Revisiting Recent Tissue Engineering Technologies in Alveolar Cleft Reconstruction

Page: [840 - 851] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Tissue engineering and regenerative medicine have received significant attention in treating degenerative disorders and presented unique opportunities for researchers. The latest research on tissue engineering and regenerative medicine to reconstruct the alveolar cleft has been reviewed in this study. Three approaches have been used to reconstruct alveolar cleft: Studies that used only stem cells or biomaterials and studies that reconstructed alveolar defects by tissue engineering using a combination of stem cells and biomaterials. Stem cells, biomaterials, and tissue-engineered constructs have shown promising results in the reconstruction of alveolar defects. However, some contrary issues, including stem cell durability and scaffold stability, were also observed. It seems that more prospective and comprehensive studies should be conducted to fully clarify the exact dimensions of the stem cells and tissue engineering reconstruction method in the therapy of alveolar cleft.

Graphical Abstract

[1]
Mossey PA, Little J, Munger RG, Dixon MJ, Shaw WC. Cleft lip and palate. Lancet 2009; 374(9703): 1773-85.
[http://dx.doi.org/10.1016/S0140-6736(09)60695-4] [PMID: 19747722]
[2]
Ngai CW, Martin WL, Tonks A, Wyldes MP, Kilby MD, Medicine N. Are isolated facial cleft lip and palate associated with increased perinatal mortality? A cohort study from the West Midlands Region, 1995–1997. J Matern Fetal Neonatal Med 2005; 17(3): 203-6.
[http://dx.doi.org/10.1080/14767050500072854] [PMID: 16147824]
[3]
Christensen K, Juel K, Herskind AM, Murray JC. Long term follow up study of survival associated with cleft lip and palate at birth. BMJ 2004; 328(7453): 1405.
[http://dx.doi.org/10.1136/bmj.38106.559120.7C] [PMID: 15145797]
[4]
Nopoulos P, Langbehn D R, Canady J, Magnotta V, Richman L. Abnormal brain structure in children with isolated clefts of the lip or palate. Arch Pediatr Adolesc Med 2007; 161(8): 753-8.
[http://dx.doi.org/10.1001/archpedi.161.8.753.] [PMID: 17679656]
[5]
Berk NW, Marazita ML. Costs of cleft lip and palate: Personal and societal implications. In: Wyszynski DF, Ed. Cleft lip and palate: From origin to treatment. New York: Oxford University Press 2002; pp. 458-67.
[6]
Schnitt DE, Agir H, David DJ. From birth to maturity: A group of patients who have completed their protocol management. Part I. Unilateral cleft lip and palate. Plast Reconstr Surg 2004; 113(3): 805-17.
[http://dx.doi.org/10.1097/01.PRS.0000105332.57124.89] [PMID: 15108870]
[7]
Seike T, Hashimoto I, Matsumoto K, Tanaka E, Nakanishi H. Early postoperative evaluation of secondary bone grafting into the alveolar cleft and its effects on subsequent orthodontic treatment. J Med Invest 2012; 59(1,2): 152-65.
[http://dx.doi.org/10.2152/jmi.59.152] [PMID: 22450004]
[8]
Witsenburg B. The reconstruction of anterior residual bone defects in patients with cleft lip, alveolus and palate a review. J Maxillofac Surg 1985; 13(5): 197-208.
[http://dx.doi.org/10.1016/S0301-0503(85)80048-5] [PMID: 3903014]
[9]
Yılmaza S, Kılıçb AR, Kelesc A, Efeoğlud E. Reconstruction of an alveolar cleft for orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2000; 117(2): 156-63.
[http://dx.doi.org/10.1016/S0889-5406(00)70226-5] [PMID: 10672215]
[10]
Jia Y, Fu M, Ma L. Long-term outcome of secondary alveolar bone grafting in patients with various types of cleft. Br J Oral Maxillofac Surg 2006; 44(4): 308-12.
[http://dx.doi.org/10.1016/j.bjoms.2005.07.003] [PMID: 16107298]
[11]
Benlidayi ME, Tatli U, Kurkcu M, Uzel A, Oztunc H. Comparison of bovine-derived hydroxyapatite and autogenous bone for secondary alveolar bone grafting in patients with alveolar clefts. J Oral Maxillofac Surg 2012; 70(1): e95-e102.
[http://dx.doi.org/10.1016/j.joms.2011.08.041] [PMID: 22182665]
[12]
Lexer E. The use of free osteoplasty together with trials on arthrodesis and joint transplantation Archiv für klin Chirurgie 1908;86(4):939-954. Clin Orthop Relat Res 1908; 466(8): 1771-6.
[http://dx.doi.org/10.1007/s11999-008-0314-4] [PMID: 18536976]
[13]
Myeroff C, Archdeacon M. Autogenous bone graft: Donor sites and techniques. J Bone Joint Surg Am 2011; 93(23): 2227-36.
[http://dx.doi.org/10.2106/JBJS.J.01513] [PMID: 22159859]
[14]
Swan MC, Goodacre TEE. Morbidity at the iliac crest donor site following bone grafting of the cleft alveolus. Br J Oral Maxillofac Surg 2006; 44(2): 129-33.
[http://dx.doi.org/10.1016/j.bjoms.2005.04.015.] [PMID: 15961201]
[15]
Canady J W, Zeitler D P, Thompson S A, Nicholas C D. Suitability of the iliac crest as a site for harvest of autogenous bone grafts. Cleft Palate Craniofac J 1993; 30(6): 579-81.
[http://dx.doi.org/10.1597/1545-1569_1993_030_0579_sotica_2.3.co_2.] [PMID: 8280737]
[16]
Du F, Wu H, Li H, et al. Bone marrow mononuclear cells combined with beta-tricalcium phosphate granules for alveolar cleft repair: A 12-month clinical study. Sci Rep 2017; 7(1): 13773.
[http://dx.doi.org/10.1038/s41598-017-12602-1] [PMID: 29062005]
[17]
Mao AS, Mooney DJ. Regenerative medicine: Current therapies and future directions. Proc Natl Acad Sci 2015; 112(47): 14452-9.
[http://dx.doi.org/10.1073/pnas.1508520112] [PMID: 26598661]
[18]
Berthiaume F, Maguire T J, Yarmush M L. Tissue engineering and regenerative medicine: History, progress, and challenges. Annu Rev Chem Biomol Eng 2011; 2: 403-30.
[http://dx.doi.org/10.1146/annurev-chembioeng-061010-114257.] [PMID: 22432625]
[19]
Ringe J, Kaps C, Burmester G-R, Sittinger M. Stem cells for regenerative medicine: Advances in the engineering of tissues and organs. Naturwissenschaften 2002; 89(8): 338-51.
[http://dx.doi.org/10.1007/s00114-002-0344-9] [PMID: 12435034]
[20]
Amiri M A, Lavaee F, Danesteh H. Use of stem cells in bone regeneration in cleft palate patients: Review and recommendations. J Korean Assoc Oral Maxillofac Surg 2022; 48(2): 71-8.
[http://dx.doi.org/10.5125/jkaoms.2022.48.2.71.] [PMID: 35491137]
[21]
Hwang NS, Varghese S, Elisseeff J. Controlled differentiation of stem cells. Adv Drug Deliv Rev 2008; 60(2): 199-214.
[http://dx.doi.org/10.1016/j.addr.2007.08.036]
[22]
Leach J K, Whitehead J. Materials-directed differentiation of mesenchymal stem cells for tissue engineering and regeneration. ACS Biomater Sci Eng 2017; 4(4): 1115-27.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00741.] [PMID: 30035212]
[23]
Gładysz D, Hozyasz KK. Stem cell regenerative therapy in alveolar cleft reconstruction. Arch Oral Biol 2015; 60(10): 1517-32.
[http://dx.doi.org/10.1016/j.archoralbio.2015.07.003] [PMID: 26263541]
[24]
Kang NH. Current methods for the treatment of alveolar cleft. Arch Plast Surg 2017; 44(3): 188-93.
[http://dx.doi.org/10.5999/aps.2017.44.3.188] [PMID: 28573092]
[25]
Kyung H, Kang N. Management of alveolar cleft. Arch Craniofac Surg 2015; 16(2): 49-52.
[http://dx.doi.org/10.7181/acfs.2015.16.2.49] [PMID: 28913221]
[26]
Sadove AM, van Aalst JA, Culp JA. Cleft palate repair: Art and issues. Clin Plast Surg 2004; 31(2): 231-41.
[http://dx.doi.org/10.1016/S0094-1298(03)00136-6] [PMID: 15145665]
[27]
Moreau JL, Caccamese JF, Coletti DP, Sauk JJ, Fisher JP. Tissue engineering solutions for cleft palates. J Oral Maxillofac Surg 2007; 65(12): 2503-11.
[http://dx.doi.org/10.1016/j.joms.2007.06.648] [PMID: 18022477]
[28]
Cobourne MT. The complex genetics of cleft lip and palate. Eur J Orthod 2004; 26(1): 7-16.
[http://dx.doi.org/10.1093/ejo/26.1.7] [PMID: 14994877]
[29]
Blanton SH, Bertin T, Patel S, Stal S, Mulliken JB, Hecht JT. Nonsyndromic cleft lip and palate: Four chromosomal regions of interest. Am J Med Genet A 2004; 125A(1): 28-37.
[http://dx.doi.org/10.1002/ajmg.a.20423] [PMID: 14755463]
[30]
Seifeldin SA. Is alveolar cleft reconstruction still controversial? (Review of literature). Saudi Dent J 2016; 28(1): 3-11.
[http://dx.doi.org/10.1016/j.sdentj.2015.01.006] [PMID: 26792963]
[31]
Eppley B L, van Aalst J A, Robey A, Havlik R J, Sadove A M. The spectrum of orofacial clefting. Plast Reconstr Surg 2005; 115(7): 101e-4e.
[http://dx.doi.org/10.1097/01.prs.0000164494.45986.91.] [PMID: 15923821]
[32]
Matsuura Y, Kawai K, Kishimoto H, Noda K, Morimoto N. Median alveolar cleft and palatal mass without a median upper cleft lip. Oral Maxillofacial Sur Cases 2019; 5(4): 100124.
[http://dx.doi.org/10.1016/j.omsc.2019.100124]
[33]
Allori A C, Mulliken J B, Meara J G, Shusterman S, Marcus J R. Classification of cleft lip/palate: Then and now. Cleft Palate Craniofac J 2017; 54(2): 175-88.
[http://dx.doi.org/10.1597/14-080.] [PMID: 26339868]
[34]
Allori AC. Striped-Y redux: Redesigning pictographic notational systems for the digital age. Dental Oral Craniofac Res 2017; 3(5): 1-8.
[http://dx.doi.org/10.15761/DOCR.1000218]
[35]
Koul R. Describing cleft lip and palate using a new expression system. Cleft Palate Craniofac J 2007; 44(6): 585-9.
[http://dx.doi.org/10.1597/06-111.1] [PMID: 18177187]
[36]
Wirtz N, Sidman J, Block W. Clefting of the alveolus: Emphasizing the distinction from cleft palate. Am J Perinatol 2016; 33(6): 531-4.
[http://dx.doi.org/10.1055/s-0036-1572537] [PMID: 26906186]
[37]
Mathew P, Kattimani VS, Tiwari RV, Iqbal MS, Tabassum A, Syed KG. New classification system for cleft alveolus: A computed tomography-based appraisal. J Contemp Dent Pract 2020; 21(8): 942-8.
[http://dx.doi.org/10.5005/jp-journals-10024-2849] [PMID: 33568619]
[38]
Daw JL Jr, Patel PK. Management of alveolar clefts. Clin Plast Surg 2004; 31(2): 303-13.
[http://dx.doi.org/10.1016/S0094-1298(03)00129-9] [PMID: 15145671]
[39]
Von Eiselsberg F. On the technique of uranoplasty. Eiselsberg, Anton Frh in 1901; 509-29.
[40]
Drachter R. Die Gaumenspalte und deren operative Behandlung. German J Sur 1914; 131(1): 1-89.
[http://dx.doi.org/10.1007/BF02797875]
[41]
Schrudde J, Stellmach R. [Primary osteoplasty of defects of the inferior maxillary arch in cleft palate and harelip in infants; preliminary report]. Zentralbl Chir 1958; 83(15): 849-59.
[PMID: 13570298]
[42]
Eppley BL. Alveolar cleft bone grafting (Part I): primary bone grafting. J Oral Maxillofac Surg 1996; 54(1): 74-82.
[43]
Sadove AM, Nelson CL, Eppley BL, Nguyen B. An evaluation of calvarial and iliac donor sites in alveolar cleft grafting. Cleft Palate J 1990; 27(3): 225-9.
[http://dx.doi.org/10.1597/1545-1569_1990_027_0225_aeocai_2.3.co_2] [PMID: 2372971]
[44]
Sakamoto Y, Sakamoto T, Ishii T, Kishi K. Assessment of bioabsorbable hydroxyapatite for secondary bone grafting in unilateral alveolar clefts. Cleft Palate Craniofac J 2020; 57(1): 114-7.
[http://dx.doi.org/10.1177/1055665619866372] [PMID: 31422680]
[45]
Al-Ahmady H H, Abd Elazeem A F, Ahmed N E-m B, et al. Combining autologous bone marrow mononuclear cells seeded on collagen sponge with Nano Hydroxyapatite, and platelet-rich fibrin: Reporting a novel strategy for alveolar cleft bone regeneration. J Craniomaxillofac Surg 2018; 46(9): 1593-600.
[http://dx.doi.org/10.1016/j.jcms.2018.05.049.] [PMID: 30196860]
[46]
Rawashdeh MA, Telfah H. Secondary alveolar bone grafting: The dilemma of donor site selection and morbidity. Br J Oral Maxillofac Surg 2008; 46(8): 665-70.
[http://dx.doi.org/10.1016/j.bjoms.2008.07.184] [PMID: 18760515]
[47]
Bajestan MN, Rajan A, Edwards SP, et al. Stem cell therapy for reconstruction of alveolar cleft and trauma defects in adults: A randomized controlled, clinical trial. Clin Implant Dent Relat Res 2017; 19(5): 793-801.
[http://dx.doi.org/10.1111/cid.12506] [PMID: 28656723]
[48]
Mazzetti MPV, Alonso N, Brock RS, Ayoub A, Massumoto SM, Eça LP. Importance of stem cell transplantation in cleft lip and palate surgical treatment protocol. J Craniofac Surg 2018; 29(6): 1445-51.
[http://dx.doi.org/10.1097/SCS.0000000000004766] [PMID: 30067525]
[49]
Janssen NG, Schreurs R, de Ruiter AP, et al. Microstructured beta-tricalcium phosphate for alveolar cleft repair: A two-centre study. Int J Oral Maxillofac Surg 2019; 48(6): 708-11.
[http://dx.doi.org/10.1016/j.ijom.2018.11.009] [PMID: 30594478]
[50]
Yin X, Li Q, Hong Y, et al. Customized reconstruction of alveolar cleft by high mechanically stable bioactive ceramic scaffolds fabricated by digital light processing. Mater Des 2022; 218: 110659.
[http://dx.doi.org/10.1016/j.matdes.2022.110659]
[51]
Shen C, Wang MM, Witek L, et al. Transforming the degradation rate of β-tricalcium phosphate bone replacement using 3-dimensional printing. Ann Plast Surg 2021; 87(6): e153-62.
[http://dx.doi.org/10.1097/SAP.0000000000002965] [PMID: 34611100]
[52]
Dai J, Fu Y, Chen D, Sun Z. A novel and injectable strontium-containing hydroxyapatite bone cement for bone substitution: A systematic evaluation. Mater Sci Eng C 2021; 124: 112052.
[http://dx.doi.org/10.1016/j.msec.2021.112052] [PMID: 33947546]
[53]
Alkaabi SA, Kalla DSN, Alsabri GA, et al. Safety and feasibility study of using polyphosphate (PolyP) in alveolar cleft repair: A pilot study. Pilot Feasibility Stud 2021; 7(1): 199.
[http://dx.doi.org/10.1186/s40814-021-00939-4] [PMID: 34749808]
[54]
Rizzo MI, Tomao L, Tedesco S, et al. Engineered mucoperiosteal scaffold for cleft palate regeneration towards the non-immunogenic transplantation. Sci Rep 2021; 11(1): 14570.
[http://dx.doi.org/10.1038/s41598-021-93951-w] [PMID: 34272436]
[55]
Tanikawa DYS, Pinheiro CCG, Almeida MCA, et al. Deciduous dental pulp stem cells for maxillary alveolar reconstruction in cleft lip and palate patients. Stem Cells Int 2020; 2020(2): 1-11.
[http://dx.doi.org/10.1155/2020/6234167] [PMID: 32256610]
[56]
Behnia H, Khojasteh A, Soleimani M, Tehranchi A, Atashi A. Repair of alveolar cleft defect with mesenchymal stem cells and platelet derived growth factors: A preliminary report. J Craniomaxillofac Surg 2012; 40(1): 2-7.
[http://dx.doi.org/10.1016/j.jcms.2011.02.003] [PMID: 21420310]
[57]
Korn P, Ahlfeld T, Lahmeyer F, et al. 3D printing of bone grafts for cleft alveolar osteoplasty - in vivo evaluation in a preclinical model. Front Bioeng Biotechnol 2020; 8: 217.
[http://dx.doi.org/10.3389/fbioe.2020.00217.] [PMID: 32269989]
[58]
Ahn G, Lee JS, Yun WS, Shim JH, Lee UL. Cleft alveolus reconstruction using a three-dimensional printed bioresorbable scaffold with human bone marrow cells. J Craniofac Surg 2018; 29(7): 1880-3.
[http://dx.doi.org/10.1097/SCS.0000000000004747] [PMID: 30028404]
[59]
Strauer BE, Kornowski R. Stem cell therapy in perspective. Circulation 2003; 107(7): 929-34.
[http://dx.doi.org/10.1161/01.CIR.0000057525.13182.24] [PMID: 12600901]
[60]
Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411): 143-7.
[http://dx.doi.org/10.1126/science.284.5411.143] [PMID: 10102814]
[61]
Andrzejewska A, Lukomska B, Janowski M. Concise review: Mesenchymal stem cells: From roots to boost. Stem Cells 2019; 37(7): 855-64.
[http://dx.doi.org/10.1002/stem.3016] [PMID: 30977255]
[62]
Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. cells 2019; 8(8): 886.
[http://dx.doi.org/10.3390/cells8080886] [PMID: 31412678]
[63]
Shanbhag S, Suliman S, Pandis N, Stavropoulos A, Sanz M, Mustafa K. Cell therapy for orofacial bone regeneration: A systematic review and meta-analysis. J Clin Periodontol 2019; 46(S21)(S 21): 162-82.
[http://dx.doi.org/10.1111/jcpe.13049] [PMID: 30623455]
[64]
Caplan AI. Mesenchymal Stem Cells: Time to Change the Name! Stem Cells Transl Med 2017; 6(6): 1445-51.
[http://dx.doi.org/10.1002/sctm.17-0051] [PMID: 28452204]
[65]
Haumer A, Bourgine PE, Occhetta P, Born G, Tasso R, Martin I. Delivery of cellular factors to regulate bone healing. Adv Drug Deliv Rev 2018; 129: 285-94.
[http://dx.doi.org/10.1016/j.addr.2018.01.010] [PMID: 29357301]
[66]
Law S, Chaudhuri S. Mesenchymal stem cell and regenerative medicine: Regeneration versus immunomodulatory challenges. Am J Stem Cells 2013; 2(1): 22-38.
[PMID: 23671814]
[67]
Pigott JH, Ishihara A, Wellman ML, Russell DS, Bertone AL. Investigation of the immune response to autologous, allogeneic, and xenogeneic mesenchymal stem cells after intra-articular injection in horses. Vet Immunol Immunopathol 2013; 156(1-2): 99-106.
[http://dx.doi.org/10.1016/j.vetimm.2013.09.003] [PMID: 24094688]
[68]
Soleimanifar F, Hosseini FS, Atabati H, et al. Adipose‐derived stem cells‐conditioned medium improved osteogenic differentiation of induced pluripotent stem cells when grown on polycaprolactone nanofibers. J Cell Physiol 2019; 234(7): 10315-23.
[http://dx.doi.org/10.1002/jcp.27697] [PMID: 30378123]
[69]
Abazari MF, Hosseini Z, Zare Karizi S, et al. Different osteogenic differentiation potential of mesenchymal stem cells on three different polymeric substrates. Gene 2020; 740(2): 144534.
[http://dx.doi.org/10.1016/j.gene.2020.144534] [PMID: 32145328]
[70]
Kretlow JD, Jin YQ, Liu W, et al. Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biol 2008; 9(1): 60.
[http://dx.doi.org/10.1186/1471-2121-9-60] [PMID: 18957087]
[71]
Tremoleda JL, Forsyth NR, Khan NS, et al. Bone tissue formation from human embryonic stem cells in vivo. Cloning Stem Cells 2008; 10(1): 119-32.
[http://dx.doi.org/10.1089/clo.2007.0R36] [PMID: 18241129]
[72]
Amabile G, Meissner A. Induced pluripotent stem cells: Current progress and potential for regenerative medicine. Trends Mol Med 2009; 15(2): 59-68.
[http://dx.doi.org/10.1016/j.molmed.2008.12.003] [PMID: 19162546]
[73]
Fu Y, Deng S, Wang J, et al. Potential replication of induced pluripotent stem cells for craniofacial reconstruction. Curr Stem Cell Res Ther 2014; 9(3): 205-14.
[http://dx.doi.org/10.2174/1574888X09666140213155800] [PMID: 24524793]
[74]
Wert G, Mummery C. Human embryonic stem cells: Research, ethics and policy. Hum Reprod 2003; 18(4): 672-82.
[http://dx.doi.org/10.1093/humrep/deg143] [PMID: 12660256]
[75]
Shand J, Berg J, Bogue C. Committee for Pediatric Research; Committee on Bioethics. Human embryonic stem cell (hESC) and human embryo research. Pediatrics 2012; 130(5): 972-7.
[http://dx.doi.org/10.1542/peds.2012-2482.] [PMID: 23109685]
[76]
Salgado A J, Oliveira J M, Martins A, et al. Tissue engineering and regenerative medicine: Past, present, and future. Int Rev Neurobiol 2013; 108: 1-33.
[http://dx.doi.org/10.1016/B978-0-12-410499-0.00001-0.] [PMID: 24083429]
[77]
Alfayez E, Alghamdi F, Alfayez ES. Clinical application of stem cell therapy in reconstructing maxillary cleft alveolar bone defects: A systematic review of randomized clinical trials. Cureus 2022; 14(3): e23111.
[http://dx.doi.org/10.7759/cureus.23111] [PMID: 35425680]
[78]
Almotawah FN, AlNamasy R, Alhamazani B, Almohsen S, AlNamasy RE. Alveolar reconstruction using stem cells in patients with cleft lip and palate: A systematic review. Arch Pharm Pract 2022; 13(4): 57-62.
[http://dx.doi.org/10.51847/IoBhDeHRqO]
[79]
Mauney JR, Volloch V, Kaplan DL. Role of adult mesenchymal stem cells in bone tissue engineering applications: Current status and future prospects. Tissue Eng 2005; 11(5-6): 787-802.
[http://dx.doi.org/10.1089/ten.2005.11.787] [PMID: 15998219]
[80]
Lee JM, Kim HY, Park JS, et al. Developing palatal bone using human mesenchymal stem cell and stem cells from exfoliated deciduous teeth cell sheets. J Tissue Eng Regen Med 2019; 13(2): 319-27.
[http://dx.doi.org/10.1002/term.2811] [PMID: 30644640]
[81]
Jahanbin A, Rashed R, Alamdari DH, et al. Success of maxillary alveolar defect repair in rats using osteoblast-differentiated human deciduous dental pulp stem cells. J Oral Maxillofac Surg 2016; 74(4): 829.e1-9.
[http://dx.doi.org/10.1016/j.joms.2015.11.033] [PMID: 26763080]
[82]
De Oliveira D, Gomes Ferreira PHS, Duailibe De Deus C, Okamoto R. Evaluation of the different biomaterials used in alveolar cleft defects in children. Ann Maxillofac Surg 2018; 8(2): 315-9.
[http://dx.doi.org/10.4103/ams.ams_140_17] [PMID: 30693253]
[83]
Saburi E, Atabati H, Kabiri L, et al. Bone morphogenetic protein‐7 incorporated polycaprolactone scaffold has a great potential to improve survival and proliferation rate of the human embryonic kidney cells. J Cell Biochem 2019; 120(6): 9859-68.
[http://dx.doi.org/10.1002/jcb.28268] [PMID: 30548655]
[84]
Alonso N, Risso GH, Denadai R, Raposo-Amaral CE. Effect of maxillary alveolar reconstruction on nasal symmetry of cleft lip and palate patients: A study comparing iliac crest bone graft and recombinant human bone morphogenetic protein-2. J Plast Reconstr Aesthet Surg 2014; 67(9): 1201-8.
[http://dx.doi.org/10.1016/j.bjps.2014.05.014] [PMID: 24909628]
[85]
Triplett RG, Nevins M, Marx RE, et al. Pivotal, randomized, parallel evaluation of recombinant human bone morphogenetic protein-2/absorbable collagen sponge and autogenous bone graft for maxillary sinus floor augmentation. J Oral Maxillofac Surg 2009; 67(9): 1947-60.
[http://dx.doi.org/10.1016/j.joms.2009.04.085] [PMID: 19686934]
[86]
Liang F, Yen S, Florendo E, Urata M, Hammoudeh J. 3D cone beam computed tomography volumetric outcomes of rhBMP-2/demineralized bone matrix vs. iliac crest bone graft for alveolar cleft reconstruction. Plast Reconstr Surg 2015; 136(4S): 3-4.
[http://dx.doi.org/10.1097/01.prs.0000472273.84427.35]
[87]
Fiorellini JP, Howell TH, Cochran D, et al. Randomized study evaluating recombinant human bone morphogenetic protein-2 for extraction socket augmentation. J Periodontol 2005; 76(4): 605-13.
[http://dx.doi.org/10.1902/jop.2005.76.4.605] [PMID: 15857102]
[88]
Simmonds MC, Brown JVE, Heirs MK, et al. Safety and effectiveness of recombinant human bone morphogenetic protein-2 for spinal fusion: A meta-analysis of individual-participant data. Ann Intern Med 2013; 158(12): 877-89.
[http://dx.doi.org/10.7326/0003-4819-158-12-201306180-00005] [PMID: 23778905]
[89]
Garg S, McCarthy JJ, Goodwin R, et al. Complication rates after bone morphogenetic protein (BMP) use in orthopaedic surgery in children: A concise multicenter retrospective cohort study. J Pediatr Orthop 2017; 37(6): e375-8.
[http://dx.doi.org/10.1097/BPO.0000000000000859] [PMID: 27603194]
[90]
Liang F, Leland H, Jedrzejewski B, et al. Alternatives to autologous bone graft in alveolar cleft reconstruction: The state of alveolar tissue engineering. J Craniofac Surg 2018; 29(3): 584-93.
[http://dx.doi.org/10.1097/SCS.0000000000004300] [PMID: 29461365]
[91]
Bohner M, Santoni BLG, Döbelin N. β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater 2020; 113: 23-41.
[http://dx.doi.org/10.1016/j.actbio.2020.06.022] [PMID: 32565369]
[92]
Liu J, Gao C, Feng P, Peng S, Shuai C. Selective laser sintering of β-TCP/nano-58S composite scaffolds with improved mechanical properties. Mater Des 2015; 84(5): 395-401.
[93]
Saxena V, Pandey LM. Synthesis and sintering of calcium hydroxyapatite for biomedical applications. In: Reference Module in Materials Science and Materials Engineering. Elsevier 2021.
[94]
Müller WE, Schröder HC, Tolba E, Diehl‐Seifert B, Wang X. Mineralization of bone‐related Sa OS‐2 cells under physiological hypoxic conditions. FEBS J 2016; 283(1): 74-87.
[http://dx.doi.org/10.1111/febs.13552] [PMID: 26453899]
[95]
Müller WEG, Wang X, Diehl-Seifert B, et al. Inorganic polymeric phosphate/polyphosphate as an inducer of alkaline phosphatase and a modulator of intracellular Ca2+ level in osteoblasts (SaOS-2 cells) in vitro. Acta Biomater 2011; 7(6): 2661-71.
[http://dx.doi.org/10.1016/j.actbio.2011.03.007] [PMID: 21397057]
[96]
Wang X, Schröder H C, Müller W EG. Amorphous polyphosphate, a smart bioinspired nano-/bio-material for bone and cartilage regeneration: Towards a new paradigm in tissue engineering. J Mater Chem B 2018; 6(16): 2385-412.
[http://dx.doi.org/10.1039/c8tb00241j.] [PMID: 32254456]
[97]
Oliver J D, Madhoun W, Graham E M, Hendrycks R, Renouard M, Hu M S. Stem cells regenerating the craniofacial skeleton: Current state-of-the-art and future directions. J Clin Med 2020; 9(10): 3307.
[http://dx.doi.org/10.3390/jcm9103307.] [PMID: 33076266]
[98]
Jafarian M, Eslaminejad M B, Khojasteh A, et al. Oral Medicine, Oral Pathology, Oral Radiology,; Endodontology, Marrow-derived mesenchymal stem cells-directed bone regeneration in the dog mandible: a comparison between biphasic calcium phosphate and natural bone mineral. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 105(5): e14-24.
[http://dx.doi.org/10.1016/j.tripleo.2008.01.010.] [PMID: 18442730]
[99]
Khojasteh A, Eslaminejad MB, Nazarian H. Oral Medicine, Oral Pathology, Oral Radiology,; Endodontology, Mesenchymal stem cells enhance bone regeneration in rat calvarial critical size defects more than platelete-rich plasma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106(3): 356-62.
[http://dx.doi.org/10.1016/j.tripleo.2007.10.017] [PMID: 18424120]
[100]
Eslaminejad MB, Jafarian M, Khojasteh A, Mashhadiabbas F, Dehghan MM, Hassanizadeh R. In vivo bone formation by canine mesenchymal stem cells loaded onto HA/TCP scaffolds: Qualitative and quantitative analysis. Cell J 2008; 10(3): 205-12.
[101]
Vaish A, Vaish R. 3D printing and its applications in orthopedics. J Clin Orthop Trauma 2018; 9(2)(S 1): S74-5.
[http://dx.doi.org/10.1016/j.jcot.2018.02.003] [PMID: 29628703]
[102]
Harrysson OLA, Hosni YA, Nayfeh JF. Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: Femoral-component case study. BMC Musculoskelet Disord 2007; 8(1): 91.
[http://dx.doi.org/10.1186/1471-2474-8-91] [PMID: 17854508]
[103]
Ibáñez RR, Mateo NC, Lorenzo LMR, Navarrete AR, María LOFS. Potential benefits from 3D printing and dental pulp stem cells in cleft palate treatments: An in vivo model study. Biomedical Research Network 2019.
[104]
Oliver JD, Jia S, Halpern LR, et al. Innovative molecular and cellular therapeutics in cleft palate tissue engineering. Tissue Eng Part B Rev 2021; 27(3): 215-37.
[http://dx.doi.org/10.1089/ten.teb.2020.0181] [PMID: 32873216]