A Mini Review on the Application of Chitosan Composites for the Adsorption of Fluoride from Aqueous Solution

Page: [129 - 138] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Exploration into the development of cost-effective and eco-friendly adsorbents for the removal of fluoride continues to be unabated. The modification of chitosan through the development of composites and derivatives has shown great promise over the past decade. These modifications aim to overcome the limitation of chitosan, such as separability and adsorption capacity.

Objectives: The objective of this study is to review various modifications to chitosan for defluoridation, the resulting adsorption capacities, operational parameters that appreciably influence the fullscale application of adsorption systems and, where reported, the mechanisms that influenced the adsorption process.

Results and Discussion: Among the adsorbents reviewed, most of the processes were best modelled by the Langmuir isotherm and the pseudo-second order model. Chitosan composites were able to achieve significantly higher F- adsorption capacities and compared well to other adsorbents in the literature. Gamma degraded chitosan-Fe(III) beads, 10%-Lanthanum-incorporated chitosan beads and neodymium-modified chitosan were found to easily achieve the WHO drinking water limit of 1.5 mg/L. In all instances, the reactions were spontaneous and endothermic. Fluoride adsorption was shown to increase from the acidic region to near neutral pH followed by a decrease into the alkaline range.

Conclusion: The presence of competing ions is a major operational parameter for full-scale adsorption applications. The presence of carbonate and bicarbonate ions has been a consistent hindrance in reported studies. Thus, future investigations are warranted in this area.

Graphical Abstract

[1]
Shruthi MN, Santhuram A, Arun HS, Kishore Kumar BN. A comparative study of skeletal fluorosis among adults in two study areas of Bangarpet taluk, Kolar. Indian J Public Health 2016; 60(3): 203-9.
[http://dx.doi.org/10.4103/0019-557X.189014] [PMID: 27561399]
[2]
Jagtap S, Yenkie MK, Labhsetwar N, Rayalu S. Fluoride in drinking water and defluoridation of water. Chem Rev 2012; 112(4): 2454-66.
[http://dx.doi.org/10.1021/cr2002855] [PMID: 22303811]
[3]
Jadhav SV, Bringas E, Yadav GD, Rathod VK, Ortiz I, Marathe KV. Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. J Environ Manage 2015; 162: 306-25.
[http://dx.doi.org/10.1016/j.jenvman.2015.07.020] [PMID: 26265600]
[4]
Tomar V, Prasad S, Kumar D. Adsorptive removal of fluoride from aqueous media using Citrus limonum (lemon) leaf. Microchem J 2014; 112: 97-103.
[http://dx.doi.org/10.1016/j.microc.2013.09.010]
[5]
Kumar NP, Kumar NS, Krishnaiah A. Defluoridation of water using tamarind (Tamarindus indica) fruit cover: Kinetics and equilibrium studies. J Chil Chem Soc 2012; 57(3): 1224-31.
[http://dx.doi.org/10.4067/S0717-97072012000300006]
[6]
Yadav AK, Abbassi R, Gupta A, Dadashzadeh M. Removal of fluoride from aqueous solution and groundwater by wheat straw, sawdust and activated bagasse carbon of sugarcane. Ecol Eng 2013; 52: 211-8.
[http://dx.doi.org/10.1016/j.ecoleng.2012.12.069]
[7]
Gitari WM, Ngulube T, Masindi V, Gumbo JR. Defluoridation of groundwater using Fe 3+ -modified bentonite clay: Optimization of adsorption conditions. Desalination Water Treat 2015; 53(6): 1578-90.
[http://dx.doi.org/10.1080/19443994.2013.855669]
[8]
Masindi V. Application of cryptocrystalline magnesite-bentonite clay hybrid for defluoridation of underground water resources: Implication for point of use treatment. J Water Reuse Desalin 2017; 7(3): 338-52.
[http://dx.doi.org/10.2166/wrd.2016.055]
[9]
Nie Y, Hu C, Kong C. Enhanced fluoride adsorption using Al (III) modified calcium hydroxyapatite. J Hazard Mater 2012; 233-234: 194-9.
[http://dx.doi.org/10.1016/j.jhazmat.2012.07.020] [PMID: 22841297]
[10]
Jin H, Ji Z, Yuan J, et al. Research on removal of fluoride in aqueous solution by alumina-modified expanded graphite composite. J Alloys Compd 2015; 620: 361-7.
[http://dx.doi.org/10.1016/j.jallcom.2014.09.143]
[11]
Çengeloglu Y. Removal of fluoride from aqueous solution by using red mud. Separ Purif Tech 2002; 28(1): 81-6.
[http://dx.doi.org/10.1016/S1383-5866(02)00016-3]
[12]
Miretzky P, Cirelli AF. Fluoride removal from water by chitosan derivatives and composites: A review. J Fluor Chem 2011; 132(4): 231-40.
[http://dx.doi.org/10.1016/j.jfluchem.2011.02.001]
[13]
Fan X, Parker DJ, Smith MD. Adsorption kinetics of fluoride on low cost materials. Water Res 2003; 37(20): 4929-37.
[http://dx.doi.org/10.1016/j.watres.2003.08.014] [PMID: 14604639]
[14]
Viswanathan N, Sundaram CS, Meenakshi S. Removal of fluoride from aqueous solution using protonated chitosan beads. J Hazard Mater 2009; 161(1): 423-30.
[http://dx.doi.org/10.1016/j.jhazmat.2008.03.115] [PMID: 18479817]
[15]
Kurita K, Sannan T, Iwakura Y. Studies on chitin. VI. Binding of metal cations. J Appl Polym Sci 1979; 23(2): 511-5.
[http://dx.doi.org/10.1002/app.1979.070230221]
[16]
Zhang J, Chen N, Tang Z, Yu Y, Hu Q, Feng C. A study of the mechanism of fluoride adsorption from aqueous solutions onto Fe-impregnated chitosan. Phys Chem Chem Phys 2015; 17(18): 12041-50.
[http://dx.doi.org/10.1039/C5CP00817D] [PMID: 25872764]
[17]
Tandekar S, Saravanan D, Korde S, Jugade R. Gamma degraded chitosan-Fe(III) beads for defluoridation of water. Mater Today Proc 2020; 29: 726-32.
[http://dx.doi.org/10.1016/j.matpr.2020.04.369]
[18]
Kamble SP, Jagtap S, Labhsetwar NK, et al. Defluoridation of drinking water using chitin, chitosan and lanthanum-modified chitosan. Chem Eng J 2007; 129(1-3): 173-80.
[http://dx.doi.org/10.1016/j.cej.2006.10.032]
[19]
Bansiwal A, Thakre D, Labhshetwar N, Meshram S, Rayalu S. Fluoride removal using lanthanum incorporated chitosan beads. Colloids Surf B Biointerfaces 2009; 74(1): 216-24.
[http://dx.doi.org/10.1016/j.colsurfb.2009.07.021] [PMID: 19699619]
[20]
Yao R, Meng F, Zhang L, Ma D, Wang M. Defluoridation of water using neodymium-modified chitosan. J Hazard Mater 2009; 165(1-3): 454-60.
[http://dx.doi.org/10.1016/j.jhazmat.2008.10.052] [PMID: 19046805]
[21]
Viswanathan N, Meenakshi S. Enriched fluoride sorption using alumina/chitosan composite. J Hazard Mater 2010; 178(1-3): 226-32.
[http://dx.doi.org/10.1016/j.jhazmat.2010.01.067] [PMID: 20144851]
[22]
Pathirannehe PNS, Fernando TD, Rajapakse CSK. Removal of fluoride from drinking water using protonated glycerol diglycidyl ether cross-linked chitosan beads. Chem Chem Tech 2021; 15(2): 205-16.
[http://dx.doi.org/10.23939/chcht15.02.205]
[23]
Kusrini E, Sofyan N, Suwartha N, Yesya G, Priadi CR. Chitosan-praseodymium complex for adsorption of fluoride ions from water. J Rare Earths 2015; 33(10): 1104-13.
[http://dx.doi.org/10.1016/S1002-0721(14)60533-0]
[24]
Jeyaseelan A, Viswanathan N. Facile fabrication of zirconium–organic framework–embedded chitosan hybrid spheres for efficient fluoride adsorption. ACS ES&T Water 2022; 2(1): 52-62.
[http://dx.doi.org/10.1021/acsestwater.1c00229]
[25]
Jeyaseelan A, Mezni A, Viswanathan N. Facile hydrothermal fabrication of functionalized multi-layer graphene oxide encapsulated chitosan beads for enriched fluoride adsorption. J Appl Polym Sci 2022; 139(9): 51703.
[http://dx.doi.org/10.1002/app.51703]
[26]
Sivasankar V, Ramachandramoorthy T, Chandramohan A. Fluoride removal from water using activated and MnO2-coated Tamarind Fruit (Tamarindus indica) shell: Batch and column studies. J Hazard Mater 2010; 177(1-3): 719-29.
[http://dx.doi.org/10.1016/j.jhazmat.2009.12.091] [PMID: 20071077]
[27]
Alagumuthu G, Rajan M. Equilibrium and kinetics of adsorption of fluoride onto zirconium impregnated cashew nut shell carbon. Chem Eng J 2010; 158(3): 451-7.
[http://dx.doi.org/10.1016/j.cej.2010.01.017]
[28]
Kamble SP, Dixit P, Rayalu SS, Labhsetwar NK. Defluoridation of drinking water using chemically modified bentonite clay. Desalination 2009; 249(2): 687-93.
[http://dx.doi.org/10.1016/j.desal.2009.01.031]
[29]
Vhahangwele M, Mugera GW, Tholiso N. Defluoridation of drinking water using Al 3+ -modified bentonite clay: Optimization of fluoride adsorption conditions. Toxicol Environ Chem 2014; 96(9): 1294-309.
[http://dx.doi.org/10.1080/02772248.2014.977289]
[30]
Thakre D, Rayalu S, Kawade R, Meshram S, Subrt J, Labhsetwar N. Magnesium incorporated bentonite clay for defluoridation of drinking water. J Hazard Mater 2010; 180(1-3): 122-30.
[http://dx.doi.org/10.1016/j.jhazmat.2010.04.001] [PMID: 20462694]
[31]
Singh S, Khare A, Chaudhari S. Enhanced fluoride removal from drinking water using non-calcined synthetic hydroxyapatite. J Environ Chem Eng 2020; 8(2): 103704.
[http://dx.doi.org/10.1016/j.jece.2020.103704]
[32]
Mondal P, George S. Removal of fluoride from drinking water using novel adsorbent magnesia-hydroxyapatite. Water Air Soil Pollut 2015; 226(8): 241.
[http://dx.doi.org/10.1007/s11270-015-2515-2]
[33]
Li Y, Zhang P, Du Q, et al. Adsorption of fluoride from aqueous solution by graphene. J Colloid Interface Sci 2011; 363(1): 348-54.
[http://dx.doi.org/10.1016/j.jcis.2011.07.032] [PMID: 21821258]
[34]
Wu S, Kong L, Liu J. Removal of mercury and fluoride from aqueous solutions by three-dimensional reduced-graphene oxide aerogel. Res Chem Intermed 2016; 42(5): 4513-30.
[http://dx.doi.org/10.1007/s11164-015-2293-x]
[35]
Tor A, Danaoglu N, Arslan G, Cengeloglu Y. Removal of fluoride from water by using granular red mud: Batch and column studies. J Hazard Mater 2009; 164(1): 271-8.
[http://dx.doi.org/10.1016/j.jhazmat.2008.08.011] [PMID: 18799263]
[36]
Kemer B, Ozdes D, Gundogdu A, Bulut VN, Duran C, Soylak M. Removal of fluoride ions from aqueous solution by waste mud. J Hazard Mater 2009; 168(2-3): 888-94.
[http://dx.doi.org/10.1016/j.jhazmat.2009.02.109] [PMID: 19327886]
[37]
Jain S, Jayaram RV. Removal of fluoride from contaminated drinking water using unmodified and aluminium hydroxide impregnated blue lime stone waste. Sep Sci Technol 2009; 44(6): 1436-51.
[http://dx.doi.org/10.1080/01496390902766074]
[38]
Biswas K, Gupta K, Ghosh UC. Adsorption of fluoride by hydrous iron(III)–tin(IV) bimetal mixed oxide from the aqueous solutions. Chem Eng J 2009; 149(1-3): 196-206.
[http://dx.doi.org/10.1016/j.cej.2008.09.047]
[39]
Kumar E, Bhatnagar A, Kumar U, Sillanpää M. Defluoridation from aqueous solutions by nano-alumina: Characterization and sorption studies. J Hazard Mater 2011; 186(2-3): 1042-9.
[http://dx.doi.org/10.1016/j.jhazmat.2010.11.102] [PMID: 21177029]
[40]
Daifullah A, Yakout S, Elreefy S. Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw. J Hazard Mater 2007; 147(1-2): 633-43.
[http://dx.doi.org/10.1016/j.jhazmat.2007.01.062] [PMID: 17314006]
[41]
Maliyekkal SM, Sharma AK, Philip L. Manganese-oxide-coated alumina: A promising sorbent for defluoridation of water. Water Res 2006; 40(19): 3497-506.
[http://dx.doi.org/10.1016/j.watres.2006.08.007] [PMID: 17011020]
[42]
Chen N, Zhang Z, Feng C, Sugiura N, Li M, Chen R. Fluoride removal from water by granular ceramic adsorption. J Colloid Interface Sci 2010; 348(2): 579-84.
[http://dx.doi.org/10.1016/j.jcis.2010.04.048] [PMID: 20510421]
[43]
Mohapatra M, Rout K, Gupta SK, Singh P, Anand S, Mishra BK. Facile synthesis of additive-assisted nano goethite powder and its application for fluoride remediation. J Nanopart Res 2010; 12(2): 681-6.
[http://dx.doi.org/10.1007/s11051-009-9779-7]
[44]
Das N, Pattanaik P, Das R. Defluoridation of drinking water using activated titanium rich bauxite. J Colloid Interface Sci 2005; 292(1): 1-10.
[http://dx.doi.org/10.1016/j.jcis.2005.06.045] [PMID: 16126217]
[45]
Sathish RS, Raju NSR, Raju GS, Nageswara RG, Kumar KA, Janardhana C. Equilibrium and kinetic studies for fluoride adsorption from water on zirconium impregnated coconut shell carbon. Sep Sci Technol 2007; 42(4): 769-88.
[http://dx.doi.org/10.1080/01496390601070067]
[46]
Bansiwal A, Pillewan P, Biniwale RB, Rayalu SS. Copper oxide incorporated mesoporous alumina for defluoridation of drinking water. Microporous Mesoporous Mater 2010; 129(1-2): 54-61.
[http://dx.doi.org/10.1016/j.micromeso.2009.08.032]
[47]
Ayoob S, Gupta AK. Insights into isotherm making in the sorptive removal of fluoride from drinking water. J Hazard Mater 2008; 152(3): 976-85.
[http://dx.doi.org/10.1016/j.jhazmat.2007.07.072] [PMID: 17822839]