[1]
Chand, R.; Tuteja, S.K.; Neethirajan, S. Graphene-based biosensors in agro-defense: Food safety and animal health diagnosis. In: Handbook of Graphene; Wiley, 2019.
[6]
Zeineldin, M.; Elolimy, A.A.; Reddy, P.R.K.; Abdelmegeid, M.; Mellado, M.; Elghandour, M.M.M.Y. On-farm point-of-care diagnostic technologies for monitoring health, welfare, and performance in livestock production systems. In: Sustainable Agriculture Reviews; Springer: Cham, 2021; 54, pp. 209-232.
[7]
Umesha, S.; Manukumar, H.M. Advanced molecular diagnostic techniques for detection of food-borne pathogens: Current applications and future challenges. Crit Rev Food Sci Nutr., 2018, 58(1), 84-104.
[11]
Narsaiah, K.; Jha, S.N.; Bhardwaj, R.; Sharma, R.; Kumar, R. Optical biosensors for food quality and safety assurance—a review. J. Food Sci. Technol., 2011, 49(4), 383-406.
[16]
Rai, S.; Guin, M.; De, A.; Singh, N.B. Functionalized nanomaterials: Basics, properties and applications. ACS Symposium Series, 2022, 1418, 27-66.
[25]
Vizzini, P.; Braidot, M.; Vidic, J.; Manzano, M. Electrochemical and optical biosensors for the detection of campylobacter and listeria: An update look. Micromachines, 2019, 10(8), 500.
[36]
Peltomaa, R.; López-Perolio, I.; Benito-Peña, E.; Barderas, R.; Moreno-Bondi, M.C. Application of bacteriophages in sensor development. Anal Bioanal Chem, 2015, 408, 1805-1828.
[41]
Lopez-Torres, D.; Elosua, C.; Arregui, F.J. Optical fiber sensors based on microstructured optical fibers to detect gases and volatile organic compounds—A review. Sensors, 2020, 20(9), 2555.
[46]
Yang, J.; Wang, X.; Sun, Y.; Chen, B.; Hu, F.; Guo, C. Recent advances in colorimetric sensors based on gold nanoparticles for pathogen detection. Biosensors, 2023, 13, 29.
[67]
Kricka, LJ Chemiluminescence. Cold Spring Harb Protoc., 2018, 2018(4), pdb.top098236.
[87]
Lu, C; Gao, X; Chen, Y; Ren, J; Liu, C. Aptamer-Based Lateral Flow Test Strip for the Simultaneous Detection of Salmonella typhimurium, Escherichia coli O157:H7 and Staphylococcus aureus. Anal. Lett., 2020, 53(4), 646-659.
[96]
Chen, C.; Mehl, B.T.; Munshi, A.S.; Townsend, A.D.; Spence, D.M.; Martin, R.S. 3D-printed microfluidic devices: Fabrication, advantages and limitations - a mini review. Anal Methods, 2016, 8(31), 6005-6012.
[99]
Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep., 2012, 127(1), 4-22.
[101]
Chen, T.; Cheng, G.; Ahmed, S.; Wang, Y.; Wang, X.; Hao, H. New methodologies in screening of antibiotic residues in animal-derived foods: Biosensors. Talanta, 2017, 175, 435-442.
[102]
Albright, JL; Tuckey, SL; Woods, GT Antibiotics in Milk—A Review. J. Dairy Sci., 1961, 44(5), 779-807.
[108]
Gaudin, V. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin – A comprehensive review. Biosens Bioelectron., 2017, 90, 363-377.
[109]
Majdinasab, M.; Mishra, R.K.; Tang, X.; Marty, J.L. Detection of antibiotics in food: New achievements in the development of biosensors. Trends Analyt. Chem., 2020, 115883.
[110]
Wang, Q.; Zhao, W.M. Optical methods of antibiotic residues detections: A comprehensive review. Sens. Act. B: Chem., 2018, 269, 238-256.
[121]
Adegbeye, M.J.; Reddy, P.R.K.; Chilaka, C.A.; Balogun, O.B.; Elghandour, M.M.M.Y.; Rivas-Caceres, R.R. Mycotoxin toxicity and residue in animal products: Prevalence, consumer exposure and reduction strategies – A review. Toxicon, 2020, 177, 96-108.
[133]
Oh, Y.; Lee, Y.; Heath, J.; Kim, M. Applications of animal biosensors: A review. IEEE Sens. J., 2014, 15(2), 637-645.
[153]
Möstl, E.; Palme, R. Hormones as indicators of stress. In: Domestic Animal Endocrinology; Elsevier, 2002; pp. 67-74.
[154]
Cook, NJ Review: Minimally invasive sampling media and the measurement of corticosteroids as biomarkers of stress in animals. Canadian J. Animal Sci., 2012, 227-59.
[165]
Longjam, N.; Deb, R.; Sarmah, A.K.; Tayo, T.; Awachat, V.B.; Saxena, V.K. A brief review on diagnosis of foot-and-mouth disease of livestock: Conventional to molecular tools. Vet Med Int., 2011, 2011, 905768.
[173]
Nicoletti, P. BRUCELLOSIS: PAST, PRESENT AND FUTURE. Contributions, Sec Biol Med Sci. MASA, XXXI., 2010, 1, 21-32.
[176]
Saberi, F.; Kamali, M.; Taheri, R.A.; Ramandi, M.F.; Bagdeli, S.; Mirnejad, R. Development of Surface Plasmon Resonance-Based Immunosensor for Detection of Brucella melitensis. J. Braz. Chem. Soc., 2016, 27(11), 1960-1965.
[177]
Seleem, M.N.; Boyle, S.M.; Sriranganathan, N. Brucellosis: A re-emerging zoonosis. Vet Microbiol., 2010, 140(3-4), 392-8.
[179]
Pal, D.; Boby, N.; Kumar, S.; Kaur, G.; Ali, S.A.; Reboud, J. Visual detection of Brucella in bovine biological samples using DNA-activated gold nanoparticles. PLoS One, 2017, 12(7), e0180919.