Recent Advances of Optical Biosensors in Veterinary Medicine: Moving Towards the Point of Care Applications

Page: [2242 - 2265] Pages: 24

  • * (Excluding Mailing and Handling)

Abstract

While food safety issues are attracting public concern due to their detrimental effects on human health, monitoring livestock health is urgently needed to diagnose animal diseases at an early stage by applying proper treatments, controlling, and preventing outbreaks, particularly in resource- limited countries. In addition, unhealthy farms are not only a threat to livestock but also to human lives. The available diagnostic techniques for the detection of key health threats within both the food and livestock sectors require labor-intensive and time-consuming experimental procedures and sophisticated and expensive instruments. To tackle this issue, optical biosensing strategies have been incorporated into point-of-care (POC) systems, offering real-time monitoring, field-deployable, and low-cost devices, which help make on-the-spot decisions.

This review aims to discuss the recent cutting-edge research on POC optical biosensing platforms for on-farm diagnosis of animal diseases and on-site detection of animal-derived food-borne contaminants, including pathogens, antibiotics, and mycotoxins. Moreover, this review briefly presents the basic knowledge of various types of optical biosensors and their development using various recent strategies, including nanomaterial combinations, to enhance their performance in POC tests.

This review is expected to help scientists to understand the evolution and challenges in the development of point-of-care biosensors for the food and livestock industry, benefiting global healthcare.

Graphical Abstract

[1]
Chand, R.; Tuteja, S.K.; Neethirajan, S. Graphene-based biosensors in agro-defense: Food safety and animal health diagnosis. In: Handbook of Graphene; Wiley, 2019.
[2]
Neethirajan, S.; Tuteja, S.K.; Huang, S.T.; Kelton, D. Recent advancement in biosensors technology for animal and livestock health management. Biosens. Bioelectron., 2017, 98, 398-407.
[http://dx.doi.org/10.1016/j.bios.2017.07.015] [PMID: 28711026]
[3]
Gattani, A.; Singh, S.V.; Agrawal, A.; Khan, M.H.; Singh, P. Recent progress in electrochemical biosensors as point of care diagnostics in livestock health. Anal. Biochem., 2019, 579, 25-34.
[http://dx.doi.org/10.1016/j.ab.2019.05.014] [PMID: 31128087]
[4]
Vidic, J.; Manzano, M.; Chang, C.M.; Jaffrezic-Renault, N. Advanced biosensors for detection of pathogens related to livestock and poultry. Vet. Res., 2017, 48(1), 11.
[http://dx.doi.org/10.1186/s13567-017-0418-5] [PMID: 28222780]
[5]
Craft, M.E. Infectious disease transmission and contact networks in wildlife and livestock. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2015, 370(1669), 20140107.
[http://dx.doi.org/10.1098/rstb.2014.0107] [PMID: 25870393]
[6]
Zeineldin, M.; Elolimy, A.A.; Reddy, P.R.K.; Abdelmegeid, M.; Mellado, M.; Elghandour, M.M.M.Y. On-farm point-of-care diagnostic technologies for monitoring health, welfare, and performance in livestock production systems. In: Sustainable Agriculture Reviews; Springer: Cham, 2021; 54, pp. 209-232.
[7]
Umesha, S.; Manukumar, H.M. Advanced molecular diagnostic techniques for detection of food-borne pathogens: Current applications and future challenges. Crit Rev Food Sci Nutr., 2018, 58(1), 84-104.
[8]
Hameed, S.; Xie, L.; Ying, Y. Conventional and emerging detection techniques for pathogenic bacteria in food science: A review. Trends Food Sci. Technol., 2018, 81, 61-73.
[http://dx.doi.org/10.1016/j.tifs.2018.05.020]
[9]
McGrath, T.F.; Elliott, C.T.; Fodey, T.L. Biosensors for the analysis of microbiological and chemical contaminants in food. Anal Bioanal Chem., 2012, 403(1), 75-92.
[http://dx.doi.org/10.1007/s00216-011-5685-9]
[10]
Fu, Y.; Zhao, C.; Lu, X.; Xu, G. Nontargeted screening of chemical contaminants and illegal additives in food based on liquid chromatography–high resolution mass spectrometry. Trends Analyt. Chem., 2017, 96, 89-98.
[http://dx.doi.org/10.1016/j.trac.2017.07.014]
[11]
Narsaiah, K.; Jha, S.N.; Bhardwaj, R.; Sharma, R.; Kumar, R. Optical biosensors for food quality and safety assurance—a review. J. Food Sci. Technol., 2011, 49(4), 383-406.
[12]
Shin, J.H.; Reddy, Y.V.M.; Park, T.J.; Park, J.P. Recent advances in analytical strategies and microsystems for food allergen detection. Food Chem., 2022, 371, 131120.
[http://dx.doi.org/10.1016/j.foodchem.2021.131120] [PMID: 34634648]
[13]
Biosensors Market Size and Industry Growth By 2026. 2022. Avaialble from:https://www.alliedmarketresearch.com/biosensors- market
[14]
Shrivastav, AM; Cvelbar, U; Abdulhalim, I A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun Biol., 2021, 4, 70.
[http://dx.doi.org/10.1038/s42003-020-01615-8]
[15]
Yoo, S.M.; Lee, S.Y. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol., 2016, 34(1), 7-25.
[http://dx.doi.org/10.1016/j.tibtech.2015.09.012] [PMID: 26506111]
[16]
Rai, S.; Guin, M.; De, A.; Singh, N.B. Functionalized nanomaterials: Basics, properties and applications. ACS Symposium Series, 2022, 1418, 27-66.
[17]
Sun, J.; Xianyu, Y.; Jiang, X. Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics. Chem. Soc. Rev., 2014, 43(17), 6239-6253.
[http://dx.doi.org/10.1039/C4CS00125G] [PMID: 24882068]
[18]
Kumar, P.; Sarkar, N.; Singh, A.; Kaushik, M. Nanopaper biosensors at point of care. Bioconjug. Chem., 2022, 33(6), 1114-1130.
[http://dx.doi.org/10.1021/acs.bioconjchem.2c00213] [PMID: 35658426]
[19]
Unser, S.; Bruzas, I.; He, J.; Sagle, L. Localized surface plasmon resonance biosensing: Current challenges and approaches. Sensors, 2015, 15(7), 15684-15716.
[http://dx.doi.org/10.3390/s150715684] [PMID: 26147727]
[20]
Quesada-González, D.; Merkoçi, A. Nanomaterial-based devices for point-of-care diagnostic applications. Chem. Soc. Rev., 2018, 47(13), 4697-4709.
[http://dx.doi.org/10.1039/C7CS00837F] [PMID: 29770813]
[21]
Neethirajan, S. Recent advances in wearable sensors for animal health management. Sens. Biosensing Res., 2017, 12, 15-29.
[http://dx.doi.org/10.1016/j.sbsr.2016.11.004]
[23]
Veterinary Point Of Care Diagnostics Market Size Worth $2.69 Billion By 2028: Grand View Research, Inc. 2022. Available from:https://www.prnewswire.com/news-releases/veterinary-point-of-care-diagnostics-market-size-worth-2-69-billion-by-2028-grand-view-research-inc-301459272.html
[24]
Pashchenko, O.; Shelby, T.; Banerjee, T.; Santra, S. A comparison of optical, electrochemical, magnetic, and colorimetric point-of-care biosensors for infectious disease diagnosis. ACS Infect. Dis., 2018, 4(8), 1162-1178.
[http://dx.doi.org/10.1021/acsinfecdis.8b00023] [PMID: 29860830]
[25]
Vizzini, P.; Braidot, M.; Vidic, J.; Manzano, M. Electrochemical and optical biosensors for the detection of campylobacter and listeria: An update look. Micromachines, 2019, 10(8), 500.
[26]
Wolfbeis, O.S. Fiber-optic chemical sensors and biosensors. Anal. Chem., 2006, 78(12), 3859-3874.
[http://dx.doi.org/10.1021/ac060490z] [PMID: 16771528]
[27]
Sharma, A.; Mishra, R.K.; Goud, K.Y.; Mohamed, M.A.; Kummari, S.; Tiwari, S.; Li, Z.; Narayan, R.; Stanciu, L.A.; Marty, J.L. Optical biosensors for diagnostics of infectious viral disease: A recent update. Diagnostics, 2021, 11(11), 2083.
[http://dx.doi.org/10.3390/diagnostics11112083] [PMID: 34829430]
[28]
Balbinot, S.; Srivastav, A.M.; Vidic, J.; Abdulhalim, I.; Manzano, M. Plasmonic biosensors for food control. Trends Food Sci. Technol., 2021, 111, 128-140.
[http://dx.doi.org/10.1016/j.tifs.2021.02.057]
[29]
Khansili, N.; Rattu, G.; Krishna, P.M. Label-free optical biosensors for food and biological sensor applications.. Sens. Actuators B Chem., 2018, 265, 35-49.
[http://dx.doi.org/10.1016/j.snb.2018.03.004]
[30]
Pebdeni, A.B.; Roshani, A.; Mirsadoughi, E.; Behzadifar, S.; Hosseini, M. Recent advances in optical biosensors for specific detection of E. coli bacteria in food and water. Food Control, 2022, 135, 108822.
[http://dx.doi.org/10.1016/j.foodcont.2022.108822]
[31]
Nguyen, T.; Chidambara, V.A.; Andreasen, S.Z.; Golabi, M.; Huynh, V.N.; Linh, Q.T.; Bang, D.D.; Wolff, A. Point-of-care devices for pathogen detections: The three most important factors to realise towards commercialization. Trends Analyt. Chem., 2020, 131, 116004.
[http://dx.doi.org/10.1016/j.trac.2020.116004]
[32]
Choi, J.R.; Yong, K.W.; Choi, J.Y.; Cowie, A.C. Emerging point-of-care technologies for food safety analysis. Sensors, 2019, 19(4), 817.
[http://dx.doi.org/10.3390/s19040817] [PMID: 30781554]
[33]
Du, X.; Zhou, J. Application of biosensors to detection of epidemic diseases in animals. Res. Vet. Sci., 2018, 118, 444-448.
[http://dx.doi.org/10.1016/j.rvsc.2018.04.011] [PMID: 29730246]
[34]
Howson, E.L.A.; Soldan, A.; Webster, K.; Beer, M.; Zientara, S.; Belák, S.; Sanchez-Vizcaino, J.M.; Van Borm, S.; King, D.P.; Fowler, V.L. Technological advances in veterinary diagnostics: Opportunities to deploy rapid decentralised tests to detect pathogens affecting livestock. Rev. Sci. Tech., 2017, 36(2), 479-498.
[http://dx.doi.org/10.20506/rst.36.2.2668] [PMID: 30152469]
[35]
Hassanpour, S; Baradaran, B; de la Guardia, M; Baghbanzadeh, A; Mosafer, J; Hejazi, M; Mokhtarzadeh, A; Hasanzadeh, M Diagnosis of hepatitis via nanomaterial-based electrochemical, optical or piezoelectrical biosensors: A review on recent advancements. Mikrochim Acta., 2018, 185(12), 58.
[http://dx.doi.org/10.1007/s00604-018-3088-8] [PMID: 30506320]
[36]
Peltomaa, R.; López-Perolio, I.; Benito-Peña, E.; Barderas, R.; Moreno-Bondi, M.C. Application of bacteriophages in sensor development. Anal Bioanal Chem, 2015, 408, 1805-1828.
[37]
Morales, M.A.; Halpern, J.M. Guide to selecting a biorecognition element for biosensors. Bioconjug. Chem., 2018, 29(10), 3231-3239.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00592] [PMID: 30216055]
[38]
Cheng, M.S.; Toh, C.S. Novel biosensing methodologies for ultrasensitive detection of viruses. Analyst, 2013, 138(21), 6219-6229.
[http://dx.doi.org/10.1039/c3an01394d] [PMID: 24043121]
[39]
Lieberman, M.A.; Lichtenberg, A.J. Principles of Plasma Discharges and Materials Processing; Wiley Online Library, 2005, pp. 1-757.
[http://dx.doi.org/10.1002/0471724254]
[40]
Lakowicz, JR Principles of fluorescence spectroscopy; Springer: New York, NY, 2006, pp. 1-954.
[http://dx.doi.org/10.1007/978-0-387-46312-4]
[41]
Lopez-Torres, D.; Elosua, C.; Arregui, F.J. Optical fiber sensors based on microstructured optical fibers to detect gases and volatile organic compounds—A review. Sensors, 2020, 20(9), 2555.
[42]
Wolfbeis, O.S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev., 2015, 44(14), 4743-4768.
[http://dx.doi.org/10.1039/C4CS00392F] [PMID: 25620543]
[43]
Choi, JR; Hu, J; Wang, S; Yang, H; Abas, WABW; Pingguan-Murphy, B Paper-based point-of-care testing for diagnosis of dengue infections. Crit Rev Biotechnol., 2016, 37(1), 100-111.
[http://dx.doi.org/10.3109/07388551.2016.1139541.] [PMID: 26912259]
[44]
Dragone, R.; Grasso, G.; Muccini, M.; Toffanin, S. Portable bio/chemosensoristic devices: Innovative systems for environmental health and food safety diagnostics. Front. Public Health, 2017, 5(MAY), 80.
[http://dx.doi.org/10.3389/fpubh.2017.00080] [PMID: 28529937]
[45]
Rubab, M.; Shahbaz, H.M.; Olaimat, A.N.; Oh, D.H. Biosensors for rapid and sensitive detection of Staphylococcus aureus in food. Biosens. Bioelectron., 2018, 105, 49-57.
[http://dx.doi.org/10.1016/j.bios.2018.01.023] [PMID: 29358112]
[46]
Yang, J.; Wang, X.; Sun, Y.; Chen, B.; Hu, F.; Guo, C. Recent advances in colorimetric sensors based on gold nanoparticles for pathogen detection. Biosensors, 2023, 13, 29.
[47]
Zhao, V.X.T.; Wong, T.I.; Zheng, X.T.; Tan, Y.N.; Zhou, X. Colorimetric biosensors for point-of-care virus detections. Mater. Sci. Energy Technol., 2020, 3, 237-249.
[http://dx.doi.org/10.1016/j.mset.2019.10.002] [PMID: 33604529]
[48]
Ding, Y.; Wang, S.; Li, J.; Chen, L. Nanomaterial-based optical sensors for mercury ions. Trends Analyt. Chem., 2016, 82, 175-190.
[http://dx.doi.org/10.1016/j.trac.2016.05.015]
[49]
Lan, L.; Yao, Y.; Ping, J.; Ying, Y. Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosens. Bioelectron., 2017, 91, 504-514.
[http://dx.doi.org/10.1016/j.bios.2017.01.007] [PMID: 28082239]
[50]
Oliveira, E.; Núñez, C.; Santos, H.M.; Fernández-Lodeiro, J.; Fernández-Lodeiro, A.; Capelo, J.L.; Lodeiro, C. Revisiting the use of gold and silver functionalised nanoparticles as colorimetric and fluorometric chemosensors for metal ions. Sens. Actuators B Chem., 2015, 212, 297-328.
[http://dx.doi.org/10.1016/j.snb.2015.02.026]
[51]
Mirkin, CA; Letsinger, RL; Mucic, RC; Storhoff, JJ A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382(6592), 607-609.
[http://dx.doi.org/10.1038/382607a0.] [PMID: 8757129]
[52]
Lan, L.; Yao, Y.; Ping, J.; Ying, Y. Recent Progress in Nanomaterial-Based Optical Aptamer Assay for the Detection of Food Chemical Contaminants. ACS Appl. Mater. Interfaces, 2017, 9(28), 23287-23301.
[http://dx.doi.org/10.1021/acsami.7b03937] [PMID: 28632380]
[53]
Maddali, H.; Miles, C.E.; Kohn, J.; O’Carroll, D.M. Optical Biosensors for Virus Detection: Prospects for SARS-CoV-2/COVID-19. ChemBioChem, 2021, 22(7), 1176-1189.
[http://dx.doi.org/10.1002/cbic.202000744] [PMID: 33119960]
[54]
Choi, Y.; Hwang, J.H.; Lee, S.Y. Recent trends in nanomaterials-based colorimetric detection of pathogenic bacteria and viruses. Small Methods, 2018, 2(4), 1700351.
[http://dx.doi.org/10.1002/smtd.201700351] [PMID: 32328530]
[55]
Amin, N.; Afkhami, A.; Madrakian, T. Construction of a novel “Off-On” fluorescence sensor for highly selective sensing of selenite based on europium ions induced crosslinking of nitrogen-doped carbon dots. J. Lumin., 2018, 194, 768-777.
[http://dx.doi.org/10.1016/j.jlumin.2017.09.048]
[56]
Amin, N.; Afkhami, A.; Hosseinzadeh, L.; Madrakian, T. Green and cost-effective synthesis of carbon dots from date kernel and their application as a novel switchable fluorescence probe for sensitive assay of Zoledronic acid drug in human serum and cellular imaging. Anal. Chim. Acta, 2018, 1030, 183-193.
[http://dx.doi.org/10.1016/j.aca.2018.05.014] [PMID: 30032768]
[57]
Amin, N.; Afkhami, A.; Hosseinzadeh, L.; Akbarzadeh, F.; Madrakian, T.; Nabiabad, H.S. Ratiometric bioassay and visualization of dopamine β-hydroxylase in brain cells utilizing a nanohybrid fluorescence probe. Anal. Chim. Acta, 2020, 1105, 187-196.
[http://dx.doi.org/10.1016/j.aca.2020.01.046] [PMID: 32138918]
[58]
Tennico, Y.H.; Hutanu, D.; Koesdjojo, M.T.; Bartel, C.M.; Remcho, V.T. On-chip aptamer-based sandwich assay for thrombin detection employing magnetic beads and quantum dots. Anal. Chem., 2010, 82(13), 5591-5597.
[http://dx.doi.org/10.1021/ac101269u] [PMID: 20545301]
[59]
Zhang, J; Liu, B; Liu, H; Zhang, X; Tan, W Aptamer-conjugated gold nanoparticles for bioanalysis. Nanomedicine, 2013, 8(6), 983-93.
[http://dx.doi.org/10.2217/nnm.13.80] [PMID: 23730697]
[60]
Sahoo, P.R.; Swain, P.; Nayak, S.M.; Bag, S.; Mishra, S.R. Surface plasmon resonance based biosensor: A new platform for rapid diagnosis of livestock diseases. Vet. World, 2016, 9(12), 1338-1342.
[http://dx.doi.org/10.14202/vetworld.2016.1338-1342] [PMID: 28096602]
[61]
Tang, Y.; Zeng, X.; Liang, J. Surface Plasmon Resonance: An Introduction to a Surface Spectroscopy Technique. J. Chem. Educ., 2010, 87(7), 742-746.
[http://dx.doi.org/10.1021/ed100186y] [PMID: 21359107]
[62]
Nguyen, H.; Park, J.; Kang, S.; Kim, M. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors, 2015, 15(5), 10481-10510.
[http://dx.doi.org/10.3390/s150510481] [PMID: 25951336]
[63]
Fu, X.; Cheng, Z.; Yu, J.; Choo, P.; Chen, L.; Choo, J. A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA. Biosens. Bioelectron., 2016, 78, 530-537.
[http://dx.doi.org/10.1016/j.bios.2015.11.099] [PMID: 26669705]
[64]
Zeng, Z.; Liu, Y.; Wei, J. Recent advances in surface-enhanced raman spectroscopy (SERS): Finite-difference time-domain (FDTD) method for SERS and sensing applications. Trends Analyt. Chem., 2016, 75, 162-173.
[http://dx.doi.org/10.1016/j.trac.2015.06.009]
[65]
Ortega Arroyo, J.; Andrecka, J.; Spillane, K.M.; Billington, N.; Takagi, Y.; Sellers, J.R.; Kukura, P. Label-free, all-optical detection, imaging, and tracking of a single protein. Nano Lett., 2014, 14(4), 2065-2070.
[http://dx.doi.org/10.1021/nl500234t] [PMID: 24597479]
[66]
Peltomaa, R.; Glahn-Martínez, B.; Benito-Peña, E.; Moreno-Bondi, M. Optical Biosensors for Label-Free Detection of Small Molecules. Sensors (Basel), 2018, 18(12), 4126.
[http://dx.doi.org/10.3390/s18124126] [PMID: 30477248]
[67]
Kricka, LJ Chemiluminescence. Cold Spring Harb Protoc., 2018, 2018(4), pdb.top098236.
[68]
Fleiss, A.; Sarkisyan, K.S. A brief review of bioluminescent systems (2019). Curr. Genet., 2019, 65(4), 877-882.
[http://dx.doi.org/10.1007/s00294-019-00951-5] [PMID: 30850867]
[69]
Kricka, L.J.; Thorpe, G.H.G. Chemiluminescent and bioluminescent methods in Analytical Chemistry. A review. Analyst, 1983, 108(1292), 1274-1296.
[http://dx.doi.org/10.1039/an9830801274]
[70]
Hosseini, M.; Khabbaz, H.; Dadmehr, M.; Ganjali, M.R.; Mohamadnejad, J. Aptamer-based Colorimetric and Chemiluminescence Detection of Aflatoxin B1 in Foods Samples. Acta Chim. Slov., 2015, 62(3), 721-728.
[http://dx.doi.org/10.17344/acsi.2015.1358] [PMID: 26466094]
[71]
He, L.; Yang, H.; Xiao, P.; Singh, R.; He, N.; Liu, B.; Li, Z. Highly selective, sensitive and rapid detection of Escherichia coli O157:H7 Using duplex PCR and magnetic nanoparticle-based chemiluminescence assay. J. Biomed. Nanotechnol., 2017, 13(10), 1243-1252.
[http://dx.doi.org/10.1166/jbn.2017.2422]
[72]
Fan, X.; White, I.M.; Shopova, S.I.; Zhu, H.; Suter, J.D.; Sun, Y. Sensitive optical biosensors for unlabeled targets: A review. Anal Chim Acta., 2008, 620(1-2), 8-26.
[http://dx.doi.org/10.1016/j.aca.2008.05.022]
[73]
Mishra, G.K.; Barfidokht, A.; Tehrani, F.; Mishra, R.K. Food safety analysis using electrochemical biosensors. Foods, 2018, 7, 141.
[http://dx.doi.org/10.3390/foods7090141]
[74]
Ryan, U.; Hijjawi, N.; Xiao, L. Foodborne cryptosporidiosis. Int J Parasitol., 2018, 48(1), 1-12.
[http://dx.doi.org/10.1016/j.ijpara.2017.09.004] [PMID: 29122606]
[75]
Mangal, M.; Bansal, S.; Sharma, S.K.; Gupta, R.K. Molecular Detection of Foodborne Pathogens: A Rapid and Accurate Answer to Food Safety. Crit. Rev. Food Sci. Nutr., 2016, 56(9), 1568-1584.
[http://dx.doi.org/10.1080/10408398.2013.782483] [PMID: 25830555]
[76]
Hall, R.H. Biosensor technologies for detecting microbiological foodborne hazards. Microbes Infect., 2002, 4(4), 425-432.
[http://dx.doi.org/10.1016/s1286-4579(02)01556-3.] [PMID: 11932193]
[77]
Yasmin, J.; Ahmed, M.R.; Cho, B.K. Biosensors and their Applications in Food Safety: A Review. J. Biosyst. Eng., 2016, 41(3), 240-254.
[http://dx.doi.org/10.5307/JBE.2016.41.3.240]
[78]
Park, S.; Worobo, R.W.; Durst, R.A. Escherichia coli O157:H7 as an emerging foodborne pathogen: A literature review. Crit. Rev. Food Sci. Nutr., 1999, 39(6), 481-502.
[http://dx.doi.org/10.1080/10408699991279259] [PMID: 10595296]
[79]
You, D.J.; Geshell, K.J.; Yoon, J.Y. Direct and sensitive detection of foodborne pathogens within fresh produce samples using a field-deployable handheld device. Biosens. Bioelectron., 2011, 28(1), 399-406.
[http://dx.doi.org/10.1016/j.bios.2011.07.055] [PMID: 21840701]
[80]
Sheikhzadeh, E.; Chamsaz, M.; Turner, A.P.F.; Jager, E.W.H.; Beni, V. Label-free impedimetric biosensor for Salmonella Typhimurium detection based on poly [pyrrole-co-3-carboxyl-pyrrole] copolymer supported aptamer. Biosens. Bioelectron., 2016, 80, 194-200.
[http://dx.doi.org/10.1016/j.bios.2016.01.057] [PMID: 26836649]
[81]
Kant, K.; Shahbazi, M.A.; Dave, V.P.; Ngo, T.A.; Chidambara, V.A.; Than, L.Q. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens. Biotechnol Adv., 2018, 36(4), 1003-1024.
[http://dx.doi.org/10.1016/j.biotechadv.2018.03.002]
[82]
Chen, X.; Leng, Y.; Hao, L.; Duan, H.; Yuan, J.; Zhang, W.; Huang, X.; Xiong, Y. Self-assembled colloidal gold superparticles to enhance the sensitivity of lateral flow immunoassays with sandwich format. Theranostics, 2020, 10(8), 3737-3748.
[http://dx.doi.org/10.7150/thno.42364] [PMID: 32206119]
[83]
Jiang, H.; Zhang, W.; Li, J.; Nie, L.; Wu, K.; Duan, H.; Xiong, Y. Inner-filter effect based fluorescence-quenching immunochromotographic assay for sensitive detection of aflatoxin B1 in soybean sauce. Food Control, 2018, 94, 71-76.
[http://dx.doi.org/10.1016/j.foodcont.2018.06.030]
[84]
Zhou, Y.; Ding, L.; Wu, Y.; Huang, X.; Lai, W.; Xiong, Y. Emerging strategies to develop sensitive AuNP-based ICTS nanosensors. TrAC, Trends Anal. Chem., 2019, 112, 147-160.
[http://dx.doi.org/10.1016/j.trac.2019.01.006]
[85]
Li, Y.; Chen, X.; Yuan, J.; Leng, Y.; Lai, W.; Huang, X.; Xiong, Y. Integrated gold superparticles into lateral flow immunoassays for the rapid and sensitive detection of Escherichia coli O157:H7 in milk. J. Dairy Sci., 2020, 103(8), 6940-6949.
[http://dx.doi.org/10.3168/jds.2019-17934] [PMID: 32475677]
[86]
Yoo, S.M.; Kim, D.K.; Lee, S.Y. Aptamer-functionalized localized surface plasmon resonance sensor for the multiplexed detection of different bacterial species. Talanta, 2015, 132, 112-117.
[http://dx.doi.org/10.1016/j.talanta.2014.09.003] [PMID: 25476286]
[87]
Lu, C; Gao, X; Chen, Y; Ren, J; Liu, C. Aptamer-Based Lateral Flow Test Strip for the Simultaneous Detection of Salmonella typhimurium, Escherichia coli O157:H7 and Staphylococcus aureus. Anal. Lett., 2020, 53(4), 646-659.
[88]
Huang, Z.; Peng, J.; Han, J.; Zhang, G.; Huang, Y.; Duan, M.; Liu, D.; Xiong, Y.; Xia, S.; Lai, W. A novel method based on fluorescent magnetic nanobeads for rapid detection of Escherichia coli O157:H7. Food Chem., 2019, 276, 333-341.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.164] [PMID: 30409603]
[89]
Morales-Narváez, E.; Naghdi, T.; Zor, E.; Merkoçi, A. Photoluminescent lateral-flow immunoassay revealed by graphene oxide: Highly sensitive paper-based pathogen detection. Anal. Chem., 2015, 87(16), 8573-8577.
[http://dx.doi.org/10.1021/acs.analchem.5b02383] [PMID: 26205473]
[90]
Liu, H.; Du, X.; Zang, Y.X.; Li, P.; Wang, S. SERS-Based Lateral Flow Strip Biosensor for Simultaneous Detection of Listeria monocytogenes and Salmonella enterica Serotype Enteritidis. J. Agric. Food Chem., 2017, 65(47), 10290-10299.
[http://dx.doi.org/10.1021/acs.jafc.7b03957] [PMID: 29095602]
[91]
Cho, I.H.; Irudayaraj, J. In-situ immuno-gold nanoparticle network ELISA biosensors for pathogen detection. Int. J. Food Microbiol., 2013, 164(1), 70-75.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2013.02.025] [PMID: 23603219]
[92]
Ren, W.; Ballou, D.R.; FitzGerald, R.; Irudayaraj, J. Plasmonic enhancement in lateral flow sensors for improved sensing of E. coli O157:H7. Biosens. Bioelectron., 2019, 126, 324-331.
[http://dx.doi.org/10.1016/j.bios.2018.10.066] [PMID: 30453132]
[93]
Karim, M.N.; Anderson, S.R.; Singh, S.; Ramanathan, R.; Bansal, V. Nanostructured silver fabric as a free-standing NanoZyme for colorimetric detection of glucose in urine. Biosens. Bioelectron., 2018, 110, 8-15.
[http://dx.doi.org/10.1016/j.bios.2018.03.025] [PMID: 29574249]
[94]
He, D.; Wu, Z.; Cui, B.; Xu, E.; Jin, Z. Establishment of a dual mode immunochromatographic assay for Campylobacter jejuni detection. Food Chem., 2019, 289, 708-713.
[http://dx.doi.org/10.1016/j.foodchem.2019.03.106] [PMID: 30955670]
[95]
Chen, X.; Zhang, S. 3D micromixers based on Koch fractal principle. Microsyst. Technol., 2018, 24(6), 2627-2636.
[http://dx.doi.org/10.1007/s00542-017-3637-9]
[96]
Chen, C.; Mehl, B.T.; Munshi, A.S.; Townsend, A.D.; Spence, D.M.; Martin, R.S. 3D-printed microfluidic devices: Fabrication, advantages and limitations - a mini review. Anal Methods, 2016, 8(31), 6005-6012.
[97]
Wang, S.; Xie, J.; Jiang, M.; Chang, K.; Chen, R.; Ma, L.; Zhu, J.; Guo, Q.; Sun, H.; Hu, J. The Development of a Portable SPR Bioanalyzer for Sensitive Detection of Escherichia coli O157:H7. Sensors, 2016, 16(11), 1856.
[http://dx.doi.org/10.3390/s16111856] [PMID: 27827923]
[98]
Shang, Q.; Su, Y.; Liang, Y.; Lai, W.; Jiang, J.; Wu, H.; Zhang, C. Ultrasensitive cloth-based microfluidic chemiluminescence detection of Listeria monocytogenes hlyA gene by hemin/G-quadruplex DNAzyme and hybridization chain reaction signal amplification. Anal. Bioanal. Chem., 2020, 412(15), 3787-3797.
[http://dx.doi.org/10.1007/s00216-020-02633-5] [PMID: 32306067]
[99]
Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep., 2012, 127(1), 4-22.
[100]
Liu, X.; Huang, D.; Lai, C.; Zeng, G.; Qin, L.; Zhang, C. Recent advances in sensors for tetracycline antibiotics and their applications. Trends Analyt. Chem., 2018, 260-74.
[http://dx.doi.org/10.1016/j.trac.2018.10.011]
[101]
Chen, T.; Cheng, G.; Ahmed, S.; Wang, Y.; Wang, X.; Hao, H. New methodologies in screening of antibiotic residues in animal-derived foods: Biosensors. Talanta, 2017, 175, 435-442.
[102]
Albright, JL; Tuckey, SL; Woods, GT Antibiotics in Milk—A Review. J. Dairy Sci., 1961, 44(5), 779-807.
[103]
Menkem, Z.E.; Ngangom, B.L.; Tamunjoh, S.S.A.; Boyom, F.F. Antibiotic residues in food animals: Public health concern. Acta Ecol. Sin., 2019, 39(5), 411-415.
[http://dx.doi.org/10.1016/j.chnaes.2018.10.004]
[104]
Shamsipur, M.; Jouybari, T.A.; Barati, A.; Mahmoudi, M.; Amin, N.; Pashabadi, A. A manual shaking-enhanced, ultrasound-assisted dispersive liquid–liquid microextraction for the determination of betamethasone and dexamethasone: Optimization using Response surface methodology. Anal. Methods, 2014, 6(13), 4542-4550.
[http://dx.doi.org/10.1039/c4ay00373j]
[105]
Gaudin, V. The Growing Interest in Development of Innovative Optical Aptasensors for the Detection of Antimicrobial Residues in Food Products. Biosensors (Basel), 2020, 10(3), 21.
[http://dx.doi.org/10.3390/bios10030021] [PMID: 32138274]
[106]
Bacanlı, M.; Başaran, N. Importance of antibiotic residues in animal food. Food Chem Toxicol., 2019, 125, 462-466.
[http://dx.doi.org/10.1016/j.fct.2019.01.033]
[107]
Sierra-Rodero, M.; Fernández-Romero, J.M.; Gómez-Hens, A. Determination of fluoroquinolone antibiotics by microchip capillary electrophoresis along with time-resolved sensitized luminescence of their terbium(III) complexes. Mikrochim. Acta, 2014, 181(15-16), 1897-1904.
[http://dx.doi.org/10.1007/s00604-014-1266-x]
[108]
Gaudin, V. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin – A comprehensive review. Biosens Bioelectron., 2017, 90, 363-377.
[109]
Majdinasab, M.; Mishra, R.K.; Tang, X.; Marty, J.L. Detection of antibiotics in food: New achievements in the development of biosensors. Trends Analyt. Chem., 2020, 115883.
[110]
Wang, Q.; Zhao, W.M. Optical methods of antibiotic residues detections: A comprehensive review. Sens. Act. B: Chem., 2018, 269, 238-256.
[111]
Shen, Y.; Wei, Y.; Chen, H.; Wu, Z.; Ye, Y.; Han, D.M. Liposome-encapsulated aggregation-induced emission fluorogen assisted with portable smartphone for dynamically on-site imaging of residual tetracycline. Sens. Actuators B Chem., 2022, 350, 130871.
[http://dx.doi.org/10.1016/j.snb.2021.130871]
[112]
Rebe Raz, S.; Bremer, M.G.E.G.; Haasnoot, W.; Norde, W. Label-free and multiplex detection of antibiotic residues in milk using imaging surface plasmon resonance-based immunosensor. Anal. Chem., 2009, 81(18), 7743-7749.
[http://dx.doi.org/10.1021/ac901230v] [PMID: 19685910]
[113]
Fan, R.; Tang, S.; Luo, S.; Liu, H.; Zhang, W.; Yang, C.; He, L.; Chen, Y. Duplex Surface Enhanced Raman Scattering-Based Lateral Flow Immunosensor for the Low-Level Detection of Antibiotic Residues in Milk. Molecules, 2020, 25(22), 5249.
[http://dx.doi.org/10.3390/molecules25225249] [PMID: 33187181]
[114]
Fernández, F.; Hegnerová, K.; Piliarik, M.; Sanchez-Baeza, F.; Homola, J.; Marco, M.P. A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples. Biosens. Bioelectron., 2010, 26(4), 1231-1238.
[http://dx.doi.org/10.1016/j.bios.2010.06.012] [PMID: 20637590]
[115]
Hao, L.; Gu, H.; Duan, N.; Wu, S.; Wang, Z. A chemiluminescent aptasensor for simultaneous detection of three antibiotics in milk. Anal. Methods, 2016, 8(44), 7929-7936.
[http://dx.doi.org/10.1039/C6AY02304E]
[116]
Ráduly, Z.; Szabó, L.; Madar, A.; Pócsi, I.; Csernoch, L. Toxicological and Medical Aspects of Aspergillus-Derived Mycotoxins Entering the Feed and Food Chain. Front. Microbiol., 2020, 10, 2908.
[http://dx.doi.org/10.3389/fmicb.2019.02908] [PMID: 31998250]
[117]
Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev., 2003, 16(3), 497-516.
[http://dx.doi.org/10.1128/CMR.16.3.497-516.2003] [PMID: 12857779]
[118]
Adeyeye, S.A.O. Fungal mycotoxins in foods: A review. Cogent Food Agric., 2016, 2(1)
[http://dx.doi.org/10.1080/23311932.2016.1213127]
[119]
Li, X.; Li, P.; Zhang, Q.; Li, R.; Zhang, W.; Zhang, Z.; Ding, X.; Tang, X. Multi-component immunochromatographic assay for simultaneous detection of aflatoxin B1, ochratoxin A and zearalenone in agro-food. Biosens. Bioelectron., 2013, 49, 426-432.
[http://dx.doi.org/10.1016/j.bios.2013.05.039] [PMID: 23807236]
[120]
Jawaid, S.; Talpur, F.N.; Nizamani, S.M.; Afridi, H.I. Contamination profile of aflatoxin M1 residues in milk supply chain of Sindh, Pakistan. Toxicol. Rep., 2015, 2, 1418-1422.
[http://dx.doi.org/10.1016/j.toxrep.2015.10.011] [PMID: 28962483]
[121]
Adegbeye, M.J.; Reddy, P.R.K.; Chilaka, C.A.; Balogun, O.B.; Elghandour, M.M.M.Y.; Rivas-Caceres, R.R. Mycotoxin toxicity and residue in animal products: Prevalence, consumer exposure and reduction strategies – A review. Toxicon, 2020, 177, 96-108.
[122]
Pohanka, M.; Jun, D.; Kuca, K. Mycotoxin assays using biosensor technology: A review. Drug Chem. Toxicol., 2007, 30(3), 253-261.
[http://dx.doi.org/10.1080/01480540701375232] [PMID: 17613010]
[123]
Chauhan, R.; Singh, J.; Sachdev, T.; Basu, T.; Malhotra, B.D. Recent advances in mycotoxins detection. Biosens. Bioelectron., 2016, 81, 532-45.
[http://dx.doi.org/10.1016/j.bios.2016.03.004]
[124]
Santana Oliveira, I.; da Silva, A.G., Junior; de Andrade, C.A.S.; Lima Oliveira, M.D. Biosensors for early detection of fungi spoilage and toxigenic and mycotoxins in food. Curr. Opin. Food Sci., 2019, 29, 64-79.
[http://dx.doi.org/10.1016/j.cofs.2019.08.004]
[125]
Li, M.; Wang, H.; Sun, J.; Ji, J.; Ye, Y.; Lu, X.; Zhang, Y.; Sun, X. Rapid, on-site, and sensitive detection of aflatoxin M1 in milk products by using time-resolved fluorescence microsphere test strip. Food Control, 2021, 121, 107616.
[http://dx.doi.org/10.1016/j.foodcont.2020.107616]
[126]
Sun, Y.; Song, S.; Wu, A.; Liu, L.; Kuang, H.; Xu, C. A fluorescent paper biosensor for the rapid and ultrasensitive detection of zearalenone in corn and wheat. Anal. Methods, 2021, 13(35), 3970-3977.
[http://dx.doi.org/10.1039/D1AY01149A] [PMID: 34528940]
[127]
Ren, X.; Lu, P.; Feng, R.; Zhang, T.; Zhang, Y.; Wu, D.; Wei, Q. An ITO-based point-of-care colorimetric immunosensor for ochratoxin A detection. Talanta, 2018, 188, 593-599.
[http://dx.doi.org/10.1016/j.talanta.2018.06.004] [PMID: 30029418]
[128]
Wu, W.; Zhou, D.; Chen, X.; Tang, X.; Jiang, J.; Yu, L.; Li, H.; Zhang, Q.; Zhang, Z.; Li, P. Intelligent point-of-care test via smartphone-enabled microarray for multiple targets: Mycotoxins in food. Sens. Actuators B Chem., 2022, 360, 131648.
[http://dx.doi.org/10.1016/j.snb.2022.131648]
[129]
Hu, X.; Zhang, P.; Wang, D.; Jiang, J.; Chen, X.; Liu, Y.; Zhang, Z.; Tang, B.Z.; Li, P. AIEgens enabled ultrasensitive point-of-care test for multiple targets of food safety: Aflatoxin B1 and cyclopiazonic acid as an example. Biosens. Bioelectron., 2021, 182, 113188.
[http://dx.doi.org/10.1016/j.bios.2021.113188] [PMID: 33799030]
[130]
Kasoju, A.; Shrikrishna, N.S.; Shahdeo, D.; Khan, A.A.; Alanazi, A.M.; Gandhi, S. Microfluidic paper device for rapid detection of aflatoxin B1 using an aptamer based colorimetric assay. RSC Advances, 2020, 10(20), 11843-11850.
[http://dx.doi.org/10.1039/D0RA00062K] [PMID: 35496625]
[131]
Pejcic, B.; De Marco, R.; Parkinson, G. The role of biosensors in the detection of emerging infectious diseases. Analyst, 2006, 131, 1079-90.
[http://dx.doi.org/10.1039/b603402k]
[132]
Neethirajan, S. Transforming the Adaptation Physiology of Farm Animals through Sensors. Animals (Basel), 2020, 10(9), 1512.
[http://dx.doi.org/10.3390/ani10091512] [PMID: 32859060]
[133]
Oh, Y.; Lee, Y.; Heath, J.; Kim, M. Applications of animal biosensors: A review. IEEE Sens. J., 2014, 15(2), 637-645.
[134]
Mottram, T. Animal board invited review: precision livestock farming for dairy cows with a focus on oestrus detection. Animal, 2016, 10(10), 1575-1584.
[http://dx.doi.org/10.1017/S1751731115002517] [PMID: 26608699]
[135]
Saint-Dizier, M.; Chastant-Maillard, S. Towards an automated detection of oestrus in dairy cattle. Reprod. Domest. Anim., 2012, 47(6), 1056-1061.
[http://dx.doi.org/10.1111/j.1439-0531.2011.01971.x] [PMID: 22214367]
[136]
Mičiaková, M.; Strapák, P.; Szencziová, I.; Strapáková, E.; Hanušovský, O. Several Methods of Estrus Detection in Cattle Dams: A Review. 2018. Avaialble from:http://acta.mendelu.cz/doi/1011118/actaun201866020619.html
[137]
Fricke, P.M.; Carvalho, P.D.; Giordano, J.O.; Valenza, A.; Lopes, G., Jr; Amundson, M.C. Expression and detection of estrus in dairy cows: The role of new technologies. Animal, 2014, 8(S1), 134-143.
[http://dx.doi.org/10.1017/S1751731114000299] [PMID: 24680286]
[138]
Ali, A.S.; Jacinto, J.G.P.; Mϋnchemyer, W.; Walte, A.; Gentile, A.; Formigoni, A.; Mammi, L.M.E.; Csaba Bajcsy, Á.; Abdu, M.S.; Kamel, M.M.; Ghallab, A.R.M. Estrus Detection in a Dairy Herd Using an Electronic Nose by Direct Sampling on the Perineal Region. Vet. Sci., 2022, 9(12), 688.https://www.mdpi.com/2306-7381/9/12/688/htm
[http://dx.doi.org/10.3390/vetsci9120688] [PMID: 36548849]
[139]
Firk, R.; Stamer, E.; Junge, W.; Krieter, J. Automation of oestrus detection in dairy cows: a review. Livest. Prod. Sci., 2002, 75(3), 219-232.
[http://dx.doi.org/10.1016/S0301-6226(01)00323-2]
[140]
Jang, H; Ahmed, SR; Neethirajan, S Gryphsens: A smartphone-based portable diagnostic reader for the rapid detection of progesterone in milk. Sensors, 2017, 17(5), 1079.
[http://dx.doi.org/10.3390/s17051079] [PMID: 28489036]
[141]
Sananikone, K.; Delwiche, M.J. R. H. BonDurant, C. J. Munro. QUANTITATIVE LATERAL FLOW IMMUNOASSAY FOR MEASURING PROGESTERONE IN BOVINE MILK. Trans. ASAE, 2004, 47(4), 1357-1365.
[http://dx.doi.org/10.13031/2013.16540]
[142]
Safronova, V.A.; Samsonova, J.V.; Grigorenko, V.G.; Osipov, A.P. Lateral flow immunoassay for progesterone detection. Moscow Univ. Chem. Bull., 2012, 67(5), 241-248.
[http://dx.doi.org/10.3103/S0027131412050045]
[143]
Posthuma-Trumpie, G.A.; Korf, J.; van Amerongen, A. Development of a competitive lateral flow immunoassay for progesterone: influence of coating conjugates and buffer components. Anal. Bioanal. Chem., 2008, 392(6), 1215-1223.
[http://dx.doi.org/10.1007/s00216-008-2362-8] [PMID: 18791859]
[144]
Samsonova, J.V.; Safronova, V.A.; Osipov, A.P. Pretreatment-free lateral flow enzyme immunoassay for progesterone detection in whole cows’ milk. Talanta, 2015, 132, 685-689.
[http://dx.doi.org/10.1016/j.talanta.2014.10.043] [PMID: 25476365]
[145]
Zamani, M.; Dupaty, J.; Baer, R.C.; Kuzmanovic, U.; Fan, A.; Grinstaff, M.W.; Galagan, J.E.; Klapperich, C.M. Paper-Based Progesterone Sensor Using an Allosteric Transcription Factor. ACS Omega, 2022, 7(7), 5804-5808.
[http://dx.doi.org/10.1021/acsomega.1c05737] [PMID: 35224340]
[146]
Chen, M.; Grazon, C.; Sensharma, P.; Nguyen, T.T.; Feng, Y.; Chern, M.; Baer, R.C.; Varongchayakul, N.; Cook, K.; Lecommandoux, S.; Klapperich, C.M.; Galagan, J.E.; Dennis, A.M.; Grinstaff, M.W. Hydrogel-embedded quantum dot−transcription factor sensors for quantitative progesterone detection. ACS Appl. Mater. Interfaces, 2020, 12(39), 43513-43521.
[http://dx.doi.org/10.1021/acsami.0c13489] [PMID: 32893612]
[147]
Alhadrami, H.A.; Chinnappan, R.; Eissa, S.; Rahamn, A.A.; Zourob, M. High affinity truncated DNA aptamers for the development of fluorescence based progesterone biosensors. Anal. Biochem., 2017, 525, 78-84.
[http://dx.doi.org/10.1016/j.ab.2017.02.014] [PMID: 28237255]
[148]
Du, G.; Zhang, D.; Xia, B.; Xu, L.; Wu, S.; Zhan, S.; Ni, X.; Zhou, X.; Wang, L. A label-free colorimetric progesterone aptasensor based on the aggregation of gold nanoparticles. Mikrochim. Acta, 2016, 183(7), 2251-2258.
[http://dx.doi.org/10.1007/s00604-016-1861-0]
[149]
Yildirim, N.; Long, F.; Gao, C.; He, M.; Shi, H.C.; Gu, A.Z. Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples. Environ. Sci. Technol., 2012, 46(6), 3288-3294.
[http://dx.doi.org/10.1021/es203624w] [PMID: 22296460]
[150]
Zhang, D.; Zhang, W.; Ye, J.; Zhan, S.; Xia, B.; Lv, J.; Xu, H.; Du, G.; Wang, L. A label-free colorimetric biosensor for 17β-estradiol detection using nanoparticles assembled by aptamer and cationic polymer. Aust. J. Chem., 2016, 69(1), 12-19.
[http://dx.doi.org/10.1071/CH14735]
[151]
Minopoli, A.; Sakač, N.; Lenyk, B.; Campanile, R.; Mayer, D.; Offenhäusser, A.; Velotta, R.; Della Ventura, B. LSPR-based colorimetric immunosensor for rapid and sensitive 17β-estradiol detection in tap water. Sens. Actuators B Chem., 2020, 308, 127699.
[http://dx.doi.org/10.1016/j.snb.2020.127699]
[152]
Manteca, X; Mainau, E. Stress in farm animals: Concept and effect on performance. 2015. Available from:https://www.fawec.org/media/com_lazypdf/pdf/fs6-en.pdf
[153]
Möstl, E.; Palme, R. Hormones as indicators of stress. In: Domestic Animal Endocrinology; Elsevier, 2002; pp. 67-74.
[154]
Cook, NJ Review: Minimally invasive sampling media and the measurement of corticosteroids as biomarkers of stress in animals. Canadian J. Animal Sci., 2012, 227-59.
[155]
Zangheri, M.; Cevenini, L.; Anfossi, L.; Baggiani, C.; Simoni, P.; Di Nardo, F.; Roda, A. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens. Bioelectron., 2015, 64, 63-68.
[http://dx.doi.org/10.1016/j.bios.2014.08.048] [PMID: 25194797]
[156]
Kim, H.T.; Jin, E.; Lee, M.H. Portable Chemiluminescence-Based Lateral Flow Assay Platform for the Detection of Cortisol in Human Serum. Biosensors (Basel), 2021, 11(6), 191.https://www.mdpi.com/2079-6374/11/6/191
[http://dx.doi.org/10.3390/bios11060191] [PMID: 34200643]
[157]
Dalirirad, S.; Steckl, A.J. Aptamer-based lateral flow assay for point of care cortisol detection in sweat. Sens. Actuators B Chem., 2019, 283, 79-86.
[http://dx.doi.org/10.1016/j.snb.2018.11.161]
[158]
Dalirirad, S.; Han, D.; Steckl, A.J. Aptamer-Based Lateral Flow Biosensor for Rapid Detection of Salivary Cortisol. ACS Omega, 2020, 5(51), 32890-32898.
[http://dx.doi.org/10.1021/acsomega.0c03223] [PMID: 33403250]
[159]
Klinghammer, S.; Voitsekhivska, T.; Licciardello, N.; Kim, K.; Baek, C.K.; Cho, H.; Wolter, K.J.; Kirschbaum, C.; Baraban, L.; Cuniberti, G. Nanosensor-Based Real-Time Monitoring of Stress Biomarkers in Human Saliva Using a Portable Measurement System. ACS Sens., 2020, 5(12), 4081-4091.
[http://dx.doi.org/10.1021/acssensors.0c02267] [PMID: 33270427]
[160]
Steckl, A.J.; Ray, P. Stress Biomarkers in Biological Fluids and Their Point-of-Use Detection. ACS Sens., 2018, 3(10), 2025-2044.
[http://dx.doi.org/10.1021/acssensors.8b00726] [PMID: 30264989]
[161]
Fuentes, M.; Tecles, F.; Gutiérrez, A.; Otal, J.; Martínez-Subiela, S.; Cerón, J.J. Validation of an automated method for salivary alpha-amylase measurements in pigs (Sus scrofa domesticus) and its application as a stress biomarker. J. Vet. Diagn. Invest., 2011, 23(2), 282-287.
[http://dx.doi.org/10.1177/104063871102300213] [PMID: 21398448]
[162]
Heinze, B.C.; Song, J.Y.; Lee, C.H.; Najam, A.; Yoon, J.Y. Microfluidic immunosensor for rapid and sensitive detection of bovine viral diarrhea virus. Sens. Actuators B Chem., 2009, 138(2), 491-496.
[http://dx.doi.org/10.1016/j.snb.2009.02.058]
[163]
Kim, M.W.; Park, H.J.; Park, C.Y.; Kim, J.H.; Cho, C.H.; Phan, L.M.T.; Park, J.P.; Kailasa, S.K.; Lee, C.H.; Park, T.J. Fabrication of a paper strip for facile and rapid detection of bovine viral diarrhea virus via signal enhancement by copper polyhedral nanoshells. RSC Advances, 2020, 10(50), 29759-29764.
[http://dx.doi.org/10.1039/D0RA03677C] [PMID: 35518256]
[164]
Askaravi, M.; Rezatofighi, S.E.; Rastegarzadeh, S.; Seifi Abad Shapouri, M.R. Development of a new method based on unmodified gold nanoparticles and peptide nucleic acids for detecting bovine viral diarrhea virus-RNA. AMB Express, 2017, 7(1), 137.
[http://dx.doi.org/10.1186/s13568-017-0432-z] [PMID: 28655215]
[165]
Longjam, N.; Deb, R.; Sarmah, A.K.; Tayo, T.; Awachat, V.B.; Saxena, V.K. A brief review on diagnosis of foot-and-mouth disease of livestock: Conventional to molecular tools. Vet Med Int., 2011, 2011, 905768.
[166]
Reid, S.M.; Ferris, N.P.; Brüning, A.; Hutchings, G.H.; Kowalska, Z.; Åkerblom, L. Development of a rapid chromatographic strip test for the pen-side detection of foot-and-mouth disease virus antigen. J. Virol. Methods, 2001, 96(2), 189-202.
[http://dx.doi.org/10.1016/S0166-0934(01)00334-2] [PMID: 11445149]
[167]
Yang, M.; Mudabuka, B.; Dueck, C.; Xu, W.; Masisi, K.; Fana, E.M.; Mpofu, C.; Nfon, C. Development of two rapid lateral flow test strips for detection of foot-and-mouth disease virus SAT 1 and SAT 3. J. Virol. Methods, 2021, 291, 113967.
[http://dx.doi.org/10.1016/j.jviromet.2020.113967] [PMID: 32898572]
[168]
Yang, M.; Caterer, N.R.; Xu, W.; Goolia, M. Development of a multiplex lateral flow strip test for foot-and-mouth disease virus detection using monoclonal antibodies. J. Virol. Methods, 2015, 221, 119-126.
[http://dx.doi.org/10.1016/j.jviromet.2015.05.001] [PMID: 25977185]
[169]
Ferris, N.P.; Nordengrahn, A.; Hutchings, G.H.; Reid, S.M.; King, D.P.; Ebert, K.; Paton, D.J.; Kristersson, T.; Brocchi, E.; Grazioli, S.; Merza, M. Development and laboratory validation of a lateral flow device for the detection of foot-and-mouth disease virus in clinical samples. J. Virol. Methods, 2009, 155(1), 10-17.
[http://dx.doi.org/10.1016/j.jviromet.2008.09.009] [PMID: 18848845]
[170]
Hamdy, M.E.; Del Carlo, M.; Hussein, H.A.; Salah, T.A.; El-Deeb, A.H.; Emara, M.M.; Pezzoni, G.; Compagnone, D. Development of gold nanoparticles biosensor for ultrasensitive diagnosis of foot and mouth disease virus. J. Nanobiotechnology, 2018, 16(1), 48.
[http://dx.doi.org/10.1186/s12951-018-0374-x] [PMID: 29751767]
[171]
Waters, R.A.; Fowler, V.L.; Armson, B.; Nelson, N.; Gloster, J.; Paton, D.J. preliminary validation of direct detection of foot-and-mouth disease virus within clinical samples using reverse transcription loop-mediated isothermal amplification coupled with a simple lateral flow device for detection. PLoS One, 2014, 9(8), e105630.
[http://dx.doi.org/10.1371/journal.pone.0105630]
[172]
Hwang, Y.J.; Lee, K.K.; Kim, J.W.; Chung, K.H.; Kim, S.J.; Yun, W.S.; Lee, C.S. Effective diagnosis of foot-and-mouth disease virus (Fmdv) serotypes o and a based on optical and electrochemical dual-modal detection. Biomolecules, 2021, 11(6), 841.
[http://dx.doi.org/10.3390/biom11060841] [PMID: 34198783]
[173]
Nicoletti, P. BRUCELLOSIS: PAST, PRESENT AND FUTURE. Contributions, Sec Biol Med Sci. MASA, XXXI., 2010, 1, 21-32.
[174]
Godfroid, J.; Cloeckaert, A.; Liautard, J.P.; Kohler, S.; Fretin, D.; Walravens, K.; Garin-Bastuji, B.; Letesson, J.J. From the discovery of the Malta fever?s agent to the discovery of a marine mammal reservoir, brucellosis has continuously been a re-emerging zoonosis. Vet. Res., 2005, 36(3), 313-326.
[http://dx.doi.org/10.1051/vetres:2005003] [PMID: 15845228]
[175]
Vishnu, U.S.; Sankarasubramanian, J.; Gunasekaran, P.; Rajendhran, J. Novel vaccine candidates against brucella melitensis identified through reverse vaccinology approach., OMICS, 2015, 19(11), 722-9.
[http://dx.doi.org/10.1089/omi.2015.0105]
[176]
Saberi, F.; Kamali, M.; Taheri, R.A.; Ramandi, M.F.; Bagdeli, S.; Mirnejad, R. Development of Surface Plasmon Resonance-Based Immunosensor for Detection of Brucella melitensis. J. Braz. Chem. Soc., 2016, 27(11), 1960-1965.
[177]
Seleem, M.N.; Boyle, S.M.; Sriranganathan, N. Brucellosis: A re-emerging zoonosis. Vet Microbiol., 2010, 140(3-4), 392-8.
[178]
Li, L.; Yin, D.; Xu, K.; Liu, Y.; Song, D.; Wang, J.; Zhao, C.; Song, X.; Li, J. A sandwich immunoassay for brucellosis diagnosis based on immune magnetic beads and quantum dots. J. Pharm. Biomed. Anal., 2017, 141, 79-86.
[http://dx.doi.org/10.1016/j.jpba.2017.03.002] [PMID: 28432940]
[179]
Pal, D.; Boby, N.; Kumar, S.; Kaur, G.; Ali, S.A.; Reboud, J. Visual detection of Brucella in bovine biological samples using DNA-activated gold nanoparticles. PLoS One, 2017, 12(7), e0180919.
[180]
Li, S.; Liu, Y.; Wang, Y.; Wang, M.; Liu, C.; Wang, Y. Rapid Detection of Brucella spp. and Elimination of Carryover Using Multiple Cross Displacement Amplification Coupled With Nanoparticles-Based Lateral Flow Biosensor. Front. Cell. Infect. Microbiol., 2019, 9(MAR), 78.
[http://dx.doi.org/10.3389/fcimb.2019.00078] [PMID: 30984627]
[181]
Mortier, R.A.R.; Barkema, H.W.; De Buck, J. Susceptibility to and diagnosis of Mycobacterium avium subspecies paratuberculosis infection in dairy calves: A review. Prev. Vet. Med., 2015, 121(3-4), 189-198.
[http://dx.doi.org/10.1016/j.prevetmed.2015.08.011] [PMID: 26321657]
[182]
Smith, R.L.; Al-Mamun, M.A.; Gröhn, Y.T. Economic consequences of paratuberculosis control in dairy cattle: A stochastic modeling study. Prev. Vet. Med., 2017, 138, 17-27.
[http://dx.doi.org/10.1016/j.prevetmed.2017.01.007] [PMID: 28237232]
[183]
Sweeney, R.W.; Collins, M.T.; Koets, A.P.; McGuirk, S.M.; Roussel, A.J. Paratuberculosis (Johne’s disease) in cattle and other susceptible species. J. Vet. Intern. Med., 2012, 26(6), 1239-1250.
[http://dx.doi.org/10.1111/j.1939-1676.2012.01019.x] [PMID: 23106497]
[184]
Gupta, S.K.; Maclean, P.H.; Ganesh, S.; Shu, D.; Buddle, B.M.; Wedlock, D.N.; Heiser, A. Detection of microRNA in cattle serum and their potential use to diagnose severity of Johne’s disease. J. Dairy Sci., 2018, 101(11), 10259-10270.
[http://dx.doi.org/10.3168/jds.2018-14785] [PMID: 30197143]
[185]
Agrawal, A.; Varshney, R.; Gattani, A.; Kirthika, P.; Khan, M.H.; Singh, R.; Kodape, S.; Patel, S.K.; Singh, P. Gold nanoparticle based immunochromatographic biosensor for rapid diagnosis of Mycobacterium avium subspecies paratuberculosis infection using recombinant protein. J. Microbiol. Methods, 2020, 177, 106024.
[http://dx.doi.org/10.1016/j.mimet.2020.106024] [PMID: 32795639]
[186]
Kumanan, V.; Nugen, S.R.; Baeumner, A.J.; Chang, Y.F. A biosensor assay for the detection of Mycobacterium avium subsp. paratuberculosis in fecal samples. J. Vet. Sci., 2009, 10(1), 35-42.
[http://dx.doi.org/10.4142/jvs.2009.10.1.35] [PMID: 19255522]
[187]
Xiang, Y.; Zhu, X.; Huang, Q.; Zheng, J.; Fu, W. Real-time monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor. Biosens. Bioelectron., 2015, 66, 512-519.
[http://dx.doi.org/10.1016/j.bios.2014.11.021] [PMID: 25500527]
[188]
Cho, I.H.; Bhunia, A.; Irudayaraj, J. Rapid pathogen detection by lateral-flow immunochromatographic assay with gold nanoparticle-assisted enzyme signal amplification. Int. J. Food Microbiol., 2015, 206, 60-66.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2015.04.032] [PMID: 25955290]
[189]
Kim, G.; Moon, J.H.; Moh, C.Y.; Lim, J. A microfluidic nano-biosensor for the detection of pathogenic Salmonella. Biosens. Bioelectron., 2015, 67, 243-247.
[http://dx.doi.org/10.1016/j.bios.2014.08.023] [PMID: 25172028]
[190]
Wang, Z.; Li, J.; Zhao, J.; Duan, N.; Sun, H.; Shi, Y. Ultrasensitive chemiluminescent detection of Salmonella with dna hybridization and silver amplification of nanogold labels. Anal. Lett., 2011, 44(6), 1063-1076.
[http://dx.doi.org/10.1080/00032719.2010.511737]
[191]
Gao, P.; Wang, L.; He, Y.; Wang, Y.; Yang, X.; Fu, S.; Qin, X.; Chen, Q.; Man, C.; Jiang, Y. An Enhanced Lateral Flow Assay Based on Aptamer–Magnetic Separation and Multifold AuNPs for Ultrasensitive Detection of Salmonella Typhimurium in Milk. Foods, 2021, 10(7), 1605.
[http://dx.doi.org/10.3390/foods10071605] [PMID: 34359475]
[192]
Bu, T.; Yao, X.; Huang, L.; Dou, L.; Zhao, B.; Yang, B.; Li, T.; Wang, J.; Zhang, D. Dual recognition strategy and magnetic enrichment based lateral flow assay toward Salmonella enteritidis detection. Talanta, 2020, 206, 120204.
[http://dx.doi.org/10.1016/j.talanta.2019.120204] [PMID: 31514833]
[193]
Tian, R.; Ji, J.; Zhou, Y.; Du, Y.; Bian, X.; Zhu, F.; Liu, G.; Deng, S.; Wan, Y.; Yan, J. Terminal-conjugated non-aggregated constraints of gold nanoparticles on lateral flow strips for mobile phone readouts of enrofloxacin. Biosens. Bioelectron., 2020, 160, 112218.
[http://dx.doi.org/10.1016/j.bios.2020.112218] [PMID: 32339154]
[194]
Pan, M.; Li, S.; Wang, J.; Sheng, W.; Wang, S. Development and Validation of a Reproducible and Label-Free Surface Plasmon Resonance Immunosensor for Enrofloxacin Detection in Animal-Derived Foods. Sensors (Basel), 2017, 17(9), 1984.
[http://dx.doi.org/10.3390/s17091984] [PMID: 28867795]
[195]
Lin, B.; Yu, Y.; Cao, Y.; Guo, M.; Zhu, D.; Dai, J.; Zheng, M. Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone. Biosens. Bioelectron., 2018, 100, 482-489.
[http://dx.doi.org/10.1016/j.bios.2017.09.028] [PMID: 28965053]
[196]
Tang, Y.; Hu, Y.; Zhou, P.; Wang, C.; Tao, H.; Wu, Y. Colorimetric Detection of Kanamycin Residue in Foods Based on the Aptamer-Enhanced Peroxidase-Mimicking Activity of Layered WS 2 Nanosheets. J. Agric. Food Chem., 2021, 69(9), 2884-2893.
[http://dx.doi.org/10.1021/acs.jafc.1c00925] [PMID: 33646795]
[197]
Zhao, M.; Li, X.; Zhang, Y.; Wang, Y.; Wang, B.; Zheng, L.; Zhang, D.; Zhuang, S. Rapid quantitative detection of chloramphenicol in milk by microfluidic immunoassay. Food Chem., 2021, 339, 127857.
[http://dx.doi.org/10.1016/j.foodchem.2020.127857] [PMID: 32866699]
[198]
Yu, X.; He, Y.; Jiang, J.; Cui, H. A competitive immunoassay for sensitive detection of small molecules chloramphenicol based on luminol functionalized silver nanoprobe. Anal. Chim. Acta, 2014, 812, 236-242.
[http://dx.doi.org/10.1016/j.aca.2014.01.021] [PMID: 24491787]
[199]
Yan, L.; Dou, L.; Bu, T.; Huang, Q.; Wang, R.; Yang, Q.; Huang, L.; Wang, J.; Zhang, D. Highly sensitive furazolidone monitoring in milk by a signal amplified lateral flow assay based on magnetite nanoparticles labeled dual-probe. Food Chem., 2018, 261, 131-138.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.016] [PMID: 29739573]
[200]
Bosma, R.; Devasagayam, J.; Singh, A.; Collier, C.M. Microchip capillary electrophoresis dairy device using fluorescence spectroscopy for detection of ciprofloxacin in milk samples. Sci. Rep., 2020, 10(1), 13548.
[http://dx.doi.org/10.1038/s41598-020-70566-1] [PMID: 32782384]
[201]
Fang, B.; Hu, S.; Wang, C.; Yuan, M.; Huang, Z.; Xing, K.; Liu, D.; Peng, J.; Lai, W. Lateral flow immunoassays combining enrichment and colorimetry-fluorescence quantitative detection of sulfamethazine in milk based on trifunctional magnetic nanobeads. Food Control, 2019, 98, 268-273.
[http://dx.doi.org/10.1016/j.foodcont.2018.11.039]
[202]
Li, Z.; Li, Z.; Zhao, D.; Wen, F.; Jiang, J.; Xu, D. Smartphone-based visualized microarray detection for multiplexed harmful substances in milk. Biosens. Bioelectron., 2017, 87, 874-880.
[http://dx.doi.org/10.1016/j.bios.2016.09.046] [PMID: 27662581]
[203]
Li, X.; Wu, X.; Wang, J.; Hua, Q.; Wu, J.; Shen, X.; Sun, Y.; Lei, H. Three lateral flow immunochromatographic assays based on different nanoparticle probes for on-site detection of tylosin and tilmicosin in milk and pork. Sens. Actuators B Chem., 2019, 301, 127059.
[http://dx.doi.org/10.1016/j.snb.2019.127059]
[204]
Kasoju, A.; Shahdeo, D.; Khan, A.A.; Shrikrishna, N.S.; Mahari, S.; Alanazi, A.M.; Bhat, M.A.; Giri, J.; Gandhi, S. Fabrication of microfluidic device for Aflatoxin M1 detection in milk samples with specific aptamers. Sci. Rep., 2020, 10(1), 4627.
[http://dx.doi.org/10.1038/s41598-020-60926-2] [PMID: 31913322]
[205]
Wang, C.; Peng, J.; Liu, D.F.; Xing, K.Y.; Zhang, G.G.; Huang, Z.; Cheng, S.; Zhu, F.F.; Duan, M.L.; Zhang, K.Y.; Yuan, M.F.; Lai, W.H. Lateral flow immunoassay integrated with competitive and sandwich models for the detection of aflatoxin M1 and Escherichia coli O157:H7 in milk. J. Dairy Sci., 2018, 101(10), 8767-8777.
[http://dx.doi.org/10.3168/jds.2018-14655] [PMID: 30100502]
[206]
Liu, D.; Huang, Y.; Wang, S.; Liu, K.; Chen, M.; Xiong, Y.; Yang, W.; Lai, W. A modified lateral flow immunoassay for the detection of trace aflatoxin M1 based on immunomagnetic nanobeads with different antibody concentrations. Food Control, 2015, 51, 218-224.
[http://dx.doi.org/10.1016/j.foodcont.2014.11.036]
[207]
Wu, C.; Hu, L.; Xia, J.; Xu, G.; Luo, K.; Liu, D.; Duan, H.; Cheng, S.; Xiong, Y.; Lai, W. Comparison of immunochromatographic assays based on fluorescent microsphere and quantum-dot submicrobead for quantitative detection of aflatoxin M1 in milk. J. Dairy Sci., 2017, 100(4), 2501-2511.
[http://dx.doi.org/10.3168/jds.2016-12065] [PMID: 28161166]