SNHG3/miR-330-5p/HSD11B1 Alleviates Myocardial Ischemia-reperfusion Injury by Regulating the ERK/p38 Signaling Pathway

Page: [699 - 708] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Studies have found that microRNAs (miRNAs) participate in the pathogenesis of myocardial ischemia-reperfusion injury (MIRI). miR-330-5p alleviated cerebral IR injury and regulated myocardial damage. However, the mechanism of the effect of miR-330-5p on MIRI needs to be further studied.

Objective: The study aimed to explore the role and mechanism of miR-330-5p in MIRI.

Methods: The oxygen-glucose deprivation reperfusion (OGD/R) model was constructed in cardiomyocytes to simulate MIRI in vitro. QRT-PCR was used for the detection of gene expression. ELISA was used for evaluation of the levels of aldehyde dehydrogenase 2 family member (ALDH2), 4-hydroxynonenal (4-HNE), and malondialdehyde (MDA). Flow cytometry was used to evaluate apoptosis. Western blot was employed for protein determination. Bioinformatic analysis was performed for predicting the targets of miR-330-5p.

Results: miR-330-5p was found to be down-regulated in MIRI-induced cardiomyocytes (Model group). miR-330-5p mimic enhanced ALDH2 activity, inhibited apoptosis, and suppressed 4-HNE and MDA of MIRI-induced cardiomyocytes. miR-330-5p inhibited ERK expression while increasing the p38 expression. Bioinformatic analysis showed hydroxysteroid 11-beta dehydrogenase 1 (HSD11B1) to be a target of miR-330-5p. HSD11B1 expression was inhibited by miR-330-5p mimic while increased by miR-330-5p inhibitor in MIRI-induced cardiomyocytes. HSD11B1 overexpression reversed the effect of miR-330-5p on ALDH2, 4-HNE, MDA, apoptosis, and ERK/p38 signaling pathway. Furthermore, lncRNA small nucleolar RNA host gene 3 (SNHG3) was the upstream lncRNA of miR-330-5p. SNHG3 decreased miR-330-5p expression and increased HSD11B1 expression.

Conclusion: SNHG3/miR-330-5p alleviated MIRI in vitro by targeting HSD11B1 to regulate the ERK/p38 signaling pathway.

Graphical Abstract

[1]
Zhou, M.; Bao, Y.; Li, H.; Pan, Y.; Shu, L.; Xia, Z.; Wu, D.; Lam, K.S.L.; Vanhoutte, P.M.; Xu, A.; Jia, W.; Hoo, R.L.C. Deficiency of adipocyte fatty-acid-binding protein alleviates myocardial ischaemia/reperfusion injury and diabetes-induced cardiac dysfunction. Clin. Sci., 2015, 129(7), 547-559.
[http://dx.doi.org/10.1042/CS20150073] [PMID: 26186740]
[2]
Shan, X.; Lv, Z.Y.; Yin, M.J.; Chen, J.; Wang, J.; Wu, Q.N. The protective effect of cyanidin-3-glucoside on myocardial ischemia-reperfusion injury through ferroptosis. Oxid. Med. Cell. Longev., 2021, 2021, 1-15.
[http://dx.doi.org/10.1155/2021/8880141] [PMID: 33628391]
[3]
Korshunova, A.; Blagonravov, M.; Neborak, E.; Syatkin, S.; Sklifasovskaya, A.; Semyatov, S.; Agostinelli, E. BCL2-regulated apoptotic process in myocardial ischemia-reperfusion injury. Int. J. Mol. Med., 2020, 47(1), 23-36.
[http://dx.doi.org/10.3892/ijmm.2020.4781] [PMID: 33155658]
[4]
Zhou, M.; Yu, Y.; Luo, X.; Wang, J.; Lan, X.; Liu, P.; Feng, Y.; Jian, W. Myocardial ischemia-reperfusion injury: Therapeutics from a mitochondria-centric perspective. Cardiology, 2021, 146(6), 781-792.
[http://dx.doi.org/10.1159/000518879] [PMID: 34547747]
[5]
Wang, K.; Li, Y.; Qiang, T.; Chen, J.; Wang, X. Role of epigenetic regulation in myocardial ischemia/reperfusion injury. Pharmacol. Res., 2021, 170, 105743.
[http://dx.doi.org/10.1016/j.phrs.2021.105743] [PMID: 34182132]
[6]
Wu, M.Y.; Yiang, G.T.; Liao, W.T.; Tsai, A.P.Y.; Cheng, Y.L.; Cheng, P.W.; Li, C.Y.; Li, C.J. Current mechanistic concepts in ischemia and reperfusion injury. Cell. Physiol. Biochem., 2018, 46(4), 1650-1667.
[http://dx.doi.org/10.1159/000489241] [PMID: 29694958]
[7]
Lv, B.; Zhou, J.; He, S.; Zheng, Y.; Yang, W.; Liu, S.; Liu, C.; Wang, B.; Li, D.; Lin, J. Induction of myocardial infarction and myocardial ischemia-reperfusion injury in mice. J. Vis. Exp., 2022, 19(179), 63257.
[http://dx.doi.org/10.3791/63257] [PMID: 35129168]
[8]
Stavast, C.; Erkeland, S. The non-canonical aspects of micrornas: many roads to gene regulation. Cells, 2019, 8(11), 1465.
[http://dx.doi.org/10.3390/cells8111465] [PMID: 31752361]
[9]
van Wijk, N.; Zohar, K.; Linial, M. Challenging cellular homeostasis: Spatial and temporal regulation of miRNAs. Int. J. Mol. Sci., 2022, 23(24), 16152.
[http://dx.doi.org/10.3390/ijms232416152] [PMID: 36555797]
[10]
Zhao, J.; Li, X.; Hu, J.; Chen, F.; Qiao, S.; Sun, X.; Gao, L.; Xie, J.; Xu, B. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc. Res., 2019, 115(7), 1205-1216.
[http://dx.doi.org/10.1093/cvr/cvz040] [PMID: 30753344]
[11]
Jayawardena, E.; Medzikovic, L.; Ruffenach, G.; Eghbali, M. Role of miRNA-1 and miRNA-21 in acute myocardial ischemia-reperfusion injury and their potential as therapeutic strategy. Int. J. Mol. Sci., 2022, 23(3), 1512.
[http://dx.doi.org/10.3390/ijms23031512] [PMID: 35163436]
[12]
Marinescu, M.C.; Lazar, A.L.; Marta, M.M.; Cozma, A.; Catana, C.S. Non-Coding RNAs: Preventon, diagnosis, and treatment in myocardial ischemia–reperfusion injuiry. Int. J. Mol. Sci., 2022, 23(5), 2728.
[http://dx.doi.org/10.3390/ijms23052728] [PMID: 35269870]
[13]
Bei, Y.; Lu, D.; Bär, C.; Chatterjee, S.; Costa, A.; Riedel, I.; Mooren, F.C.; Zhu, Y.; Huang, Z.; Wei, M.; Hu, M.; Liu, S.; Yu, P.; Wang, K.; Thum, T.; Xiao, J. miR-486 attenuates cardiac ischemia/reperfusion injury and mediates the beneficial effect of exercise for myocardial protection. Mol. Ther., 2022, 30(4), 1675-1691.
[http://dx.doi.org/10.1016/j.ymthe.2022.01.031] [PMID: 35077859]
[14]
Xiao, S; Yang, M; Yang, H; Chang, R; Fang, F; Yang, L miR-330-5p targets SPRY2 to promote hepatocellular carcinoma progression via MAPK/ERK signaling. Oncogenesis, 2018, 7(11), 018-0097.
[http://dx.doi.org/10.1038/s41389-018-0097-8] [PMID: 30464168]
[15]
Wang, Y.; Liu, Z.; Ren, X.; Sun, N.; Li, Q.; Bian, C. Hsa-miR-330-5p aggravates thyroid carcinoma via targeting FOXE1. J. Oncol., 2021, 2021(1070365), 1-9.
[http://dx.doi.org/10.1155/2021/1070365] [PMID: 34306074]
[16]
Karimi, L.; Jaberi, M.; Asadi, M.; Zarredar, H.; Zafari, V.; Bornehdeli, S.; Niknam, S.; Kermani, T.A. Significance of microRNA-330-5p/TYM expression axis in the pathogenesis of colorectal tumorigenSesis. J. Gastrointest. Cancer, 2022, 53(4), 965-970.
[http://dx.doi.org/10.1007/s12029-021-00695-x] [PMID: 34651293]
[17]
Wang, L.; Tan, Y.; Zhu, Z.; Chen, J.; Sun, Q.; Ai, Z.; Ai, C.; Xing, Y.; He, G.; Liu, Y. ATP2B1-AS1 promotes cerebral ischemia/reperfusion injury through regulating the miR-330-5p/TLR4-MyD88-NF-κB signaling pathway. Front. Cell Dev. Biol., 2021, 9(720468), 720468.
[http://dx.doi.org/10.3389/fcell.2021.720468] [PMID: 34712659]
[18]
Zuo, W.; Tian, R.; Chen, Q.; Wang, L.; Gu, Q.; Zhao, H.; Huang, C.; Liu, Y.; Li, J.; Yang, X.; Xu, L.; Zhang, B.; Liu, Z. miR-330-5p inhibits NLRP3 inflammasome-mediated myocardial ischaemia–reperfusion injury by targeting TIM3. Cardiovasc. Drugs Ther., 2021, 35(4), 691-705.
[http://dx.doi.org/10.1007/s10557-020-07104-8] [PMID: 33137205]
[19]
Huang, P; Li, Y; Xu, C; Melino, G; Shao, C; Shi, Y HSD11B1 is upregulated synergistically by IFNγ and TNFα and mediates TSG-6 expression in human UC-MSCs. Cell Death Discov., 2020, 6(24), 020-0262.
[http://dx.doi.org/10.1038/s41420-020-0262-7] [PMID: 32328292]
[20]
Chedid, MF; do Nascimento, FV; de Oliveira, FS; de Souza, BM; Kruel, CRP; Gurski, RR; Canani, LH; Crispim, D; Gerchman, F Interaction of HSD11B1 and H6PD polymorphisms in subjects with type 2 diabetes are protective factors against obesity: A cross-sectional study. Diabetol. Metab. Syndr., 2019, 11(78), 019-0474.
[http://dx.doi.org/10.1186/s13098-019-0474-2] [PMID: 31558916]
[21]
Zou, X.; Ramachandran, P.; Kendall, T.J.; Pellicoro, A.; Dora, E.; Aucott, R.L.; Manwani, K.; Man, T.Y.; Chapman, K.E.; Henderson, N.C.; Forbes, S.J.; Webster, S.P.; Iredale, J.P.; Walker, B.R.; Michailidou, Z. 11Beta-hydroxysteroid dehydrogenase-1 deficiency or inhibition enhances hepatic myofibroblast activation in murine liver fibrosis. Hepatology, 2018, 67(6), 2167-2181.
[http://dx.doi.org/10.1002/hep.29734] [PMID: 29251794]
[22]
McSweeney, S.J.; Hadoke, P.W.F.; Kozak, A.M.; Small, G.R.; Khaled, H.; Walker, B.R.; Gray, G.A. Improved heart function follows enhanced inflammatory cell recruitment and angiogenesis in 11βHSD1-deficient mice post-MI. Cardiovasc. Res., 2010, 88(1), 159-167.
[http://dx.doi.org/10.1093/cvr/cvq149] [PMID: 20495186]
[23]
Yi, C.; Song, M.; Sun, L.; Si, L.; Yu, D.; Li, B.; Lu, P.; Wang, W.; Wang, X. Asiatic acid alleviates myocardial ischemia-reperfusion injury by inhibiting the ROS-mediated mitochondria-dependent apoptosis pathway. Oxid. Med. Cell. Longev., 2022, 2022(3267450), 1-16.
[http://dx.doi.org/10.1155/2022/3267450] [PMID: 35198095]
[24]
Sticht, C.; De La Torre, C.; Parveen, A.; Gretz, N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS One, 2018, 13(10), e0206239.
[http://dx.doi.org/10.1371/journal.pone.0206239] [PMID: 30335862]
[25]
Wong, N.; Wang, X. miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Res., 2015, 43(D1), D146-D152.
[http://dx.doi.org/10.1093/nar/gku1104] [PMID: 25378301]
[26]
Li, J.H.; Liu, S.; Zhou, H.; Qu, L.H.; Yang, J.H. StarBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res., 2014, 42(D1), D92-D97.
[http://dx.doi.org/10.1093/nar/gkt1248] [PMID: 24297251]
[27]
Chang, L.; Zhou, G.; Soufan, O.; Xia, J. miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res., 2020, 48(W1), W244-W251.
[http://dx.doi.org/10.1093/nar/gkaa467] [PMID: 32484539]
[28]
Zheng, Y.; Luo, H.; Teng, X.; Hao, X.; Yan, X.; Tang, Y.; Zhang, W.; Wang, Y.; Zhang, P.; Li, Y.; Zhao, Y.; Chen, R.; He, S. NPInter v5.0: ncRNA interaction database in a new era. Nucleic Acids Res., 2023, 51(D1), D232-D239.
[http://dx.doi.org/10.1093/nar/gkac1002] [PMID: 36373614]
[29]
Cadenas, S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic. Biol. Med., 2018, 117, 76-89.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.01.024] [PMID: 29373843]
[30]
Shi, J.; Bei, Y.; Kong, X.; Liu, X.; Lei, Z.; Xu, T.; Wang, H.; Xuan, Q.; Chen, P.; Xu, J.; Che, L.; Liu, H.; Zhong, J.; Sluijter, J.P.G.; Li, X.; Rosenzweig, A.; Xiao, J. miR-17-3p Contributes to exercise-induced cardiac growth and protects against myocardial ischemia-reperfusion injury. Theranostics, 2017, 7(3), 664-676.
[http://dx.doi.org/10.7150/thno.15162] [PMID: 28255358]
[31]
Li, Y.; Li, Z.; Liu, J.; Liu, Y.; Miao, G. miR-190-5p alleviates myocardial ischemia-reperfusion injury by targeting PHLPP1. Dis. Markers, 2021, 2021(8709298), 1-11.
[http://dx.doi.org/10.1155/2021/8709298] [PMID: 34868398]
[32]
Song, R.; Dasgupta, C.; Mulder, C.; Zhang, L. MicroRNA-210 controls mitochondrial metabolism and protects heart function in myocardial infarction. Circulation, 2022, 145(15), 1140-1153.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.121.056929] [PMID: 35296158]
[33]
Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol., 2012, 298, 229-317.
[http://dx.doi.org/10.1016/B978-0-12-394309-5.00006-7] [PMID: 22878108]
[34]
Obeng, E. Apoptosis (programmed cell death) and its signals - A review. Braz. J. Biol., 2021, 81(4), 1133-1143.
[http://dx.doi.org/10.1590/1519-6984.228437] [PMID: 33111928]
[35]
Ma, H.; Guo, R.; Yu, L.; Zhang, Y.; Ren, J. Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: Role of autophagy paradox and toxic aldehyde. Eur. Heart J., 2011, 32(8), 1025-1038.
[http://dx.doi.org/10.1093/eurheartj/ehq253] [PMID: 20705694]
[36]
Luo, H.R.; Wu, G.S.; Pakstis, A.J.; Tong, L.; Oota, H.; Kidd, K.K.; Zhang, Y.P. Origin and dispersal of atypical aldehyde dehydrogenase ALDH2487Lys. Gene, 2009, 435(1-2), 96-103.
[http://dx.doi.org/10.1016/j.gene.2008.12.021] [PMID: 19393179]
[37]
Zhang, R.; Wang, J.; Xue, M.; Xu, F.; Chen, Y. ALDH2---The genetic polymorphism and enzymatic activity regulation: Their epidemiologic and clinical implications. Curr. Drug Targets, 2017, 18(15), 1810-1816.
[http://dx.doi.org/10.2174/1389450116666150727115118] [PMID: 26212265]
[38]
Koppaka, V.; Thompson, D.C.; Chen, Y.; Ellermann, M.; Nicolaou, K.C.; Juvonen, R.O.; Petersen, D.; Deitrich, R.A.; Hurley, T.D.; Vasiliou, V. Aldehyde dehydrogenase inhibitors: A comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol. Rev., 2012, 64(3), 520-539.
[http://dx.doi.org/10.1124/pr.111.005538] [PMID: 22544865]
[39]
Joshi, AU; Van Wassenhove, LD; Logas, KR; Minhas, PS; Andreasson, KI; Weinberg, KI; Chen, CH; Mochly-Rosen, D Aldehyde dehydrogenase 2 activity and aldehydic load contribute to neuroinflammation and Alzheimer's disease related pathology. Acta. Neuropathol. Commun., 2019, 7(1), 019-0839.
[http://dx.doi.org/10.1186/s40478-019-0839-7] [PMID: 31829281]
[40]
Chen, C.H.; Sun, L.; Mochly-Rosen, D. Mitochondrial aldehyde dehydrogenase and cardiac diseases. Cardiovasc. Res., 2010, 88(1), 51-57.
[http://dx.doi.org/10.1093/cvr/cvq192] [PMID: 20558439]
[41]
Yoval-Sánchez, B.; Rodríguez-Zavala, J.S. Differences in susceptibility to inactivation of human aldehyde dehydrogenases by lipid peroxidation byproducts. Chem. Res. Toxicol., 2012, 25(3), 722-729.
[http://dx.doi.org/10.1021/tx2005184] [PMID: 22339434]
[42]
Liu, Z.; Ye, S.; Zhong, X.; Wang, W.; Lai, C.H.; Yang, W.; Yue, P.; Luo, J.; Huang, X.; Zhong, Z.; Xiong, Y.; Fan, X.; Li, L.; Wang, Y.; Ye, Q. Pretreatment with the ALDH2 activator Alda-1 protects rat livers from ischemia/reperfusion injury by inducing autophagy. Mol. Med. Rep., 2020, 22(3), 2373-2385.
[http://dx.doi.org/10.3892/mmr.2020.11312] [PMID: 32705206]
[43]
Zhai, X.; Wang, W.; Sun, S.; Han, Y.; Li, J.; Cao, S.; Li, R.; Xu, T.; Yuan, Q.; Wang, J.; Wei, S.; Chen, Y. 4-Hydroxy-2-Nonenal promotes cardiomyocyte necroptosis via stabilizing receptor-interacting serine/threonine-Protein Kinase 1. Front. Cell Dev. Biol., 2021, 9, 721795.
[http://dx.doi.org/10.3389/fcell.2021.721795] [PMID: 34660582]
[44]
Kimura, M.; Yokoyama, A.; Higuchi, S. Aldehyde dehydrogenase-2 as a therapeutic target. Expert Opin. Ther. Targets, 2019, 23(11), 955-966.
[http://dx.doi.org/10.1080/14728222.2019.1690454] [PMID: 31697578]
[45]
Ji, W.; Wei, S.; Hao, P.; Xing, J.; Yuan, Q.; Wang, J.; Xu, F.; Chen, Y. Aldehyde dehydrogenase 2 has cardioprotective effects on myocardial ischaemia/reperfusion injury via suppressing mitophagy. Front. Pharmacol., 2016, 7(101), 101.
[http://dx.doi.org/10.3389/fphar.2016.00101] [PMID: 27148058]
[46]
Ma, L.L.; Ding, Z.W.; Yin, P.P.; Wu, J.; Hu, K.; Sun, A.J.; Zou, Y.Z.; Ge, J.B. Hypertrophic preconditioning cardioprotection after myocardial ischaemia/reperfusion injury involves ALDH2-dependent metabolism modulation. Redox Biol., 2021, 43(101960), 101960.
[http://dx.doi.org/10.1016/j.redox.2021.101960] [PMID: 33910156]
[47]
Chen, W.; Zhang, Y.; Wang, Z.; Tan, M.; Lin, J.; Qian, X.; Li, H.; Jiang, T. Dapagliflozin alleviates myocardial ischemia/reperfusion injury by reducing ferroptosis via MAPK signaling inhibition. Front. Pharmacol., 2023, 14(1078205), 1078205.
[http://dx.doi.org/10.3389/fphar.2023.1078205] [PMID: 36891270]
[48]
Engelbrecht, A.M.; Niesler, C.; Page, C.; Lochner, A. p38 and JNK have distinct regulatory functions on the development of apoptosis during simulated ischaemia and reperfusion in neonatal cardiomyocytes. Basic Res. Cardiol., 2004, 99(5), 338-350.
[http://dx.doi.org/10.1007/s00395-004-0478-3] [PMID: 15309413]
[49]
Yeh, C.C.; Li, H.; Malhotra, D.; Turcato, S.; Nicholas, S.; Tu, R.; Zhu, B.Q.; Cha, J.; Swigart, P.M.; Myagmar, B.E.; Baker, A.J.; Simpson, P.C.; Mann, M.J. Distinctive ERK and p38 signaling in remote and infarcted myocardium during post-MI remodeling in the mouse. J. Cell. Biochem., 2010, 109(6), 1185-91.
[http://dx.doi.org/10.1002/jcb.22498] [PMID: 20186881]
[50]
Yu, F.; Liu, Y.; Xu, J. Pro-BDNF contributes to hypoxia/reoxygenation injury in myocardial microvascular endothelial cells: Roles of receptors p75 NTR and sortilin and activation of JNK and caspase 3. Oxid. Med. Cell. Longev., 2018, 2018(3091424), 1-11.
[http://dx.doi.org/10.1155/2018/3091424] [PMID: 30046375]
[51]
Lv, S.; Ju, C.; Peng, J.; Liang, M.; Zhu, F.; Wang, C.; Huang, K.; Cheng, M.; Zhang, F. 25-Hydroxycholesterol protects against myocardial ischemia-reperfusion injury via inhibiting PARP activity. Int. J. Biol. Sci., 2020, 16(2), 298-308.
[http://dx.doi.org/10.7150/ijbs.35075] [PMID: 31929757]
[52]
Xie, D.; Zhao, J.; Guo, R.; Jiao, L.; Zhang, Y.; Lau, W.B.; Lopez, B.; Christopher, T.; Gao, E.; Cao, J. Sevoflurane pre-conditioning ameliorates diabetic myocardial ischemia/reperfusion injury via differential regulation of p38 and ERK. Sci. Rep., 2020, 0(1), 019-56897.
[http://dx.doi.org/10.1038/s41598-019-56897-8] [PMID: 31913350]
[53]
Su, R.Y.; Geng, X.Y.; Yang, Y.; Yin, H.S. Nesfatin-1 inhibits myocardial ischaemia/reperfusion injury through activating Akt/ERK pathway-dependent attenuation of endoplasmic reticulum stress. J. Cell. Mol. Med., 2021, 25(11), 5050-5059.
[http://dx.doi.org/10.1111/jcmm.16481] [PMID: 33939297]
[54]
Chen, H.; Zhou, H.; Yang, J.; Wan, H.; He, Y. Guhong injection mitigates myocardial ischemia/reperfusion injury by activating GST P to inhibit ASK1-JNK/p38 pathway. Phytomedicine, 2023, 109(154603), 154603.
[http://dx.doi.org/10.1016/j.phymed.2022.154603] [PMID: 36610111]
[55]
Li, K.S.; Bai, Y.; Li, J.; Li, S.L.; Pan, J.; Cheng, Y.Q.; Li, K.; Wang, Z.G.; Ji, W.J.; Zhou, Q.; Wang, D.J. LncRNA HCP5 in hBMSC-derived exosomes alleviates myocardial ischemia reperfusion injury by sponging miR-497 to activate IGF1/PI3K/AKT pathway. Int. J. Cardiol., 2021, 342, 72-81.
[http://dx.doi.org/10.1016/j.ijcard.2021.07.042] [PMID: 34311013]
[56]
Li, M.; Jiao, L.; Shao, Y.; Li, H.; Sun, L.; Yu, Q.; Gong, M.; Liu, D.; Wang, Y.; Xuan, L.; Yang, X.; Qu, Y.; Wang, Y.; Jiang, L.; Han, J.; Zhang, Y.; Zhang, Y. LncRNA-ZFAS1 promotes myocardial ischemia-reperfusion injury through DNA methylation-mediated Notch1 down-regulation in mice. JACC Basic Transl. Sci., 2022, 7(9), 880-895.
[http://dx.doi.org/10.1016/j.jacbts.2022.06.004] [PMID: 36317130]
[57]
Guo, Z.; Zhao, M.; Jia, G.; Ma, R.; Li, M. LncRNA PART1 alleviated myocardial ischemia/reperfusion injury via suppressing miR-503-5p/BIRC5 mediated mitochondrial apoptosis. Int. J. Cardiol., 2021, 338, 176-184.
[http://dx.doi.org/10.1016/j.ijcard.2021.05.044] [PMID: 34082009]
[58]
Gong, C.; Zhou, X.; Lai, S.; Wang, L.; Liu, J. Long Noncoding RNA/Circular RNA-miRNA-mRNA Axes in Ischemia-Reper-fusion Injury. BioMed. Res. Int., 2020, 2020, 8838524.
[http://dx.doi.org/10.1155/2020/8838524] [PMID: 33299883]
[59]
Gao, F.; Wang, X.; Fan, T.; Luo, Z.; Ma, M.; Hu, G.; Li, Y.; Liang, Y.; Lin, X.; Xu, B. LncRNA LINC00461 exacerbates myocardial ischemia-reperfusion injury via microRNA-185-3p/Myd88. Mol. Med., 2022, 28(1), 022-00452.
[http://dx.doi.org/10.1186/s10020-022-00452-1] [PMID: 35272621]
[60]
Sun, W.; Wu, X.; Yu, P.; Zhang, Q.; Shen, L.; Chen, J.; Tong, H.; Fan, M.; Shi, H.; Chen, X. LncAABR07025387.1 Enhances myocardial ischemia/reperfusion injury via miR-205/ACSL4-mediated ferroptosis. Front. Cell Dev. Biol., 2022, 10(672391), 672391.
[http://dx.doi.org/10.3389/fcell.2022.672391] [PMID: 35186915]
[61]
Cao, Y.; Pan, L.; Zhang, X.; Guo, W.; Huang, D. LncRNA SNHG3 promotes autophagy-induced neuronal cell apoptosis by acting as a ceRNA for miR-485 to up-regulate ATG7 expression. Metab. Brain Dis., 2020, 35(8), 1361-1369.
[http://dx.doi.org/10.1007/s11011-020-00607-1] [PMID: 32860611]
[62]
Sun, X.; Wang, L.; Huang, X.; Zhou, S.; Jiang, T. Regulatory mechanism miR-302a-3p/E2F1/SNHG3 axis in nerve repair post cerebral ischemic stroke. Curr. Neurovasc. Res., 2021, 18(5), 515-524.
[http://dx.doi.org/10.2174/1567202618666211210155715] [PMID: 34895123]
[63]
Huang, D.; Cao, Y.; Zu, T.; Ju, J. Interference with long noncoding RNA SNHG3 alleviates cerebral ischemia-reperfusion injury by inhibiting microglial activation. J. Leukoc. Biol., 2022, 111(4), 759-769.
[http://dx.doi.org/10.1002/JLB.1A0421-190R] [PMID: 34411323]