Bioinformatic Resources for Plant Genomic Research

Page: [513 - 529] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Genome assembly and annotation are crucial steps in plant genomics research as they provide valuable insights into plant genetic makeup, gene regulation, evolutionary history, and biological processes. In the emergence of high-throughput sequencing technologies, a plethora of genome assembly tools have been developed to meet the diverse needs of plant genome researchers. Choosing the most suitable tool to suit a specific research need can be daunting due to the complex and varied nature of plant genomes and reads from the sequencers. To assist informed decision-making in selecting the appropriate genome assembly and annotation tool(s), this review offers an extensive overview of the most widely used genome and transcriptome assembly tools. The review covers the specific information on each tool in tabular data, and the data types it can process. In addition, the review delves into transcriptome assembly tools, plant resource databases, and repositories (12 for Arabidopsis, 9 for Rice, 5 for Tomato, and 8 general use resources), which are vital for gene expression profiling and functional annotation and ontology tools that facilitate data integration and analysis.

[1]
Bevan M, Walsh S. The Arabidopsis genome: A foundation for plant research. Genome Res 2005; 15(12): 1632-42.
[http://dx.doi.org/10.1101/gr.3723405] [PMID: 16339360]
[2]
Doherty C, Friesner J, Gregory B, et al. Arabidopsis bioinformatics resources: The current state, challenges, and priorities for the future. Plant Direct 2019; 3(1): e00109.
[http://dx.doi.org/10.1002/pld3.109] [PMID: 31245752]
[3]
Wong MML, Cannon CH, Wickneswari R. Development of high-throughput SNP-based genotyping in Acacia auriculiformis x A. mangium hybrids using short-read transcriptome data. BMC Genomics 2012; 13(1): 726.
[http://dx.doi.org/10.1186/1471-2164-13-726] [PMID: 23265623]
[4]
Parry G. From Bench to Bountiful Harvests Multinational Arabidopsis Steering Committee (MASC) Design and editing Cover images taken from Open Access publications, MASC. 1. 2021. Available from: https://elifesciences.org/articles/43284 (Accessed on: March 20, 2023).
[5]
Srivastava M, Malviya N, Dandekar T. Application of biotechnology and bioinformatics tools in plant–fungus interactions. Plant Genomics Biotechnol. 2015; Vol. II: pp. 49-64.
[http://dx.doi.org/10.1007/978-81-322-2283-5_3]
[6]
Parthasarathy S. Bioinformatics: Application to genomics. Plant Genomics Biotechnol. 2015; Vol. II: pp. 279-300.
[http://dx.doi.org/10.1007/978-81-322-2283-5_13]
[7]
Gomes LHF, Alves-Ferreira M, Carels N. Functional genomics. Plant Genomics Biotechnol. 2015; Vol. II: pp. 223-45.
[http://dx.doi.org/10.1007/978-81-322-2283-5_10]
[8]
Sayers EW, Beck J, Brister JR, et al. Database resources of the national center for biotechnology information. Nucleic Acids Res 2020; 48(D1): D9-D16.
[http://dx.doi.org/10.1093/nar/gkz899] [PMID: 31602479]
[9]
Tan YC, Kumar AU, Wong YP, Ling APK. Bioinformatics approaches and applications in plant biotechnology. J Genet Eng Biotechnol 2022; 20(1): 106.
[http://dx.doi.org/10.1186/s43141-022-00394-5] [PMID: 35838847]
[10]
Martin FJ, Amode MR, Aneja A, et al. Ensembl 2023. Nucleic Acids Res 2023; 51(D1): D933-41.
[http://dx.doi.org/10.1093/nar/gkac958] [PMID: 36318249]
[11]
Cunningham F, Allen JE, Allen J, et al. Ensembl 2022. Nucleic Acids Res 2022; 50(D1): D988-95.
[http://dx.doi.org/10.1093/nar/gkab1049] [PMID: 34791404]
[12]
Glez-Peña D, Graña O, Fdez-Riverola F, Pisano DG. Building a GATK-based tool for methylation analysis in next-generation bisulfite sequencing experiments. Adv Intell Syst Comput 2011; 93: 87-91.
[http://dx.doi.org/10.1007/978-3-642-19914-1_13]
[13]
Basantani MK, Gupta D, Mehrotra R, Mehrotra S, Vaish S, Singh A. An update on bioinformatics resources for plant genomics research. Curr Plant Biol 2017; 11-12: 33-40.
[http://dx.doi.org/10.1016/j.cpb.2017.12.002]
[14]
Bahadur B, Rajam MV, Sahijram L, Krishnamurthy KV. Plant biology and biotechnology: Volume II: Plant genomics and biotechnology. India: Springer 2015.
[http://dx.doi.org/10.1007/978-81-322-2283-5/COVER]
[15]
Shabir HW. Recent Approaches in Omics for Plant Resilience to Climate Change. New York: Springer International Publishing 2019.
[16]
Chan KL, Rosli R, Tatarinova TV, Hogan M, Firdaus-Raih M, Low ETL. Seqping: Gene prediction pipeline for plant genomes using self-training gene models and transcriptomic data. BMC Bioinformatics 2017; 18(S1): 1-7.
[http://dx.doi.org/10.1186/s12859-016-1426-6] [PMID: 28466793]
[17]
Baker M. De novo genome assembly: What every biologist should know. Nat Methods 2012; 94(9): 333-7.
[http://dx.doi.org/10.1038/nmeth.1935]
[18]
Ong Q, Nguyen P, Phuong TN, Le L. Bioinformatics approach in plant genomic research. Curr Genomics 2016; 17(4): 368-78.
[http://dx.doi.org/10.2174/1389202917666160331202956] [PMID: 27499685]
[19]
Meng Y, Lei Y, Gao J, et al. Genome sequence assembly algorithms and misassembly identification methods. Mol Biol Rep 2022; 49(11): 11133-48.
[http://dx.doi.org/10.1007/s11033-022-07919-8] [PMID: 36151399]
[20]
Cherukuri Y, Janga SC. Benchmarking of De novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches. BMC Genomics 2016; 17(S7): 507.
[http://dx.doi.org/10.1186/s12864-016-2895-8] [PMID: 27556636]
[21]
Sohn J, Nam JW. The present and future of De novo whole-genome assembly. Brief Bioinform 2016; 19(1): bbw096.
[http://dx.doi.org/10.1093/bib/bbw096] [PMID: 27742661]
[22]
Li Z, Chen Y, Mu D, et al. Comparison of the two major classes of assembly algorithms: Overlap-layout-consensus and de-bruijn-graph. Brief Funct Genomics 2012; 11(1): 25-37.
[http://dx.doi.org/10.1093/bfgp/elr035] [PMID: 22184334]
[23]
Davuluri RV, Sun H, Palaniswamy SK, et al. AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinformatics 2003; 4(1): 25.
[http://dx.doi.org/10.1186/1471-2105-4-25] [PMID: 12820902]
[24]
Imelfort M, Edwards D. De novo sequencing of plant genomes using second-generation technologies. Brief Bioinform 2009; 10(6): 609-18.
[http://dx.doi.org/10.1093/bib/bbp039] [PMID: 19933209]
[25]
Belser C, Baurens FC, Noel B, et al. Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing. Commun Biol 2021; 41(4): 1-12.
[http://dx.doi.org/10.1038/s42003-021-02559-3]
[26]
Nurk S, Koren S, Rhie A, et al. The complete sequence of a human genome. Science 2022; 376(6588): 44-53.
[27]
Deng Y, Liu S, Zhang Y, et al. A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding. Mol Plant 2022; 15(8): 1268-84.
[http://dx.doi.org/10.1016/j.molp.2022.06.010]
[28]
Garg P, Jaiswal P. Databases and bioinformatics tools for rice research. Curr Plant Biol 2016; 7-8: 39-52.
[http://dx.doi.org/10.1016/j.cpb.2016.12.006]
[29]
Behera S, Voshall A, Moriyama EN. Plant transcriptome assembly: Review and benchmarking. In: Bioinformatics. Brisbane (AU): Exon Publications 2021; pp. 109-30.
[http://dx.doi.org/10.36255/exonpublications.bioinformatics.2021.ch7] [PMID: 33877767]
[30]
Voshall A, Moriyama EN. Next-generation transcriptome assembly and analysis: Impact of ploidy. Methods 2020; 176: 14-24.
[http://dx.doi.org/10.1016/j.ymeth.2019.06.001] [PMID: 31176772]
[31]
Pombo MA, Ramos RN, Zheng Y, Fei Z, Martin GB, Rosli HG. Transcriptome-based identification and validation of reference genes for plant-bacteria interaction studies using Nicotiana benthamiana. Sci Reports 2019; 91(9): 1-10.
[http://dx.doi.org/10.1038/s41598-018-38247-2]
[32]
Tu M, Zeng J, Zhang J, Fan G, Song G. Unleashing the power within short-read RNA-seq for plant research: Beyond differential expression analysis and toward regulomics. Front Plant Sci 2022; 13: 1038109.
[http://dx.doi.org/10.3389/fpls.2022.1038109] [PMID: 36570898]
[33]
Pollier J, Rombauts S, Goossens A. Analysis of RNA-Seq data with TopHat and Cufflinks for genome-wide expression analysis of jasmonate-treated plants and plant cultures. Methods Mol Biol 2013; 1011: 305-15.
[http://dx.doi.org/10.1007/978-1-62703-414-2_24] [PMID: 23616006]
[34]
Maretty L, Sibbesen JA, Krogh A. Bayesian transcriptome assembly. Genome Biol 2014; 15(10): 501.
[http://dx.doi.org/10.1186/s13059-014-0501-4] [PMID: 25367074]
[35]
Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol 2019; 20(1): 278.
[http://dx.doi.org/10.1186/s13059-019-1910-1] [PMID: 31842956]
[36]
Liu J, Yu T, Jiang T, Li G. TransComb: Genome-guided transcriptome assembly via combing junctions in splicing graphs. Genome Biol 2016; 17(1): 213.
[http://dx.doi.org/10.1186/s13059-016-1074-1] [PMID: 27760567]
[37]
Shao M, Kingsford C. Accurate assembly of transcripts through phase-preserving graph decomposition. Nat Biotechnol 2017; 35(12): 1167-9.
[http://dx.doi.org/10.1038/nbt.4020] [PMID: 29131147]
[38]
Grabherr MG, Haas BJ, Yassour M, et al. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol 2011; 29: 644.
[http://dx.doi.org/10.1038/nbt.1883] [PMID: 21572440]
[39]
Peng Y, Leung HCM, Yiu SM, Lv MJ, Zhu XG, Chin FYL. IDBA-tran: A more robust De novo de Bruijn graph assembler for transcriptomes with uneven expression levels. Bioinformatics 2013; 29(13): i326-34.
[http://dx.doi.org/10.1093/bioinformatics/btt219] [PMID: 23813001]
[40]
Xie Y, Wu G, Tang J, et al. SOAPdenovo-Trans: De novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 2014; 30(12): 1660-6.
[http://dx.doi.org/10.1093/bioinformatics/btu077] [PMID: 24532719]
[41]
Bushmanova E, Antipov D, Lapidus A, Prjibelski AD. rnaSPAdes: A De novo transcriptome assembler and its application to RNA-Seq data. Gigascience 2019; 8(9): giz100.
[http://dx.doi.org/10.1093/gigascience/giz100] [PMID: 31494669]
[42]
Limasset A, Cazaux B, Rivals E, Peterlongo P. Read mapping on de Bruijn graphs. BMC Bioinformatics 2016; 17(1): 237.
[http://dx.doi.org/10.1186/s12859-016-1103-9] [PMID: 27306641]
[43]
Zerbino DR, Birney E. Velvet: Algorithms for De novo short read assembly using de Bruijn graphs. Genome Res 2008; 18(5): 821-9.
[http://dx.doi.org/10.1101/gr.074492.107] [PMID: 18349386]
[44]
Bankevich A, Nurk S, Antipov D, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19(5): 455-77.
[http://dx.doi.org/10.1089/cmb.2012.0021] [PMID: 22506599]
[45]
Brazma A. Minimum information about a microarray experiment (MIAME)--successes, failures, challenges. ScientificWorldJournal 2009; 9: 420-3.
[http://dx.doi.org/10.1100/tsw.2009.57] [PMID: 19484163]
[46]
Rustici G, Williams E, Barzine M, et al. Transcriptomics data availability and reusability in the transition from microarray to next-generation sequencing BioRxiv 2021; 2020.12.31.425022.
[http://dx.doi.org/10.1101/2020.12.31.425022]
[47]
Wang L, Wang S, Li W. RSeQC: Quality control of RNA-seq experiments. Bioinformatics 2012; 28(16): 2184-5.
[http://dx.doi.org/10.1093/bioinformatics/bts356] [PMID: 22743226]
[48]
Joshi NA, Fass JN. Sickle: A sliding-window, adaptive, qualitybased trimming tool for FastQ files (Version 1.33). 2011. Available from: https://github.com/najoshi/sickle (Accessed on: May 17, 2023).
[49]
Chen C, Khaleel SS, Huang H, Wu CH. Software for pre-processing Illumina next-generation sequencing short read sequences. Source Code Biol Med 2014; 9(1): 8.
[http://dx.doi.org/10.1186/1751-0473-9-8] [PMID: 24955109]
[50]
Sheikhizadeh S, de Ridder D. ACE: Accurate correction of errors using K -mer tries. Bioinformatics 2015; 31(19): 3216-8.
[http://dx.doi.org/10.1093/bioinformatics/btv332] [PMID: 26026137]
[51]
Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30(15): 2114-20.
[http://dx.doi.org/10.1093/bioinformatics/btu170] [PMID: 24695404]
[52]
Pérez-Rubio P, Lottaz C, Engelmann JC. FastqPuri: high-performance preprocessing of RNA-seq data. BMC Bioinformatics 2019; 20(1): 226.
[http://dx.doi.org/10.1186/s12859-019-2799-0] [PMID: 31053060]
[53]
Sun K. Ktrim: an extra-fast and accurate adapter- and quality-trimmer for sequencing data. Bioinformatics 2020; 36(11): 3561-2.
[http://dx.doi.org/10.1093/bioinformatics/btaa171] [PMID: 32159761]
[54]
Lim EC, Müller J, Hagmann J, Henz SR, Kim ST, Weigel D. Trowel: A fast and accurate error correction module for Illumina sequencing reads. Bioinformatics 2014; 30(22): 3264-5.
[http://dx.doi.org/10.1093/bioinformatics/btu513] [PMID: 25075116]
[55]
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015; 31(19): 3210-2.
[http://dx.doi.org/10.1093/bioinformatics/btv351] [PMID: 26059717]
[56]
Tang S, Lomsadze A, Borodovsky M. Identification of protein coding regions in RNA transcripts. Nucleic Acids Res 2015; 43(12): e78-8.
[http://dx.doi.org/10.1093/nar/gkv227] [PMID: 25870408]
[57]
Smith-Unna R, Boursnell C, Patro R, Hibberd JM, Kelly S. TransRate: Reference-free quality assessment of De novo transcriptome assemblies. Genome Res 2016; 26(8): 1134-44.
[http://dx.doi.org/10.1101/gr.196469.115] [PMID: 27252236]
[58]
Li W, Godzik A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006; 22(13): 1658-9.
[http://dx.doi.org/10.1093/bioinformatics/btl158] [PMID: 16731699]
[59]
Geniza M, Jaiswal P. Tools for building De novo transcriptome assembly. Curr Plant Biol 2017; 11-12: 41-5.
[http://dx.doi.org/10.1016/j.cpb.2017.12.004]
[60]
Poole RL. The TAIR database. Methods Mol Biol 2005; 406: 179-212.
[http://dx.doi.org/10.1007/978-1-59745-535-0_8] [PMID: 18287693]
[61]
Garcia-Hernandez M, Berardini T, Chen G, et al. TAIR: A resource for integrated Arabidopsis data. Funct Integr Genomics 2002; 2(6): 239-53.
[http://dx.doi.org/10.1007/s10142-002-0077-z] [PMID: 12444417]
[62]
Reiser L, Subramaniam S, Zhang P, Berardini T. Using the arabidopsis information resource (TAIR) to find information about arabidopsis genes. Curr Protoc 2022; 2(10): e574.
[http://dx.doi.org/10.1002/cpz1.574] [PMID: 36200836]
[63]
Zhu W, Schlueter SD, Brendel V. Refined annotation of the Arabidopsis genome by complete expressed sequence tag mapping. Plant Physiol 2003; 132(2): 469-84.
[http://dx.doi.org/10.1104/pp.102.018101] [PMID: 12805580]
[64]
Schwacke R, Schneider A, van der Graaff E, et al. ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 2003; 131(1): 16-26.
[http://dx.doi.org/10.1104/pp.011577] [PMID: 12529511]
[65]
Schwacke R, Flügge UI, Kunze R. Plant membrane proteome databases. Plant Physiol Biochem 2004; 42(12): 1023-34.
[http://dx.doi.org/10.1016/j.plaphy.2004.09.011] [PMID: 15707839]
[66]
Schwacke R, Flügge UI. Identification and characterization of plant membrane proteins using ARAMEMNON. Methods Mol Biol 2018; 1696: 249-59.
[http://dx.doi.org/10.1007/978-1-4939-7411-5_17]
[67]
Gustafson AM, Allen E, Givan S, Smith D, Carrington JC, Kasschau KD. ASRP: The arabidopsis small RNA project database. Nucleic Acids Res 2004; 33(Database issue): D637-40.
[http://dx.doi.org/10.1093/nar/gki127] [PMID: 15608278]
[68]
Obayashi T, Hayashi S, Saeki M, Ohta H, Kinoshita K. ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res 2009; 37(Database): D987-91.
[http://dx.doi.org/10.1093/nar/gkn807] [PMID: 18953027]
[69]
Choudhury A, Lahiri A. Arabidopsis thaliana regulatory element analyzer. Bioinformatics 2008; 24(19): 2263-4.
[http://dx.doi.org/10.1093/bioinformatics/btn417] [PMID: 18694893]
[70]
Steffens NO, Galuschka C, Schindler M, Bülow L, Hehl R. AthaMap: An online resource for in silico transcription factor binding sites in the Arabidopsis thaliana genome. Nucleic Acids Res 2004; 32(90001): 368D-72.
[http://dx.doi.org/10.1093/nar/gkh017] [PMID: 14681436]
[71]
Bülow L, Brill Y, Hehl R. AthaMap-assisted transcription factor target gene identification in Arabidopsis thaliana. Database 2010; 2010(0): baq034.
[http://dx.doi.org/10.1093/database/baq034] [PMID: 21177332]
[72]
Gauthier NP, Larsen ME, Wernersson R, et al. Cyclebase.org a comprehensive multi-organism online database of cell-cycle experiments. Nucleic Acids Res 2007; 36(Database): D854-9.
[http://dx.doi.org/10.1093/nar/gkm729] [PMID: 17940094]
[73]
Santos A, Wernersson R, Jensen LJ. Cyclebase 3.0: A multi-organism database on cell-cycle regulation and phenotypes. Nucleic Acids Res 2015; 43(D1): D1140-4.
[http://dx.doi.org/10.1093/nar/gku1092] [PMID: 25378319]
[74]
Dèrozier S, Samson F, Tamby JP, et al. Exploration of plant genomes in the FLAGdb++ environment. Plant Methods 2011; 7(1): 8.
[http://dx.doi.org/10.1186/1746-4811-7-8] [PMID: 21447150]
[75]
Samson F, Brunaud V, Duchêne S, et al. FLAGdb++: A database for the functional analysis of the Arabidopsis genome. Nucleic Acids Res 2004; 32(90001): 347D-50.
[http://dx.doi.org/10.1093/nar/gkh134] [PMID: 14681431]
[76]
Li Y, Rosso MG, Viehoever P, Weisshaar B. GABI-Kat SimpleSearch: An Arabidopsis thaliana T-DNA mutant database with detailed information for confirmed insertions. Nucleic Acids Res 2007; 35(Database): D874-8.
[http://dx.doi.org/10.1093/nar/gkl753] [PMID: 17062622]
[77]
Kleinboelting N, Huep G, Kloetgen A, Viehoever P, Weisshaar B. GABI-Kat SimpleSearch: New features of the Arabidopsis thaliana T-DNA mutant database. Nucleic Acids Res 2012; 40(D1): D1211-5.
[http://dx.doi.org/10.1093/nar/gkr1047] [PMID: 22080561]
[78]
Kawahara Y, de la Bastide M, Hamilton JP, et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 2013; 6(1): 4.
[http://dx.doi.org/10.1186/1939-8433-6-4] [PMID: 24280374]
[79]
Lee T, Oh T, Yang S, et al. RiceNet v2: An improved network prioritization server for rice genes. Nucleic Acids Res 2015; 43(W1): W122-7.
[http://dx.doi.org/10.1093/nar/gkv253] [PMID: 25813048]
[80]
Sun C, Hu Z, Zheng T, et al. RPAN: rice pan-genome browser for ∼3000 rice genomes. Nucleic Acids Res 2017; 45(2): 597-605.
[http://dx.doi.org/10.1093/nar/gkw958] [PMID: 27940610]
[81]
Shang L, Li X, He H, et al. A super pan-genomic landscape of rice. Cell Res 2022; 32(10): 878-96.
[http://dx.doi.org/10.1038/s41422-022-00685-z] [PMID: 35821092]
[82]
Sakai H, Lee SS, Tanaka T, et al. Rice Annotation Project Database (RAP-DB): An integrative and interactive database for rice genomics. Plant Cell Physiol 2013; 54(2): e6.
[http://dx.doi.org/10.1093/pcp/pcs183] [PMID: 23299411]
[83]
Mueller LA, Solow TH, Taylor N, et al. The SOL genomics network: A comparative resource for Solanaceae biology and beyond. Plant Physiol 2005; 138(3): 1310-7.
[http://dx.doi.org/10.1104/pp.105.060707] [PMID: 16010005]
[84]
Fernandez-Pozo N, Menda N, Edwards JD, et al. The Sol Genomics Network (SGN)—from genotype to phenotype to breeding. Nucleic Acids Res 2015; 43(D1): D1036-41.
[http://dx.doi.org/10.1093/nar/gku1195] [PMID: 25428362]
[85]
Tecle IY, Menda N, Buels RM, van der Knaap E, Mueller LA. solQTL: A tool for QTL analysis, visualization and linking to genomes at SGN database. BMC Bioinformatics 2010; 11(1): 525.
[http://dx.doi.org/10.1186/1471-2105-11-525] [PMID: 20964836]
[86]
Fei Z, Joung JG, Tang X, et al. Tomato functional genomics database: A comprehensive resource and analysis package for tomato functional genomics. Nucleic Acids Res 2011; 39(Database): D1156-63.
[http://dx.doi.org/10.1093/nar/gkq991] [PMID: 20965973]
[87]
Fei Z, Tang X, Alba R, Giovannoni J. Tomato Expression Database (TED): a suite of data presentation and analysis tools. Nucleic Acids Res 2006; 34(90001): D766-70.
[http://dx.doi.org/10.1093/nar/gkj110] [PMID: 16381976]
[88]
Grennan AK. MoTo DB: A metabolic database for tomato. Plant Physiol 2009; 151(4): 1701-2.
[http://dx.doi.org/10.1104/pp.109.900308] [PMID: 19965978]
[89]
Moco S, Bino RJ, Vorst O, et al. A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol 2006; 141(4): 1205-18.
[http://dx.doi.org/10.1104/pp.106.078428] [PMID: 16896233]
[90]
Ara T, Sakurai N, Takahashi S, et al. TOMATOMET: A metabolome database consists of 7118 accurate mass values detected in mature fruits of 25 tomato cultivars. Plant Direct 2021; 5(4): e00318.
[http://dx.doi.org/10.1002/pld3.318] [PMID: 33969254]
[91]
Wegrzyn JL, Lee JM, Tearse BR, Neale DB. TreeGenes: A forest tree genome database. Int J Plant Genomics 2008; 2008: 1-7.
[http://dx.doi.org/10.1155/2008/412875] [PMID: 18725987]
[92]
Fussi B, Westergren M, Aravanopoulos F, et al. Forest genetic monitoring: An overview of concepts and definitions. Environ Monit Assess 2016; 188(8): 493.
[http://dx.doi.org/10.1007/s10661-016-5489-7] [PMID: 27473107]
[93]
Chen J, Li L, Milesi P, et al. Genomic data provide new insights on the demographic history and the extent of recent material transfers in Norway spruce. Evol Appl 2019; 12(8): 1539-51.
[http://dx.doi.org/10.1111/eva.12801] [PMID: 31462913]
[94]
Beech E, Rivers M, Oldfield S, Smith PP. GlobalTreeSearch: The first complete global database of tree species and country distributions. J Sustain Forestry 2017; 36(5): 454-89.
[http://dx.doi.org/10.1080/10549811.2017.1310049]
[95]
Conte MG, Gaillard S, Lanau N, Rouard M, Périn C. GreenPhylDB: A database for plant comparative genomics. Nucleic Acids Res 2007; 36(Database): D991-8.
[http://dx.doi.org/10.1093/nar/gkm934] [PMID: 17986457]
[96]
Yesson C, Brewer PW, Sutton T, et al. How global is the global biodiversity information facility? PLoS One 2007; 2(11): e1124.
[http://dx.doi.org/10.1371/journal.pone.0001124] [PMID: 17987112]
[97]
Cooper L, Meier A, Laporte MA, et al. The Planteome database: An integrated resource for reference ontologies, plant genomics and phenomics. Nucleic Acids Res 2018; 46(D1): D1168-80.
[http://dx.doi.org/10.1093/nar/gkx1152] [PMID: 29186578]
[98]
Cooper L, Walls RL, Elser J, et al. The plant ontology as a tool for comparative plant anatomy and genomic analyses. Plant Cell Physiol 2013; 54(2): e1.
[http://dx.doi.org/10.1093/pcp/pcs163]
[99]
Cooper L, Jaiswal P. The plant ontology: A tool for plant genomics. Methods Mol Biol 2016; 1374: 89-114.
[http://dx.doi.org/10.1007/978-1-4939-3167-5_5] [PMID: 26519402]
[100]
Heazlewood JL, Durek P, Hummel J, et al. PhosPhAt: A database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 2007; 36(Database): D1015-21.
[http://dx.doi.org/10.1093/nar/gkm812] [PMID: 17984086]
[101]
Zulawski M, Braginets R, Schulze WX. PhosPhAt goes kinases—searchable protein kinase target information in the plant phosphorylation site database PhosPhAt. Nucleic Acids Res 2012; 41(D1): D1176-84.
[http://dx.doi.org/10.1093/nar/gks1081] [PMID: 23172287]
[102]
Durek P, Schmidt R, Heazlewood JL, et al. PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res 2010; 38(Database issue): D828-34.
[http://dx.doi.org/10.1093/nar/gkp810] [PMID: 19880383]
[103]
Bolívar JC, Machens F, Brill Y, Romanov A, Bülow L, Hehl R. ‘in silico expression analysis’, a novel PathoPlant web tool to identify abiotic and biotic stress conditions associated with specific cis-regulatory sequences. Database 2014; 2014(0): bau030.
[http://dx.doi.org/10.1093/database/bau030] [PMID: 24727366]
[104]
Bülow L, Schindler M, Hehl R. PathoPlant(R): A platform for microarray expression data to analyze co-regulated genes involved in plant defense responses. Nucleic Acids Res 2007; 35(Database): D841-5.
[http://dx.doi.org/10.1093/nar/gkl835] [PMID: 17099232]
[105]
Zybailov B, Sun Q, van Wijk KJ. Workflow for large scale detection and validation of peptide modifications by RPLC-LTQ-Orbitrap: Application to the Arabidopsis thaliana leaf proteome and an online modified peptide library. Anal Chem 2009; 81(19): 8015-24.
[http://dx.doi.org/10.1021/ac9011792] [PMID: 19725545]
[106]
Sun Q, Zybailov B, Majeran W, Friso G, Olinares PDB, van Wijk KJ. PPDB, the plant proteomics database at cornell. Nucleic Acids Res 2009; 37(Database issue): D969-74.
[http://dx.doi.org/10.1093/nar/gkn654] [PMID: 18832363]
[107]
Subba P, Narayana KC, Prasad TSK. Plant proteome databases and bioinformatic tools: An expert review and comparative insights. OMICS 2019; 23(4): 190-206.
[http://dx.doi.org/10.1089/omi.2019.0024]
[108]
Buble K, Jung S, Humann JL, et al. Tripal MapViewer: A tool for interactive visualization and comparison of genetic maps. Database 2019; 2019: baz100.
[http://dx.doi.org/10.1093/database/baz100] [PMID: 31688940]
[109]
Shahmuradov IA, Gammerman AJ, Hancock JM, Bramley PM, Solovyev VV. PlantProm: A database of plant promoter sequences. Nucleic Acids Res 2003; 31(1): 114-7.
[http://dx.doi.org/10.1093/nar/gkg041] [PMID: 12519961]