Targets Involved in Skin Aging and Photoaging and their Possible Inhibitors: A Mini-review

Page: [797 - 815] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Background: Skin aging is a natural process resulting from intrinsic (hormonal and genetic) and extrinsic (environmental) factors. Photoaging occurs due to prolonged exposure of the skin to ultraviolet radiation, accounting for 80% of facial aging.

Introduction: Characteristics of aging skin include reduced elasticity, the appearance of fine wrinkles, uneven tone, and dryness. Clinical signs of photoaging involve the presence of deeper wrinkles, rough texture, dyschromia and a greater loss of elasticity compared to chronological aging.

Methods: This work reported several scientific articles that used computational techniques, such as molecular docking, molecular dynamics and quantitative structure-activity relationship (QSAR) to identify natural products and their derivatives against skin aging and photoaging.

Results: The in silico analyses carried out by the researchers predicted the binding affinity and interactions of the natural products with the targets matrix metalloproteinase-1, matrix metalloproteinase- 3, matrix metalloproteinase-9 and tyrosinase. Furthermore, some studies have reported the stability of the protein-ligand complex and the physicochemical properties of the studied compounds. Finally, this research proposes promising molecules against the targets.

Conclusion: Thus, studies like this one are relevant to guide new research related to skin aging and photoaging.

Graphical Abstract

[1]
Kim JC, Park TJ, Kang HY. Skin-aging pigmentation: Who is the real enemy? Cells 2022; 11(16): 2541.
[http://dx.doi.org/10.3390/cells11162541] [PMID: 36010618]
[2]
Bocheva G, Slominski RM, Janjetovic Z, et al. Protective role of melatonin and its metabolites in skin aging. Int J Mol Sci 2022; 23(3): 1238.
[http://dx.doi.org/10.3390/ijms23031238] [PMID: 35163162]
[3]
Gu Y, Han J, Jiang C, Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res Rev 2020; 59(59): 101036.
[http://dx.doi.org/10.1016/j.arr.2020.101036] [PMID: 32105850]
[4]
Salminen A, Kaarniranta K, Kauppinen A. Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. Inflamm Res 2022; 71(7-8): 817-31.
[http://dx.doi.org/10.1007/s00011-022-01598-8] [PMID: 35748903]
[5]
Figueres Juher T, Basés Pérez E. An overview of the beneficial effects of hydrolysed collagen intake on joint and bone health and on skin ageing. Nutr Hosp 2015; 32(S1): 62-6.
[http://dx.doi.org/10.3305/nh.2015.32.sup1.9482] [PMID: 26267777]
[6]
Krutmann J, Bouloc A, Sore G, Bernard BA, Passeron T. The skin aging exposome. J Dermatol Sci 2017; 85(3): 152-61.
[http://dx.doi.org/10.1016/j.jdermsci.2016.09.015] [PMID: 27720464]
[7]
Zhang S, Duan E. Fighting against Skin Aging. Cell Transplant 2018; 27(5): 729-38.
[http://dx.doi.org/10.1177/0963689717725755] [PMID: 29692196]
[8]
Wang L, Oh JY, Kim YS, Lee HG, Lee JS, Jeon YJ. Anti-photoaging and anti-melanogenesis effects of fucoidan isolated from hizikia fusiforme and its underlying mechanisms. Mar Drugs 2020; 18(8): 427.
[http://dx.doi.org/10.3390/md18080427] [PMID: 32824148]
[9]
Bocheva G, Slominski RM, Slominski AT. Neuroendocrine aspects of skin aging. Int J Mol Sci 2019; 20(11): 2798.
[http://dx.doi.org/10.3390/ijms20112798] [PMID: 31181682]
[10]
Ophelia EFA. Screening of bioactive compounds from natural remedies for photoaging, to target ap-1; an in silico approach. 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB). 27-28 February 2016; Chennai, India. 2016; pp. 14-6.
[11]
Damayanti S, Fabelle NR, Yooin W, Insanu M, Jiranusornkul S, Wongrattanakamon P. Molecular modeling for potential cathepsin L inhibitor identification as new anti-photoaging agents from tropical medicinal plants. J Bioenerg Biomembr 2021; 53(3): 259-74.
[http://dx.doi.org/10.1007/s10863-021-09893-5] [PMID: 33818669]
[12]
Zouboulis CC, Ganceviciene R, Liakou AI, Theodoridis A, Elewa R, Makrantonaki E. Aesthetic aspects of skin aging, prevention, and local treatment. Clin Dermatol 2019; 37(4): 365-72.
[http://dx.doi.org/10.1016/j.clindermatol.2019.04.002] [PMID: 31345325]
[13]
Parrado C, Mercado-Saenz S, Perez-Davo A, Gilaberte Y, Gonzalez S, Juarranz A. Environmental stressors on skin aging. Mechanistic insights. Front Pharmacol 2019; 10(July): 759.
[http://dx.doi.org/10.3389/fphar.2019.00759] [PMID: 31354480]
[14]
Kammeyer A, Luiten RM. Oxidation events and skin aging. Ageing Res Rev 2015; 21: 16-29.
[http://dx.doi.org/10.1016/j.arr.2015.01.001] [PMID: 25653189]
[15]
Vashi NA, de Castro MMB, Kundu RV. Aging differences in ethnic skin. J Clin Aesthet Dermatol 2016; 9(1): 31-8.
[PMID: 26962390]
[16]
Kim OK, Kim D, Lee M, et al. Standardized edible bird’s nest extract prevents UVB irradiation-mediated oxidative stress and photoaging in the skin. Antioxidants 2021; 10(9): 1452.
[http://dx.doi.org/10.3390/antiox10091452] [PMID: 34573084]
[17]
Campa M, Baron E. Anti-aging effects of select botanicals: Scientific evidence and current trends. Cosmetics 2018; 5(3): 54.
[http://dx.doi.org/10.3390/cosmetics5030054]
[18]
Jeong EJ, Jegal J, Jung YS, Chung KW, Chung HY, Yang MH. Fermented onions extract inhibits tyrosinase and collagenase-1 activities as a potential new anti–photoaging agent. Nat Prod Commun 2017; 12(7): 1934578X1701200.
[http://dx.doi.org/10.1177/1934578X1701200711]
[19]
Li C, Fu Y, Dai H, Wang Q, Gao R, Zhang Y. Recent progress in preventive effect of collagen peptides on photoaging skin and action mechanism. Food Sci Hum Wellness 2022; 11(2): 218-29.
[http://dx.doi.org/10.1016/j.fshw.2021.11.003]
[20]
Limtrakul P, Yodkeeree S, Thippraphan P, Punfa W, Srisomboon J. Anti-aging and tyrosinase inhibition effects of Cassia fistula flower butanolic extract. BMC Complement Altern Med 2016; 16(1): 497.
[http://dx.doi.org/10.1186/s12906-016-1484-3] [PMID: 27912751]
[21]
Patra S, Saravanan P, Das B, Subramanian V, Patra S. Scaffold-based screening and molecular dynamics simulation study to identify two structurally related phenolic compounds as potent MMP1 inhibitors. Comb Chem High Throughput Screen 2020; 23(8): 757-74.
[http://dx.doi.org/10.2174/1386207323666200428114216] [PMID: 32342802]
[22]
Mechqoq H, Hourfane S, El Yaagoubi M, et al. Molecular docking, tyrosinase, collagenase, and elastase inhibition activities of argan by-products. Cosmetics 2022; 9(1): 24.
[http://dx.doi.org/10.3390/cosmetics9010024]
[23]
Krisnamurti GC, Sari DRT. Does Centella asiatica have antiaging activity in skincare products? Proceedings of the 2nd International Conference on Education and Technology (ICETECH 2021). 240-5.
[http://dx.doi.org/10.2991/assehr.k.220103.035]
[24]
Maia EHB, Assis LC, de Oliveira TA, da Silva AM, Taranto AG. Structure-based virtual screening: From classical to artificial intelligence. Front Chem 2020; 8(April): 343.
[http://dx.doi.org/10.3389/fchem.2020.00343] [PMID: 32411671]
[25]
Maia EHB, Medaglia LR, da Silva AM, Taranto AG. Molecular architect: A user-friendly workflow for virtual screening. ACS Omega 2020; 5(12): 6628-40.
[http://dx.doi.org/10.1021/acsomega.9b04403] [PMID: 32258898]
[26]
Neves BJ, Braga RC, Melo-Filho CC, Moreira-Filho JT, Muratov EN, Andrade CH. QSAR-based virtual screening: Advances and applications in drug discovery. Front Pharmacol 2018; 9(NOV): 1275.
[http://dx.doi.org/10.3389/fphar.2018.01275] [PMID: 30524275]
[27]
Vázquez J, López M, Gibert E, Herrero E, Luque FJ. Merging ligand-based and structure-based methods in drug discovery: An overview of combined virtual screening approaches. Molecules 2020; 25(20): 4723.
[http://dx.doi.org/10.3390/molecules25204723] [PMID: 33076254]
[28]
Daina A, Zoete V. Application of the SwissDrugDesign online resources in virtual screening. Int J Mol Sci 2019; 20(18): 4612.
[http://dx.doi.org/10.3390/ijms20184612] [PMID: 31540350]
[29]
Rica E, Álvarez S, Serratosa F. Ligand-based virtual screening based on the graph edit distance. Int J Mol Sci 2021; 22(23): 12751.
[http://dx.doi.org/10.3390/ijms222312751] [PMID: 34884555]
[30]
Wu Y, Huo D, Chen G, Yan A. SAR and QSAR research on tyrosinase inhibitors using machine learning methods. SAR QSAR Environ Res 2021; 32(2): 85-110.
[http://dx.doi.org/10.1080/1062936X.2020.1862297] [PMID: 33517778]
[31]
Tian Y, Zhang S, Yin H, Yan A. Quantitative structure-activity relationship (QSAR) models and their applicability domain analysis on HIV-1 protease inhibitors by machine learning methods. Chemom Intell Lab Syst 2020; 196: 103888.
[http://dx.doi.org/10.1016/j.chemolab.2019.103888]
[32]
Garcia-Hernandez C, Fernández A, Serratosa F. Learning the edit costs of graph edit distance applied to ligand-based virtual screening. Curr Top Med Chem 2020; 20(18): 1582-92.
[http://dx.doi.org/10.2174/1568026620666200603122000] [PMID: 32493194]
[33]
Wang Z, Sun H, Shen C, et al. Combined strategies in structure-based virtual screening. Phys Chem Chem Phys 2020; 22(6): 3149-59.
[http://dx.doi.org/10.1039/C9CP06303J] [PMID: 31995074]
[34]
Varela-Rial A, Majewski M, De Fabritiis G. Structure based virtual screening: Fast and slow. Wiley Interdiscip Rev Comput Mol Sci 2022; 12(2): 1-17.
[http://dx.doi.org/10.1002/wcms.1544]
[35]
Sohraby F, Aryapour H. Rational drug repurposing for cancer by inclusion of the unbiased molecular dynamics simulation in the structure-based virtual screening approach: Challenges and breakthroughs. Semin Cancer Biol 2021; 68(March): 249-57.
[http://dx.doi.org/10.1016/j.semcancer.2020.04.007] [PMID: 32360530]
[36]
Khelfaoui H, Harkati D, Saleh BA. Molecular docking, molecular dynamics simulations and reactivity, studies on approved drugs library targeting ACE2 and SARS-CoV-2 binding with ACE2. J Biomol Struct Dyn 2021; 39(18): 7246-62.
[http://dx.doi.org/10.1080/07391102.2020.1803967] [PMID: 32752951]
[37]
Keretsu S, Bhujbal SP, Cho SJ. Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation. Sci Rep 2020; 10(1): 17716.
[http://dx.doi.org/10.1038/s41598-020-74468-0] [PMID: 33077821]
[38]
Kralj S, Jukič M, Bren U. Commercial SARS-CoV-2 targeted, protease inhibitor focused and protein–protein interaction inhibitor focused molecular libraries for virtual screening and drug design. Int J Mol Sci 2021; 23(1): 393.
[http://dx.doi.org/10.3390/ijms23010393] [PMID: 35008818]
[39]
Khan SU, Ahemad N, Chuah LH, Naidu R, Htar TT. Sequential ligand- and structure-based virtual screening approach for the identification of potential G protein-coupled estrogen receptor-1 (GPER-1) modulators. RSC Advances 2019; 9(5): 2525-38.
[http://dx.doi.org/10.1039/C8RA09318K] [PMID: 35520492]
[40]
Gimeno A, Ojeda-Montes M, Tomás-Hernández S, et al. The light and dark sides of virtual screening: What is there to know? Int J Mol Sci 2019; 20(6): 1375.
[http://dx.doi.org/10.3390/ijms20061375] [PMID: 30893780]
[41]
Yeo H, Lee JY, Kim J, et al. Transcription factor EGR-1 transactivates the MMP1 gene promoter in response to TNFα in HaCaT keratinocytes. BMB Rep 2020; 53(6): 323-8.
[http://dx.doi.org/10.5483/BMBRep.2020.53.6.290] [PMID: 32317080]
[42]
Laronha H, Carpinteiro I, Portugal J, et al. Challenges in matrix metalloproteinases inhibition. Biomolecules 2020; 10(5): 717.
[http://dx.doi.org/10.3390/biom10050717] [PMID: 32380782]
[43]
Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M. Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int J Mol Sci 2016; 17(6): 868.
[http://dx.doi.org/10.3390/ijms17060868] [PMID: 27271600]
[44]
Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci 2017; 147(1): 1-73.
[http://dx.doi.org/10.1016/bs.pmbts.2017.02.005] [PMID: 28413025]
[45]
Son WC, Yun JW, Kim BH. Adipose-derived mesenchymal stem cells reduce MMP-1 expression in UV-irradiated human dermal fibroblasts: therapeutic potential in skin wrinkling. Biosci Biotechnol Biochem 2015; 79(6): 919-25.
[http://dx.doi.org/10.1080/09168451.2015.1008972] [PMID: 25685961]
[46]
Mohamed MAA, Jung M, Lee SM, Lee TH, Kim J. Protective effect of Disporum sessile D.Don extract against UVB-induced photoaging via suppressing MMP-1 expression and collagen degradation in human skin cells. J Photochem Photobiol B 2014; 133: 73-9.
[http://dx.doi.org/10.1016/j.jphotobiol.2014.03.002] [PMID: 24705373]
[47]
Cui B, Wang Y, Jin J, et al. Resveratrol treats UVB-induced photoaging by anti-MMP expression, through anti-inflammatory, antioxidant, and antiapoptotic properties, and treats photoaging by upregulating VEGF-B expression. Oxid Med Cell Longev 2022; 2022: 1-19.
[http://dx.doi.org/10.1155/2022/6037303] [PMID: 35028009]
[48]
Atienza JJ, Arcinue RJ, Butalid MD, et al. in silico evaluation of the inhibitory property of Holothuria scabra (sea cucumber) with the catalytic domain of matrix metalloproteinase-1 for collagen degradation via interaction of triterpenoid saponins. J Pharmacogn Phytochem 2022; 11(2): 247-57.
[http://dx.doi.org/10.22271/phyto.2022.v11.i2c.14391]
[49]
Yasmeen S, Gupta P. Interaction of selected terpenoids from Dalbergia sissoo with catalytic domain of matrix metalloproteinase-1: An in silico assessment of their anti-wrinkling potential. Bioinform Biol Insights 2019; 13
[http://dx.doi.org/10.1177/1177932219896538] [PMID: 31903022]
[50]
Girsang E, Lister INE, Ginting CN, et al. Chemical constituents of snake fruit (Salacca zalacca (Gaert.) Voss) peel and in silico anti-aging analysis. MCBS 2019; 3(2): 122-8.
[http://dx.doi.org/10.21705/mcbs.v3i2.80]
[51]
Girsang E, Ginting CN, Nyoman I. in silico analysis of phytochemical compound found in snake fruit (Salacca zalacca) peel as anti-aging agent. TJPS 2019; 43(2)
[52]
Krisnayana IGB, Febyani PD, Sari IAYP, Laksmiani NPL. Molecular docking of lutein as anti-photoaging agent in silico. Pharmacy Reports 2021; 1(1): 15-5.
[http://dx.doi.org/10.51511/pr.15]
[53]
Dewi NKDP, Suryadewi KD, Fitriari DM, Andini KL, Laksmiani NPL. Molecular docking of gallic acid as anti-photoaging in silico. Pharmacy Reports 2021; 1(2): 18-8.
[http://dx.doi.org/10.51511/pr.18]
[54]
Uzun M, Guvenalp Z, Kazaz C, Demirezer LO. Matrix metalloproteinase inhibitor and sunscreen effective compounds fromRumex crispus L.: isolation, identification, bioactivity and molecular docking study. Phytochem Anal 2020; 31(6): 818-34.
[http://dx.doi.org/10.1002/pca.2948] [PMID: 32488908]
[55]
Zhang C, Lv J, Qin X, Peng Z, Lin H. Novel antioxidant peptides from crassostrea hongkongensis improve photo-oxidation in UV-induced HaCaT cells. Mar Drugs 2022; 20(2): 100.
[http://dx.doi.org/10.3390/md20020100]
[56]
Liping S, Qiuming L, Jian F, Xiao L, Yongliang Z. Purification and characterization of peptides inhibiting MMP-1 activity with C Terminate of Gly-Leu from simulated gastrointestinal digestion hydrolysates of tilapia ( Oreochromis niloticus ) skin gelatin. J Agric Food Chem 2018; 66(3): 593-601.
[http://dx.doi.org/10.1021/acs.jafc.7b04196] [PMID: 29272917]
[57]
Rizzuti B. Molecular simulations of proteins: From simplified physical interactions to complex biological phenomena. Biochim Biophys Acta Proteins Proteomics 2022; 1870(3): 140757.
[http://dx.doi.org/10.1016/j.bbapap.2022.140757] [PMID: 35051666]
[58]
Lee KE, Bharadwaj S, Yadava U, Kang SG. Computational and in vitro investigation of (-)-epicatechin and proanthocyanidin B2 as inhibitors of human matrix metalloproteinase 1. Biomol 2020; 10(10): 1379.
[http://dx.doi.org/10.3390/biom10101379]
[59]
Geng R, Kang SG, Huang K, Tong T. Boosting the photoaged skin: The potential role of dietary components. Nutrients 2021; 13(5): 1691.
[http://dx.doi.org/10.3390/nu13051691] [PMID: 34065733]
[60]
Lu J, Guo JH, Tu XL, et al. Tiron inhibits UVB-Induced AP-1 binding sites transcriptional activation on MMP-1 and MMP-3 Promoters by MAPK signaling pathway in human dermal fibroblasts. PLoS One 2016; 11(8): e0159998.
[http://dx.doi.org/10.1371/journal.pone.0159998] [PMID: 27486852]
[61]
Lee H, Hong Y, Kim M. Structural and functional changes and possible molecular mechanisms in aged skin. Int J Mol Sci 2021; 22(22): 12489.
[http://dx.doi.org/10.3390/ijms222212489] [PMID: 34830368]
[62]
Zheng Z, Xiao Z, He YL, et al. Heptapeptide Isolated from Isochrysis zhanjiangensis Exhibited Anti-Photoaging Potential via MAPK/AP-1/MMP Pathway and Anti-Apoptosis in UVB-Irradiated HaCaT Cells. Mar Drugs 2021; 19(11): 626.
[http://dx.doi.org/10.3390/md19110626] [PMID: 34822497]
[63]
Sajjad W, Abbasi SW, Ali L. Molecular docking study of astaxanthin derived from radio-resistant bacterium deinococcus sp. Strain WMA-LM9 to matrix metalloproteinase-1, 3 (MMP-1, MMP-3). Life Sci 2021; 2(1): 6.
[http://dx.doi.org/10.37185/LnS.1.1.105]
[64]
Wongrattanakamon P, Nimmanpipug P, Sirithunyalug B, Chaiyana W, Jiranusornkul S. Molecular modeling of non-covalent binding of Ligustrum lucidum secoiridoid glucosides to AP-1/matrix metalloproteinase pathway components. J Bioenerg Biomembr 2018; 50(4): 315-27.
[http://dx.doi.org/10.1007/s10863-018-9756-x] [PMID: 29687366]
[65]
Govindharaj D, Nachimuthu S, Gonsalves DF, et al. Molecular docking analysis of chlorogenic acid against matrix metalloproteinases (MMPs). Biointerface Res Appl Chem 2020; 10(6): 6865-73.
[http://dx.doi.org/10.33263/BRIAC106.68656873]
[66]
Crascì L, Basile L, Panico A, et al. Correlating in vitro target-oriented screening and docking: Inhibition of matrix metalloproteinases activities by flavonoids. Planta Med 2017; 83(11): 901-11.
[http://dx.doi.org/10.1055/s-0043-104775] [PMID: 28288492]
[67]
Xiao Z, Yang S, Liu Y, et al. A novel glyceroglycolipid from brown algae Ishige okamurae improve photoaging and counteract inflammation in UVB-induced HaCaT cells. Chem Biol Interact 2022; 351(351): 109737.
[http://dx.doi.org/10.1016/j.cbi.2021.109737] [PMID: 34740599]
[68]
Xiao Z, Liang P, Chen J, et al. A peptide YGDEY from tilapia gelatin hydrolysates inhibits UVB -mediated skin photoaging by regulating MMP -1 and MMP -9 expression in HaCaT cells. Photochem Photobiol 2019; 95(6): 1424-32.
[http://dx.doi.org/10.1111/php.13135] [PMID: 31230361]
[69]
Oh JH, Karadeniz F, Kong CS, Seo Y. Antiphotoaging effect of 3,5-Dicaffeoyl-epi-quinic acid against UVA-induced skin damage by protecting human dermal fibroblasts in vitro. Int J Mol Sci 2020; 21(20): 7756.
[http://dx.doi.org/10.3390/ijms21207756] [PMID: 33092202]
[70]
Lee HJ, Im A-R, Kim S-M, Kang H-S, Lee JD, Chae S. The flavonoid hesperidin exerts anti-photoaging effect by downregulating matrix metalloproteinase (MMP)-9 expression via mitogen activated protein kinase (MAPK)-dependent signaling pathways. BMC Complement Altern Med 2018; 18(1): 39.
[http://dx.doi.org/10.1186/s12906-017-2058-8] [PMID: 29295712]
[71]
Chen J, Liang P, Xiao Z, et al. Antiphotoaging effect of boiled abalone residual peptide ATPGDEG on UVB-induced keratinocyte HaCaT cells. Food Nutr Res 2019; 63(0): 1-13.
[http://dx.doi.org/10.29219/fnr.v63.3508] [PMID: 31762729]
[72]
He YL, Xiao Z, Yang S, et al. Phlorotanin, 6,6′-Bieckol from ecklonia cava, against photoaging by inhibiting MMP-1, -3 and -9 expression on UVB-induced HaCaT keratinocytes. Photochem Photobiol 2021; (23): 1-9.
[http://dx.doi.org/10.1111/php.13575] [PMID: 34897721]
[73]
Wongrattanakamon P, Nimmanpipug P, Sirithunyalug B, Chaiyana W, Jiranusornkul S. Investigation of the skin anti-photoaging potential of swertia chirayita secoiridoids through the AP-1/Matrix metalloproteinase pathway by molecular modeling. Int J Pept Res Ther 2019; 25(2): 517-33.
[http://dx.doi.org/10.1007/s10989-018-9695-8]
[74]
Xiao Z, Yang S, Chen J, et al. Trehalose against UVB-induced skin photoaging by suppressing MMP expression and enhancing procollagen I synthesis in HaCaT cells. J Funct Foods 2020; 74(September): 104198.
[http://dx.doi.org/10.1016/j.jff.2020.104198]
[75]
Ma Q, Liu Q, Yuan L, Zhuang Y. Protective effects of LSGYGP from fish skin gelatin hydrolysates on UVB-Induced MEFs by regulation of oxidative stress and matrix metalloproteinase activity. Nutrients 2018; 10(4): 420.
[http://dx.doi.org/10.3390/nu10040420] [PMID: 29597313]
[76]
Bang E, Lee EK, Noh SG, et al. in vitro and in vivo evidence of tyrosinase inhibitory activity of a synthesized (Z) -5-(3-hydroxy-4-methoxybenzylidene)-2-thioxothiazolidin-4-one (5- HMT ). Exp Dermatol 2019; 28(6): 734-7.
[http://dx.doi.org/10.1111/exd.13863] [PMID: 30554432]
[77]
Lai X, Wichers HJ, Soler-Lopez M, Dijkstra BW. Structure and function of human tyrosinase and tyrosinase-related proteins. Chemistry 2018; 24(1): 47-55.
[http://dx.doi.org/10.1002/chem.201704410] [PMID: 29052256]
[78]
Yu S, He M, Zhai Y, et al. Inhibitory activity and mechanism of trilobatin on tyrosinase: kinetics, interaction mechanism and molecular docking. Food Funct 2021; 12(6): 2569-79.
[http://dx.doi.org/10.1039/D0FO03264F] [PMID: 33625428]
[79]
Hariri R, Saeedi M, Akbarzadeh T. Naturally occurring and synthetic peptides: Efficient tyrosinase inhibitors. J Pept Sci 2021; 27(7): e3329.
[http://dx.doi.org/10.1002/psc.3329] [PMID: 33860571]
[80]
Rosa GP, Palmeira A, Resende DISP, et al. Xanthones for melanogenesis inhibition: Molecular docking and qsar studies to understand their anti-tyrosinase activity. Bioorg Med Chem 2020; 2021: 29.
[http://dx.doi.org/10.1016/j.bmc.2020.115873] [PMID: 33242700]
[81]
Wang Y, Hao MM, Sun Y, et al. Synergistic promotion on tyrosinase inhibition by antioxidants. Molecules 2018; 23(1): 106.
[http://dx.doi.org/10.3390/molecules23010106] [PMID: 29300356]
[82]
Moon KM, Yang JH, Lee MK, et al. Maclurin exhibits antioxidant and anti-tyrosinase activities, suppressing melanogenesis. Antioxidants 2022; 11(6): 1164.
[http://dx.doi.org/10.3390/antiox11061164] [PMID: 35740060]
[83]
Gou L, Lee J, Yang JM, et al. Inhibition of tyrosinase by fumaric acid: Integration of inhibition kinetics with computational docking simulations. Int J Biol Macromol 2017; 105(Pt 3): 1663-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.013] [PMID: 27940340]
[84]
Xie P, Huang L, Zhang C, Ding S, Deng Y, Wang X. Skin-care effects of dandelion leaf extract and stem extract: Antioxidant properties, tyrosinase inhibitory and molecular docking simulations. Ind Crops Prod 2018; 111(111): 238-46.
[http://dx.doi.org/10.1016/j.indcrop.2017.10.017]
[85]
Chen J, Ran M, Wang M, et al. Evaluation of antityrosinase activity and mechanism, antioxidation, and UV filter properties of theaflavin. Biotechnol Appl Biochem 2022; 69(3): 951-62.
[http://dx.doi.org/10.1002/bab.2166] [PMID: 33878231]
[86]
Bhardwaj V, Sharma K, Maksimovic S, Fan A, Adams-Woodford A, Mao J. Professional-grade TCA-lactic acid chemical peel: Elucidating mode of action to treat photoaging and hyperpigmentation. Front Med 2021; 8(February): 617068.
[http://dx.doi.org/10.3389/fmed.2021.617068] [PMID: 33681250]
[87]
Gupta MK, Senthilkumar S, Chiranjivi AK, et al. Antioxidant, anti-tyrosinase and anti-inflammatory activities of 3,5-dihydroxy-4′,7-dimethoxyflavone isolated from the leaves of Alpinia nigra. Phytomedicine Plus 2021; 1(3): 100097.
[http://dx.doi.org/10.1016/j.phyplu.2021.100097]
[88]
Sepehri N, Khoshneviszadeh M, Farid SM, et al. Design, synthesis, biological evaluation, and molecular docking study of thioxo-2,3-dihydroquinazolinone derivative as tyrosinase inhibitors. J Mol Struct 2022; 1253: 132283.
[http://dx.doi.org/10.1016/j.molstruc.2021.132283]
[89]
Nazir Y, Rafique H, Roshan S, et al. Molecular Docking, Synthesis, and Tyrosinase Inhibition Activity of Acetophenone Amide: Potential Inhibitor of Melanogenesis. Int J Biol Macromol 2022; 105: 1663-9.