin and abrogates mortalin-p53 complex: Computational and experimental evidence. Int. J. Biochem. Cell Biol., 2012, 44(3), 496-504.
[http://dx.doi.org/10.1016/j.biocel.2011.11.021] [PMID: 22155302]
[43]
Grover, A.; Shandilya, A.; Bisaria, V.S.; Sundar, D. Probing the anticancer mechanism of prospective herbal drug Withaferin A on mammals: a case study on human and bovine proteasomes. BMC Genomics, 2010, 11(S4)(Suppl. 4), S15.
[http://dx.doi.org/10.1186/1471-2164-11-S4-S15] [PMID: 21143798]
[44]
Malik, V.; Kumar, V.; Kaul, S.C.; Wadhwa, R.; Sundar, D. Computational insights into the potential of withaferin-A, withanone and caffeic acid phenethyl ester for treatment of aberrant-EGFR driven lung cancers. Biomolecules, 2021, 11(2), 160.
[http://dx.doi.org/10.3390/biom11020160] [PMID: 33530424]
[45]
Yu, Y.; Katiyar, S.P.; Sundar, D.; Kaul, Z.; Miyako, E.; Zhang, Z.; Kaul, S.C.; Reddel, R.R.; Wadhwa, R. Withaferin-A kills cancer cells with and without telomerase: Chemical, computational and experimental evidences. Cell Death Dis., 2017, 8(4), e2755.
[http://dx.doi.org/10.1038/cddis.2017.33] [PMID: 28425984]
[46]
Gros, C.; Chauvigné, L.; Poulet, A.; Menon, Y.; Ausseil, F.; Dufau, I.; Arimondo, P.B. Development of a universal radioactive DNA methyltransferase inhibition test for high-throughput screening and mechanistic studies. Nucleic Acids Res., 2013, 41(19), e185.
[http://dx.doi.org/10.1093/nar/gkt753] [PMID: 23980028]
[47]
Valente, S.; Liu, Y.; Schnekenburger, M.; Zwergel, C.; Cosconati, S.; Gros, C.; Tardugno, M.; Labella, D.; Florean, C.; Minden, S.; Hashimoto, H.; Chang, Y.; Zhang, X.; Kirsch, G.; Novellino, E.; Arimondo, P.B.; Miele, E.; Ferretti, E.; Gulino, A.; Diederich, M.; Cheng, X.; Mai, A. Selective non-nucleoside inhibitors of human DNA methyltransferases active in cancer including in cancer stem cells. J. Med. Chem., 2014, 57(3), 701-713.
[http://dx.doi.org/10.1021/jm4012627] [PMID: 24387159]
[48]
Guo, X.; Wang, L.; Li, J.; Ding, Z.; Xiao, J.; Yin, X.; He, S.; Shi, P.; Dong, L.; Li, G.; Tian, C.; Wang, J.; Cong, Y.; Xu, Y. Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature, 2015, 517(7536), 640-644.
[http://dx.doi.org/10.1038/nature13899] [PMID: 25383530]
[49]
Glide, L. Protein Preparation Wizard, Prime, Desmond Molecular Dynamics System. In Maestro-Desmond Interoperability Tools; Schrödinger, LLC, 2020.
[50]
Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; Kaus, J.W.; Cerutti, D.S.; Krilov, G.; Jorgensen, W.L.; Abel, R.; Friesner, R.A. OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comput., 2016, 12(1), 281-296.
[http://dx.doi.org/10.1021/acs.jctc.5b00864] [PMID: 26584231]
[51]
Madhavi Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27(3), 221-234.
[http://dx.doi.org/10.1007/s10822-013-9644-8] [PMID: 23579614]
[52]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[53]
Fardi, M.; Solali, S.; Farshdousti Hagh, M. Epigenetic mechanisms as a new approach in cancer treatment: An updated review. Genes Dis., 2018, 5(4), 304-311.
[http://dx.doi.org/10.1016/j.gendis.2018.06.003] [PMID: 30591931]
[54]
Zhao, L.; Duan, Y.T.; Lu, P.; Zhang, Z.J.; Zheng, X.K.; Wang, J.L.; Feng, W.S. Epigenetic targets and their inhibitors in cancer therapy. Curr. Top. Med. Chem., 2019, 18(28), 2395-2419.
[http://dx.doi.org/10.2174/1568026619666181224095449] [PMID: 30582481]
[55]
Subramaniam, D.; Thombre, R.; Dhar, A.; Anant, S. DNA methyltransferases: A novel target for prevention and therapy. Front. Oncol., 2014, 4, 80.
[http://dx.doi.org/10.3389/fonc.2014.00080] [PMID: 24822169]
[56]
Zhang, W.; Xu, J. DNA methyltransferases and their roles in tumorigenesis. Biomark. Res., 2017, 5(1), 1.
[http://dx.doi.org/10.1186/s40364-017-0081-z] [PMID: 28127428]
[57]
Fabianowska-Majewska, K.; Kaufman-Szymczyk, A.; Szymanska-Kolba, A.; Jakubik, J.; Majewski, G.; Lubecka, K. Curcumin from turmeric rhizome: a potential modulator of dna methylation machinery in breast cancer inhibition. Nutrients, 2021, 13(2), 332.
[http://dx.doi.org/10.3390/nu13020332] [PMID: 33498667]
[58]
Aldawsari, F.S.; Aguayo-Ortiz, R.; Kapilashrami, K.; Yoo, J.; Luo, M.; Medina-Franco, J.L.; Velázquez-Martínez, C.A. Resveratrol-salicylate derivatives as selective DNMT3 inhibitors and anticancer agents. J. Enzyme Inhib. Med. Chem., 2016, 31(5), 695-703.
[http://dx.doi.org/10.3109/14756366.2015.1058256] [PMID: 26118420]
[59]
Fang, M.Z.; Wang, Y.; Ai, N.; Hou, Z.; Sun, Y.; Lu, H.; Welsh, W.; Yang, C.S. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res., 2003, 63(22), 7563-7570.
[PMID: 14633667]
[60]
Kedhari Sundaram, M.; Hussain, A.; Haque, S.; Raina, R.; Afroze, N. Quercetin modifies 5′CpG promoter methylation and reactivates various tumor suppressor genes by modulating epigenetic marks in human cervical cancer cells. J. Cell. Biochem., 2019, 120(10), 18357-18369.
[http://dx.doi.org/10.1002/jcb.29147] [PMID: 31172592]
[61]
Sari, A.N.; Bhargava, P.; Dhanjal, J.K.; Putri, J.F.; Radhakrishnan, N.; Shefrin, S.; Ishida, Y.; Terao, K.; Sundar, D.; Kaul, S.C.; Wadhwa, R. Combination of withaferin-A and CAPE provides superior anticancer potency: bioinformatics and experimental evidence to their molecular targets and mechanism of action. Cancers (Basel), 2020, 12(5), 1160-1172.
[http://dx.doi.org/10.3390/cancers12051160] [PMID: 32380701]
[62]
Sari, A.N.; Dhanjal, J.K.; Elwakeel, A.; Kumar, V.; Meidinna, H.N.; Zhang, H.; Ishida, Y.; Terao, K.; Sundar, D.; Kaul, S.C.; Wadhwa, R. A low dose combination of withaferin A and caffeic acid phenethyl ester possesses anti-metastatic potential in vitro: Molecular targets and mechanisms. Cancers (Basel), 2022, 14(3), 787-790.
[http://dx.doi.org/10.3390/cancers14030787] [PMID: 35159054]