Pyrazole; A Privileged Scaffold of Medicinal Chemistry: A Comprehensive Review

Page: [2097 - 2115] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Pyrazole is considered an important active scaffold that possesses various types of pharmacological activities. The overwhelming literature reported earlier reflects the immense biological potential of pyrazole derivatives. The presence of this moiety in various FDA-approved drugs, including celecoxib (anti-inflammatory), apixaban (anticoagulant), rimonabant (anti-obesity), difenamizole (analgesic), and sildenafil (for erectile dysfunction), has proved its pharmacological potential. Owing to its diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the literature supporting the research of the past 10 years related to the structures of pyrazole derivatives with their corresponding biological activities. The findings of this review may open new avenues for an upcoming scientific breakthrough.

Graphical Abstract

[1]
Smela, M.E.; Currier, S.S.; Bailey, E.A.; Essigmann, J.M. The chemistry and biology of aflatoxin B1: from mutational spectrometry to carcinogenesis. Carcinogenesis, 2001, 22(4), 535-545.
[http://dx.doi.org/10.1093/carcin/22.4.535] [PMID: 11285186]
[2]
Gilchrist, T.L. Heterocyclic Chemistry, 2nd ed; John Wiley and Sons: Nashville, TN, 1992, pp. 206-208.
[3]
Wiley, R.H.; Behr, L.C.; Fusco, R.; Jarboe, C.H. Chemistry of Heterocyclic Compounds.Pyrazoles, pyrazolines, pyrazolidines, indazoles and condensed rings, 2nd ed; John Wiley and Sons: Nashville, TN, 1967, Vol. 22, pp. 9-11.
[http://dx.doi.org/10.1002/9780470186848]
[4]
Strašek, N.; Lavrenčič, L.; Oštrek, A.; Slapšak, D.; Grošelj, U.; Klemenčič, M.; Brodnik Žugelj, H.; Wagger, J.; Novinec, M.; Svete, J. Tetrahydro-1H,5H-pyrazolo[1,2-a]pyrazole-1-carboxylates as inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. Bioorg. Chem., 2019, 89, 102982.
[http://dx.doi.org/10.1016/j.bioorg.2019.102982] [PMID: 31132601]
[5]
Sivakumar, K.K.; Rajasekaran, A. Synthesis, in-vitro antimicrobial and antitubercular screening of Schiff bases of 3-amino-1-phenyl-4- [2-(4-phenyl-1,3-thiazol-2-yl) hydrazin-1-ylidene]-4,5-dihydro-1H-pyrazol-5-one. J. Pharm. Bioallied Sci., 2013, 5(2), 126-135.
[http://dx.doi.org/10.4103/0975-7406.111828] [PMID: 23833518]
[6]
Mohareb, R.M.; El-Sayed, N.N.E.; Abdelaziz, M.A. Uses of cyanoacetylhydrazine in heterocyclic synthesis: novel synthesis of pyrazole derivatives with anti-tumor activities. Molecules, 2012, 17(7), 8449-8463.
[http://dx.doi.org/10.3390/molecules17078449] [PMID: 22790561]
[7]
Yu, L.G.; Ni, T.F.; Gao, W.; He, Y.; Wang, Y.Y.; Cui, H.W.; Yang, C.G.; Qiu, W.W. The synthesis and antibacterial activity of pyrazole-fused tricyclic diterpene derivatives. Eur. J. Med. Chem., 2015, 90, 10-20.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.015] [PMID: 25461307]
[8]
Mert, S.; Kasımoğulları, R.; İça, T.; Çolak, F.; Altun, A.; Ok, S. Synthesis, structure–activity relationships, and in vitro antibacterial and antifungal activity evaluations of novel pyrazole carboxylic and dicarboxylic acid derivatives. Eur. J. Med. Chem., 2014, 78, 86-96.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.033] [PMID: 24681068]
[9]
Mizuhara, T.; Kato, T.; Hirai, A.; Kurihara, H.; Shimada, Y.; Taniguchi, M.; Maeta, H.; Togami, H.; Shimura, K.; Matsuoka, M.; Okazaki, S.; Takeuchi, T.; Ohno, H.; Oishi, S.; Fujii, N. Structure–activity relationship study of phenylpyrazole derivatives as a novel class of anti-HIV agents. Bioorg. Med. Chem. Lett., 2013, 23(16), 4557-4561.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.026] [PMID: 23845222]
[10]
Ragab, F.A.; Abdel Gawad, N.M.; Georgey, H.H.; Said, M.F. Synthesis of novel 1,3,4-trisubstituted pyrazoles as anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2013, 63, 645-654.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.005] [PMID: 23567953]
[11]
Tewari, A.K.; Singh, V.P.; Yadav, P.; Gupta, G.; Singh, A.; Goel, R.K.; Shinde, P.; Mohan, C.G. Synthesis, biological evaluation and molecular modeling study of pyrazole derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Bioorg. Chem., 2014, 56, 8-15.
[http://dx.doi.org/10.1016/j.bioorg.2014.05.004] [PMID: 24893208]
[12]
Barceló, M.; Raviña, E.; Masaguer, C.F.; Domínguez, E.; Areias, F.M.; Brea, J.; Loza, M.I. Synthesis and binding affinity of new pyrazole and isoxazole derivatives as potential atypical antipsychotics. Bioorg. Med. Chem. Lett., 2007, 17(17), 4873-4877.
[http://dx.doi.org/10.1016/j.bmcl.2007.06.045] [PMID: 17588750]
[13]
Bhosle, M.R.; Mali, J.R.; Pal, S.; Srivastava, A.K.; Mane, R.A. Synthesis and antihyperglycemic evaluation of new 2-hydrazolyl-4-thiazolidinone-5-carboxylic acids having pyrazolyl pharmacophores. Bioorg. Med. Chem. Lett., 2014, 24(12), 2651-2654.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.064] [PMID: 24813740]
[14]
Trindade, N.R.; Lopes, P.R.; Naves, L.M.; Fajemiroye, J.O.; Alves, P.H.; Amaral, N.O.; Lião, L.M.; Rebelo, A.C.S.; Castro, C.H.; Braga, V.A.; Menegatti, R.; Pedrino, G.R. The newly synthesized pyrazole derivative 5-(1-(3 Fluorophenyl)-1H-Pyrazol-4-yl)-2H-tetrazole reduces blood pressure of spontaneously hypertensive rats via NO/cGMO pathway. Front. Physiol., 2018, 9, 1073.
[http://dx.doi.org/10.3389/fphys.2018.01073] [PMID: 30131720]
[15]
Mowbray, C.E.; Braillard, S.; Speed, W.; Glossop, P.A.; Whitlock, G.A.; Gibson, K.R.; Mills, J.E.J.; Brown, A.D.; Gardner, J.M.F.; Cao, Y.; Hua, W.; Morgans, G.L.; Feijens, P.B.; Matheeussen, A.; Maes, L.J. Novel amino-pyrazole ureas with potent in vitro and in vivo antileishmanial activity. J. Med. Chem., 2015, 58(24), 9615-9624.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01456] [PMID: 26571076]
[16]
Nencini, A.; Castaldo, C.; Comery, T.A.; Dunlop, J.; Genesio, E.; Ghiron, C.; Haydar, S.; Maccari, L.; Micco, I.; Turlizzi, E.; Zanaletti, R.; Zhang, J. Design and synthesis of a hybrid series of potent and selective agonists of α7 nicotinic acetylcholine receptor. Eur. J. Med. Chem., 2014, 78, 401-418.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.031] [PMID: 24704613]
[17]
Abdel-Aziz, M.; Abuo-Rahma, G.E.D.A.; Hassan, A.A. Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities. Eur. J. Med. Chem., 2009, 44(9), 3480-3487.
[http://dx.doi.org/10.1016/j.ejmech.2009.01.032] [PMID: 19268406]
[18]
Balseven, H.; Mustafa İşgör, M.; Mert, S.; Alım, Z.; Beydemir, Ş.; Ok, S.; Kasımoğulları, R. Facile synthesis and characterization of novel pyrazole-sulfonamides and their inhibition effects on human carbonic anhydrase isoenzymes. Bioorg. Med. Chem., 2013, 21(1), 21-27.
[http://dx.doi.org/10.1016/j.bmc.2012.11.012] [PMID: 23218470]
[19]
Bronson, J.; Dhar, M.; Ewing, W.; Lonberg, N. To market, to market—2011. Annu. Rep. Med. Chem., 2012, 47, 499-569.
[http://dx.doi.org/10.1016/B978-0-12-396492-2.00031-X]
[20]
Hampp, C.; Hartzema, A.G.; Kauf, T.L. Cost-utility analysis of rimonabant in the treatment of obesity. Value Health, 2008, 11(3), 389-399.
[http://dx.doi.org/10.1111/j.1524-4733.2007.00281.x] [PMID: 18179661]
[21]
Luttinger, D.; Hlasta, D.J. Antidepressant agents. Annu. Rep. Med. Chem., 1987, 22, 21-30.
[http://dx.doi.org/10.1016/S0065-7743(08)61151-3]
[22]
Tsutomu, K.; Toshitaka, N. Effects of 1,3-diphenyl-5-(2-dimethylaminopropionamide)-pyrazole[difenamizole] on a conditioned avoidance response. Neuropharmacology, 1978, 17(4-5), 249-256.
[http://dx.doi.org/10.1016/0028-3908(78)90108-9] [PMID: 652137]
[23]
Williams, D.A.; Lemke, T.L. Non-steroidal anti-inflammatory drugs.Foye’s Principles of Medicinal Chemistry, 5th ed; Lippincott: Williams and Wilkins: New York, 2002, pp. 751-793.
[24]
Dannhardt, G.; Kiefer, W.; Krämer, G.; Maehrlein, S.; Nowe, U.; Fiebich, B. The pyrrole moiety as a template for COX-1/COX-2 inhibitors. Eur. J. Med. Chem., 2000, 35(5), 499-510.
[http://dx.doi.org/10.1016/S0223-5234(00)00150-1] [PMID: 10889329]
[25]
Dubost, J.J.; Soubrier, M.; Sauvezie, B. The treatment of rheumatoid polyarthritis. Evolution of ideas and strategies. Rev. Med. Interne, 1999, 20(2), 171-178.
[http://dx.doi.org/10.1016/S0248-8663(99)83037-9] [PMID: 10227098]
[26]
Frank, M.M.; Fries, L.F. The role of complement in inflammation and phagocytosis. Immunol. Today, 1991, 12(9), 322-326.
[http://dx.doi.org/10.1016/0167-5699(91)90009-I] [PMID: 1755943]
[27]
Collier, H.O.J. Prostaglandins and Aspirin. Nature, 1971, 232(5305), 17-19.
[http://dx.doi.org/10.1038/232017a0] [PMID: 4997426]
[28]
Cryer, B.; Feldman, M. Effects of nonsteroidal anti-inflammatory drugs on endogenous gastrointestinal prostaglandins and therapeutic strategies for prevention and treatment of nonsteroidal anti-inflammatory drug-induced damage. Arch. Intern. Med., 1992, 152(6), 1145-1155.
[http://dx.doi.org/10.1001/archinte.1992.00400180017003] [PMID: 1599341]
[29]
Dannhardt, G.; Kiefer, W. Cyclooxygenase inhibitors – current status and future prospects. Eur. J. Med. Chem., 2001, 36(2), 109-126.
[http://dx.doi.org/10.1016/S0223-5234(01)01197-7] [PMID: 11311743]
[30]
Bayly, C.I.; Black, W.C.; Léger, S.; Ouimet, N.; Ouellet, M.; Percival, M.D. Structure-based design of COX-2 selectivity into flurbiprofen. Bioorg. Med. Chem. Lett., 1999, 9(3), 307-312.
[http://dx.doi.org/10.1016/S0960-894X(98)00717-3] [PMID: 10091674]
[31]
Vane, J.R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat. New Biol., 1971, 231(25), 232-235.
[http://dx.doi.org/10.1038/newbio231232a0] [PMID: 5284360]
[32]
Buttar, N.S.; Wang, K.K. The “aspirin” of the new millennium: cyclooxygenase-2 inhibitors. Mayo Clin. Proc., 2000, 75(10), 1027-1038.
[http://dx.doi.org/10.4065/75.10.1027] [PMID: 11040851]
[33]
Michaux, C.; Charlier, C. Structural approach for COX-2 inhibition. Mini Rev. Med. Chem., 2004, 4(6), 603-615.
[http://dx.doi.org/10.2174/1389557043403756] [PMID: 15279594]
[34]
Patel, C.K.; Rami, C.S.; Panigrahi, B.; Patel, C.N. Synthesis and biological evaluation of (4-substituted benzylidene)-3-methyl-1-(substituted phenyl sulfonyl and substituted benzoyl)-1H-pyrazol-5(4H)-one as antiinflammatory agent. J. Chem. Pharm. Res., 2010, 2(1), 73-78.
[35]
Sakya, S.M.; Lundy DeMello, K.M.; Minich, M.L.; Rast, B.; Shavnya, A.; Rafka, R.J.; Koss, D.A.; Cheng, H.; Li, J.; Jaynes, B.H.; Ziegler, C.B.; Mann, D.W.; Petras, C.F.; Seibel, S.B.; Silvia, A.M.; George, D.M.; Lund, L.A.; Denis, S.S.; Hickman, A.; Haven, M.L.; Lynch, M.P. 5-Heteroatom substituted pyrazoles as canine COX-2 inhibitors. Part 1: Structure–activity relationship studies of 5-alkylamino pyrazoles and discovery of a potent, selective, and orally active analog. Bioorg. Med. Chem. Lett., 2006, 16(2), 288-292.
[http://dx.doi.org/10.1016/j.bmcl.2005.10.006] [PMID: 16275075]
[36]
Lehmann, F.; Beglinger, C. Impact of COX-2 inhibitors in common clinical practice a gastroenterologist’s perspective. Curr. Top. Med. Chem., 2005, 5(5), 449-464.
[http://dx.doi.org/10.2174/1568026054201703] [PMID: 15974940]
[37]
Abdel-Aziz, A.A.M.; ElTahir, K.E.H.; Asiri, Y.A. Synthesis, anti-inflammatory activity and COX-1/COX-2 inhibition of novel substituted cyclic imides. Part 1: Molecular docking study. Eur. J. Med. Chem., 2011, 46(5), 1648-1655.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.013] [PMID: 21388719]
[38]
Chakraborti, A.; Garg, S.; Kumar, R.; Motiwala, H.; Jadhavar, P. Progress in COX-2 inhibitors: a journey so far. Curr. Med. Chem., 2010, 17(15), 1563-1593.
[http://dx.doi.org/10.2174/092986710790979980] [PMID: 20166930]
[39]
El-Moghazy, S.M.; Barsoum, F.F.; Abdel-Rahman, H.M.; Marzouk, A.A. Synthesis and anti-inflammatory activity of some pyrazole derivatives. Med. Chem. Res., 2012, 21(8), 1722-1733.
[http://dx.doi.org/10.1007/s00044-011-9691-4]
[40]
El-Sayed, M.A.A.; Abdel-Aziz, N.I.; Abdel-Aziz, A.A.M.; El-Azab, A.S.; ElTahir, K.E.H. Synthesis, biological evaluation and molecular modeling study of pyrazole and pyrazoline derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Part 2. Bioorg. Med. Chem., 2012, 20(10), 3306-3316.
[http://dx.doi.org/10.1016/j.bmc.2012.03.044] [PMID: 22516672]
[41]
Hassan, G.S.; Abou-Seri, S.M.; Kamel, G.; Ali, M.M. Celecoxib analogs bearing benzofuran moiety as cyclooxygenase-2 inhibitors: Design, synthesis and evaluation as potential anti-inflammatory agents. Eur. J. Med. Chem., 2014, 76, 482-493.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.033] [PMID: 24607877]
[42]
El-Sayed, M.A.A.; Abdel-Aziz, N.I.; Abdel-Aziz, A.A.M.; El-Azab, A.S.; Asiri, Y.A.; ElTahir, K.E.H. Design, synthesis, and biological evaluation of substituted hydrazone and pyrazole derivatives as selective COX-2 inhibitors: Molecular docking study. Bioorg. Med. Chem., 2011, 19(11), 3416-3424.
[http://dx.doi.org/10.1016/j.bmc.2011.04.027] [PMID: 21570309]
[43]
Nossier, E.; Fahmy, H.; Khalifa, N.; El-Eraky, W.; Baset, M.; McPhee, D.J. Design and synthesis of novel pyrazole-substituted different nitrogenous heterocyclic ring systems as potential anti-inflammatory agents. Molecules, 2017, 22(4), 512.
[http://dx.doi.org/10.3390/molecules22040512] [PMID: 28338602]
[44]
Hendawy, O.M.; Gomaa, H.A.M.; Alzarea, S.I.; Alshammari, M.S.; Mohamed, F.A.M.; Mostafa, Y.A.; Abdelazeem, A.H.; Abdelrahman, M.H.; Trembleau, L.; Youssif, B.G.M. Novel 1,5- diaryl pyrazole-3-carboxamides as selective COX-2/sEH inhibitors with analgesic, anti-inflammatory, and lower cardiotoxicity effects. Bioorg. Chem., 2021, 116, 105302.
[http://dx.doi.org/10.1016/j.bioorg.2021.105302] [PMID: 34464816]
[45]
Mantzanidou, M.; Pontiki, E.; Hadjipavlou-Litina, D. Pyrazoles and pyrazolines as anti-inflammatory agents. Molecules, 2021, 26(11), 3439.
[http://dx.doi.org/10.3390/molecules26113439] [PMID: 34198914]
[46]
Hassan, G.S.; Abdel Rahman, D.E.; Abdelmajeed, E.A.; Refaey, R.H.; Alaraby Salem, M.; Nissan, Y.M. New pyrazole derivatives: Synthesis, anti-inflammatory activity, cycloxygenase inhibition assay and evaluation of mPGES. Eur. J. Med. Chem., 2019, 171, 332-342.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.052] [PMID: 30928706]
[47]
Abdellatif, K.R.A.; El-Saadi, M.T.; Elzayat, S.G.; Amin, N.H. New substituted pyrazole derivatives targeting COXs as potential safe anti-inflammatory agents. Future Med. Chem., 2019, 11(15), 1871-1882.
[http://dx.doi.org/10.4155/fmc-2018-0548] [PMID: 31517535]
[48]
Chowdhury, M.A.; Abdellatif, K.R.A.; Dong, Y.; Knaus, E.E. Synthesis of new 4-[2-(4-methyl(amino)sulfonylphenyl)-5-trifluoromethyl-2H-pyrazol-3-yl]-1,2,3,6-tetrahydropyridines: A search for novel nitric oxide donor anti-inflammatory agents. Bioorg. Med. Chem., 2008, 16(19), 8882-8888.
[http://dx.doi.org/10.1016/j.bmc.2008.08.059] [PMID: 18789699]
[49]
Surendra Kumar, R.; Arif, I.A.; Ahamed, A.; Idhayadhulla, A. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues. Saudi J. Biol. Sci., 2016, 23(5), 614-620.
[http://dx.doi.org/10.1016/j.sjbs.2015.07.005] [PMID: 27579011]
[51]
Treatment of Tuberculosis. Guidelines for National Programmes WHO/TB/97.220. World Health Organization: Geneva, 1997.
[52]
Corbett, E.L.; Watt, C.J.; Walker, N.; Maher, D.; Williams, B.G.; Raviglione, M.C.; Dye, C. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch. Intern. Med., 2003, 163(9), 1009-1021.
[http://dx.doi.org/10.1001/archinte.163.9.1009] [PMID: 12742798]
[53]
Almeida da Silva, P.E.; Ramos, D.F.; Bonacorso, H.G.; de la Iglesia, A.I.; Oliveira, M.R.; Coelho, T.; Navarini, J.; Morbidoni, H.R.; Zanatta, N.; Martins, M.A.P. Synthesis and in vitro antimycobacterial activity of 3-substituted 5-hydroxy-5-trifluoro[chloro]methyl-4,5-dihydro-1H-1-(isonicotinoyl) pyrazoles. Int. J. Antimicrob. Agents, 2008, 32(2), 139-144.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.03.019] [PMID: 18571384]
[54]
Amaroju, S.; Kalaga, M.N.; Srinivasarao, S.; Napiórkowska, A.; Augustynowicz-Kopeć, E.; Murugesan, S.; Chander, S.; Krishnan, R.; Chandra Sekhar, K.V.G. Identification and development of pyrazolo[4,3-c]pyridine carboxamides as Mycobacterium tuberculosis pantothenate synthetase inhibitors. New J. Chem., 2017, 41(1), 347-357.
[http://dx.doi.org/10.1039/C6NJ02671K]
[55]
Pandit, U.; Dodiya, A. Synthesis and antitubercular activity of novel pyrazole–quinazolinone hybrid analogs. Med. Chem. Res., 2013, 22(7), 3364-3371.
[http://dx.doi.org/10.1007/s00044-012-0351-0]
[56]
Alegaon, S.; Alagawadi, K.; Dadwe, D. Synthesis and antitubercular activity of novel 3,5-diaryl-4,5-dihydro-1H-pyrazole derivatives. Drug Res., 2014, 64(10), 553-558.
[http://dx.doi.org/10.1055/s-0033-1363976] [PMID: 24446205]
[57]
Gaikwad, N.B.; Nirmale, K.; Sahoo, S.K.; Ahmad, M.N.; Kaul, G.; Shukla, M.; Nanduri, S.; Das Gupta, A.; Chopra, S.; Yaddanapudi, M.V. Design, synthesis, in silico, and in vitro evaluation of 3‐phenylpyrazole acetamide derivatives as antimycobacterial agents. Arch. Pharm., 2021, 354(5), 2000349.
[http://dx.doi.org/10.1002/ardp.202000349] [PMID: 33351199]
[58]
Nayak, N.; Ramprasad, J.; Dalimba, U. Design, synthesis, and biological evaluation of new 8-trifluoromethylquinoline containing pyrazole-3-carboxamide derivatives. J. Heterocycl. Chem., 2017, 54(1), 171-182.
[http://dx.doi.org/10.1002/jhet.2564]
[59]
Ahsan, M.J.; Samy, J.G.; Khalilullah, H.; Bakht, M.A.; Hassan, M.Z. Synthesis and antimycobacterial evaluation of 3a,4-dihydro-3H-indeno [1,2-c] pyrazole-2-carboxamide analogues. Eur. J. Med. Chem., 2011, 46(11), 5694-5697.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.035] [PMID: 21978838]
[60]
Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.M.S.; Dhar, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem., 2014, 77, 422-487.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.018] [PMID: 24685980]
[61]
International Agency for Research on Cancer. Latest global cancer data: Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020. 2020. Available from: iarc.who.int/featured-news/latest-global-cancer-data-cancer-burden-rises-to-19-3- million-new-cases-and-10-0-million-cancer-deaths-in-2020/
[62]
Wu, Q.; Yang, Z.; Nie, Y.; Shi, Y.; Fan, D. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett., 2014, 347(2), 159-166.
[http://dx.doi.org/10.1016/j.canlet.2014.03.013] [PMID: 24657660]
[63]
Nitulescu, G.M.; Draghici, C.; Olaru, O.T.; Matei, L.; Ioana, A.; Dragu, L.D.; Bleotu, C. Synthesis and apoptotic activity of new pyrazole derivatives in cancer cell lines. Bioorg. Med. Chem., 2015, 23(17), 5799-5808.
[http://dx.doi.org/10.1016/j.bmc.2015.07.010] [PMID: 26193760]
[64]
Alam, R.; Wahi, D.; Singh, R.; Sinha, D.; Tandon, V.; Grover, A.; Rahisuddin Design, synthesis, cytotoxicity, HuTopoIIα inhibitory activity and molecular docking studies of pyrazole derivatives as potential anticancer agents. Bioorg. Chem., 2016, 69, 77-90.
[http://dx.doi.org/10.1016/j.bioorg.2016.10.001] [PMID: 27744115]
[65]
Shi, J.B.; Tang, W.J.; qi, X.B.; Li, R.; Liu, X.H. Novel pyrazole-5-carboxamide and pyrazole–pyrimidine derivatives: Synthesis and anticancer activity. Eur. J. Med. Chem., 2015, 90, 889-896.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.013] [PMID: 25554922]
[66]
Fayed, E.A.; Eissa, S.I.; Bayoumi, A.H.; Gohar, N.A.; Mehany, A.B.M.; Ammar, Y.A. Design, synthesis, cytotoxicity and molecular modeling studies of some novel fluorinated pyrazole-based heterocycles as anticancer and apoptosis-inducing agents. Mol. Divers., 2019, 23(1), 165-181.
[http://dx.doi.org/10.1007/s11030-018-9865-9] [PMID: 30099687]
[67]
Wang, M.; Xu, S.; Lei, H.; Wang, C.; Xiao, Z.; Jia, S.; Zhi, J.; Zheng, P.; Zhu, W. Design, synthesis and antitumor activity of Novel Sorafenib derivatives bearing pyrazole scaffold. Bioorg. Med. Chem., 2017, 25(20), 5754-5763.
[http://dx.doi.org/10.1016/j.bmc.2017.09.003] [PMID: 28927801]
[68]
Fahmy, H.; Khalifa, N.; Ismail, M.; El-Sahrawy, H.; Nossier, E. Biological validation of novel polysubstituted pyrazole candidates with in vitro anticancer activities. Molecules, 2016, 21(3), 271.
[http://dx.doi.org/10.3390/molecules21030271] [PMID: 26927048]
[69]
Demjén, A.; Alföldi, R.; Angyal, A.; Gyuris, M.; Hackler, L., Jr; Szebeni, G.J.; Wölfling, J.; Puskás, L.G.; Kanizsai, I. Synthesis, cytotoxic characterization, and SAR study of imidazo[1,2- b ]pyrazole-7-carboxamides. Arch. Pharm. (Weinheim), 2018, 351(7), 1800062.
[http://dx.doi.org/10.1002/ardp.201800062] [PMID: 29888449]
[70]
Bavetsias, V.; Crumpler, S.; Sun, C.; Avery, S.; Atrash, B.; Faisal, A.; Moore, A.S.; Kosmopoulou, M.; Brown, N.; Sheldrake, P.W.; Bush, K.; Henley, A.; Box, G.; Valenti, M.; de Haven Brandon, A.; Raynaud, F.I.; Workman, P.; Eccles, S.A.; Bayliss, R.; Linardopoulos, S.; Blagg, J. Optimization of imidazo[4,5-b]pyridine-based kinase inhibitors: identification of a dual FLT3/Aurora kinase inhibitor as an orally bioavailable preclinical development candidate for the treatment of acute myeloid leukemia. J. Med. Chem., 2012, 55(20), 8721-8734.
[http://dx.doi.org/10.1021/jm300952s] [PMID: 23043539]
[71]
Laakso, M.; Kuusisto, J. Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat. Rev. Endocrinol., 2014, 10(5), 293-302.
[http://dx.doi.org/10.1038/nrendo.2014.29] [PMID: 24663222]
[72]
Kolb, H.; Eizirik, D.L. Resistance to type 2 diabetes mellitus: a matter of hormesis? Nat. Rev. Endocrinol., 2012, 8(3), 183-192.
[http://dx.doi.org/10.1038/nrendo.2011.158] [PMID: 22024974]
[73]
Kahn, S.E.; Cooper, M.E.; Del Prato, S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet, 2014, 383(9922), 1068-1083.
[http://dx.doi.org/10.1016/S0140-6736(13)62154-6] [PMID: 24315620]
[74]
Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 2004, 27(5), 1047-1053.
[http://dx.doi.org/10.2337/diacare.27.5.1047] [PMID: 15111519]
[75]
Basu, S.; Yudkin, J.S.; Kehlenbrink, S.; Davies, J.I.; Wild, S.H.; Lipska, K.J.; Sussman, J.B.; Beran, D. Estimation of global insulin use for type 2 diabetes, 2018–30: a microsimulation analysis. Lancet Diabetes Endocrinol., 2019, 7(1), 25-33.
[http://dx.doi.org/10.1016/S2213-8587(18)30303-6] [PMID: 30470520]
[76]
Lin, Y.; Sun, Z. Current views on type 2 diabetes. J. Endocrinol., 2010, 204(1), 1-11.
[http://dx.doi.org/10.1677/JOE-09-0260] [PMID: 19770178]
[77]
Skyler, J.S. Diabetes mellitus: pathogenesis and treatment strategies. J. Med. Chem., 2004, 47(17), 4113-4117.
[http://dx.doi.org/10.1021/jm0306273] [PMID: 15293979]
[78]
Ahrén, B. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat. Rev. Drug Discov., 2009, 8(5), 369-385.
[http://dx.doi.org/10.1038/nrd2782] [PMID: 19365392]
[79]
Weir, G.C.; Bonner-Weir, S. Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes, 2004, 53(Suppl. 3), S16-S21.
[http://dx.doi.org/10.2337/diabetes.53.suppl_3.S16] [PMID: 15561905]
[80]
Mohler, M.L.; He, Y.; Wu, Z.; Hwang, D.J.; Miller, D.D. Recent and emerging anti-diabetes targets. Med. Res. Rev., 2009, 29(1), 125-195.
[http://dx.doi.org/10.1002/med.20142] [PMID: 18855890]
[81]
Yoshida, T.; Akahoshi, F.; Sakashita, H.; Kitajima, H.; Nakamura, M.; Sonda, S.; Takeuchi, M.; Tanaka, Y.; Ueda, N.; Sekiguchi, S.; Ishige, T.; Shima, K.; Nabeno, M.; Abe, Y.; Anabuki, J.; Soejima, A.; Yoshida, K.; Takashina, Y.; Ishii, S.; Kiuchi, S.; Fukuda, S.; Tsutsumiuchi, R.; Kosaka, K.; Murozono, T.; Nakamaru, Y.; Utsumi, H.; Masutomi, N.; Kishida, H.; Miyaguchi, I.; Hayashi, Y. Discovery and preclinical profile of teneligliptin (3-[(2S,4S)-4-[4-(3-methyl-1-phenyl-1H-pyrazol-5-yl)piperazin-1-yl]pyrrolidin-2-ylcarbonyl]thiazolidine): A highly potent, selective, long-lasting and orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Bioorg. Med. Chem., 2012, 20(19), 5705-5719.
[http://dx.doi.org/10.1016/j.bmc.2012.08.012] [PMID: 22959556]
[82]
Jo, J.; Lee, D.; Park, Y.H.; Choi, H.; Han, J.; Park, D.H.; Choi, Y.K.; Kwak, J.; Yang, M.K.; Yoo, J.W.; Moon, H.R.; Geum, D.; Kang, K.S.; Yun, H. Discovery and optimization of novel 3-benzyl-N-phenyl-1H-pyrazole-5-carboxamides as bifunctional antidiabetic agents stimulating both insulin secretion and glucose uptake. Eur. J. Med. Chem., 2021, 217, 113325.
[http://dx.doi.org/10.1016/j.ejmech.2021.113325] [PMID: 33765605]
[83]
Peytam, F.; Adib, M.; Shourgeshty, R.; Mohammadi-Khanaposhtani, M.; Jahani, M.; Imanparast, S.; Faramarzi, M.A.; Mahdavi, M.; Moghadamnia, A.A.; Rastegar, H.; Larijani, B. Design and synthesis of new imidazo[1,2-b]pyrazole derivatives, in vitro α-glucosidase inhibition, kinetic and docking studies. Mol. Divers., 2020, 24(1), 69-80.
[http://dx.doi.org/10.1007/s11030-019-09925-8] [PMID: 30825061]
[84]
Bansal, G.; Singh, S.; Monga, V.; Thanikachalam, P.V.; Chawla, P. Synthesis and biological evaluation of thiazolidine-2,4-dione-pyrazole conjugates as antidiabetic, anti-inflammatory and antioxidant agents. Bioorg. Chem., 2019, 92, 103271.
[http://dx.doi.org/10.1016/j.bioorg.2019.103271] [PMID: 31536952]
[85]
Azimi, F.; Azizian, H.; Najafi, M.; Hassanzadeh, F.; Sadeghi-aliabadi, H.; Ghasemi, J.B.; Ali Faramarzi, M.; Mojtabavi, S.; Larijani, B.; Saghaei, L.; Mahdavi, M. Design and synthesis of novel quinazolinone-pyrazole derivatives as potential α-glucosidase inhibitors: Structure-activity relationship, molecular modeling and kinetic study. Bioorg. Chem., 2021, 114, 105127.
[http://dx.doi.org/10.1016/j.bioorg.2021.105127] [PMID: 34246971]
[86]
Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; Salamat, M.K.F.; Baloch, Z. Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist., 2018, 11, 1645-1658.
[http://dx.doi.org/10.2147/IDR.S173867] [PMID: 30349322]
[87]
Tagliabue, A.; Rappuoli, R. Changing priorities in vaccinology: Antibiotic resistance moving to the top. Front. Immunol., 2018, 9, 1068.
[http://dx.doi.org/10.3389/fimmu.2018.01068] [PMID: 29910799]
[88]
Wirnsberger, G.; Zwolanek, F.; Asaoka, T.; Kozieradzki, I.; Tortola, L.; Wimmer, R.A.; Kavirayani, A.; Fresser, F.; Baier, G.; Langdon, W.Y.; Ikeda, F.; Kuchler, K.; Penninger, J.M. Inhibition of CBLB protects from lethal Candida albicans sepsis. Nat. Med., 2016, 22(8), 915-923.
[http://dx.doi.org/10.1038/nm.4134] [PMID: 27428901]
[89]
Pfaller, M.A.; Diekema, D.J. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev., 2007, 20(1), 133-163.
[http://dx.doi.org/10.1128/CMR.00029-06] [PMID: 17223626]
[90]
Rueping, M.J.G.T.; Vehreschild, J.J.; Cornely, O.A. Invasive candidiasis and candidemia: from current opinions to future perspectives. Expert Opin. Investig. Drugs, 2009, 18(6), 735-748.
[http://dx.doi.org/10.1517/13543780902911440] [PMID: 19426121]
[91]
Perlroth, J.; Choi, B.; Spellberg, B. Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med. Mycol., 2007, 45(4), 321-346.
[http://dx.doi.org/10.1080/13693780701218689] [PMID: 17510856]
[92]
Ammar, Y.A.; El-Sharief, M.A.; Ghorab, M.M.; Mohamed, Y.A.; Ragab, A.; Abbas, S.Y. New imidazolidineiminothione, imidazolidin-2-one and imidazoquinoxaline derivatives: Synthesis and evaluation of antibacterial and antifungal activities. Curr. Org. Synth., 2016, 13(3), 466-475.
[http://dx.doi.org/10.2174/1570179412666150817221755] [PMID: 27594815]
[93]
Abbas, S.Y.; El-Sharief, M.A.M.S.; Basyouni, W.M.; Fakhr, I.M.I.; El-Gammal, E.W. Thiourea derivatives incorporating a hippuric acid moiety: Synthesis and evaluation of antibacterial and antifungal activities. Eur. J. Med. Chem., 2013, 64, 111-120.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.002] [PMID: 23644194]
[94]
Helal, M.H.; Abbas, S.Y.; Salem, M.A.; Farag, A.A.; Ammar, Y.A. Synthesis and characterization of new types of 2-(6-methoxy-2-naphthyl)propionamide derivatives as potential antibacterial and antifungal agents. Med. Chem. Res., 2013, 22(11), 5598-5609.
[http://dx.doi.org/10.1007/s00044-013-0524-5]
[95]
Thomas, K.D.; Adhikari, A.V.; Telkar, S.; Chowdhury, I.H.; Mahmood, R.; Pal, N.K.; Row, G.; Sumesh, E. Design, synthesis and docking studies of new quinoline-3-carbohydrazide derivatives as antitubercular agents. Eur. J. Med. Chem., 2011, 46(11), 5283-5292.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.033] [PMID: 21907466]
[96]
El Shehry, M.F.; Ghorab, M.M.; Abbas, S.Y.; Fayed, E.A.; Shedid, S.A.; Ammar, Y.A. Quinoline derivatives bearing pyrazole moiety: Synthesis and biological evaluation as possible antibacterial and antifungal agents. Eur. J. Med. Chem., 2018, 143, 1463-1473.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.046] [PMID: 29113746]
[97]
Hafez, H.; El-Gazzar, A.R. Synthesis and biological evaluation of N- pyrazolyl derivatives and pyrazolopyrimidine bearing a biologically active sulfonamide moiety as potential antimicrobial agent. Molecules, 2016, 21(9), 1156.
[http://dx.doi.org/10.3390/molecules21091156] [PMID: 27589717]
[98]
Chandrakantha, B.; Isloor, A.M.; Shetty, P.; Isloor, S.; Malladi, S.; Fun, H.K. Synthesis, characterization and antimicrobial activity of novel ethyl 1-(N-substituted)-5-phenyl-1H-pyrazole-4-carboxylate derivatives. Med. Chem. Res., 2012, 21(9), 2702-2708.
[http://dx.doi.org/10.1007/s00044-011-9796-9]
[99]
Du, S.; Tian, Z.; Yang, D.; Li, X.; Li, H.; Jia, C.; Che, C.; Wang, M.; Qin, Z. Synthesis, antifungal activity and structure-activity relationships of novel 3-(difluoromethyl)-1-methyl-1h-pyrazole-4-carboxylic acid amides. Molecules, 2015, 20(5), 8395-8408.
[http://dx.doi.org/10.3390/molecules20058395] [PMID: 26007171]
[100]
Hassan, S. Synthesis, antibacterial and antifungal activity of some new pyrazoline and pyrazole derivatives. Molecules, 2013, 18(3), 2683-2711.
[http://dx.doi.org/10.3390/molecules18032683] [PMID: 23449067]
[101]
Liu, X.R.; Wu, H.; He, Z.Y.; Ma, Z.Q.; Feng, J.T.; Zhang, X. Design, synthesis and fungicidal activities of some novel pyrazole derivatives. Molecules, 2014, 19(9), 14036-14051.
[http://dx.doi.org/10.3390/molecules190914036] [PMID: 25203055]
[102]
Snow, R.W.; Guerra, C.A.; Noor, A.M.; Myint, H.Y.; Hay, S.I. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature, 2005, 434(7030), 214-217.
[http://dx.doi.org/10.1038/nature03342] [PMID: 15759000]
[104]
Spangenberg, T.; Burrows, J.N.; Kowalczyk, P.; McDonald, S.; Wells, T.N.C.; Willis, P. The open access malaria box: a drug discovery catalyst for neglected diseases. PLoS One, 2013, 8(6), e62906.
[http://dx.doi.org/10.1371/journal.pone.0062906] [PMID: 23798988]
[105]
Basha Ayele, E.M.; Ayele, B. Prevalence of malaria and associated factors in Dilla town and the surrounding rural areas, Gedeo Zone, Southern Ethiopia. J. Bacteriol. Parasitol., 2015, 6(5), 1-7.
[http://dx.doi.org/10.4172/2155-9597.1000242]
[106]
Na-Bangchang, K.; Karbwang, J. Current status of malaria chemotherapy and the role of pharmacology in antimalarial drug research and development. Fundam. Clin. Pharmacol., 2009, 23(4), 387-409.
[http://dx.doi.org/10.1111/j.1472-8206.2009.00709.x] [PMID: 19709319]
[107]
Burrows, J.N.; Chibale, K.; Wells, T.N. The state of the art in anti-malarial drug discovery and development. Curr. Top. Med. Chem., 2011, 11(10), 1226-1254.
[http://dx.doi.org/10.2174/156802611795429194] [PMID: 21401508]
[108]
Flannery, E.L.; Chatterjee, A.K.; Winzeler, E.A. Antimalarial drug discovery — approaches and progress towards new medicines. Nat. Rev. Microbiol., 2013, 11(12), 849-862.
[http://dx.doi.org/10.1038/nrmicro3138] [PMID: 24217412]
[109]
Bekhit, A.A.; Saudi, M.N.; Hassan, A.M.M.; Fahmy, S.M.; Ibrahim, T.M.; Ghareeb, D.; El-Seidy, A.M.; Nasralla, S.N.; Bekhit, A.E.D.A. Synthesis, in silico experiments and biological evaluation of 1,3,4-trisubstituted pyrazole derivatives as antimalarial agents. Eur. J. Med. Chem., 2019, 163(163), 353-366.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.067] [PMID: 30530172]
[110]
Aggarwal, S.; Paliwal, D.; Kaushik, D.; Gupta, G.K.; Kumar, A. Pyrazole schiff base hybrids as anti-malarial agents: Synthesis, in vitro screening and computational study. Comb. Chem. High Throughput Screen., 2018, 21(3), 194-203.
[http://dx.doi.org/10.2174/1386207321666180213092911] [PMID: 29436997]
[111]
Bekhit, A.A.; Hassan, A.M.M.; Abd El Razik, H.A.; El-Miligy, M.M.M.; El-Agroudy, E.J.; Bekhit, A.E.D.A. New heterocyclic hybrids of pyrazole and its bioisosteres: Design, synthesis and biological evaluation as dual acting antimalarial-antileishmanial agents. Eur. J. Med. Chem., 2015, 94, 30-44.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.038] [PMID: 25768697]
[112]
Anuradha, S. Antiviral agents and treatment of viral infections. J Int Med Sci Acad., 2014, 27, 191.
[113]
Yang, Z.; Li, P.; Gan, X. Novel pyrazole-hydrazone derivatives containing an isoxazole moiety: Design, synthesis, and antiviral activity. Molecules, 2018, 23(7), 1798.
[http://dx.doi.org/10.3390/molecules23071798] [PMID: 30037021]
[114]
Tantawy, A.S.; Nasr, M.N.A.; El-Sayed, M.A.A.; Tawfik, S.S. Synthesis and antiviral activity of new 3-methyl-1,5-diphenyl-1H-pyrazole derivatives. Med. Chem. Res., 2012, 21(12), 4139-4149.
[http://dx.doi.org/10.1007/s00044-011-9960-2]
[115]
Liu, G.N.; Luo, R.H.; Zhou, Y.; Zhang, X.J.; Li, J.; Yang, L.M.; Zheng, Y.T.; Liu, H. Synthesis and Anti-HIV-1 activity evaluation for novel 3a,6a-dihydro-1h-pyrrolo[3,4-c]pyrazole-4,6-dione derivatives. Molecules, 2016, 21(9), 1198.
[http://dx.doi.org/10.3390/molecules21091198] [PMID: 27617994]
[116]
Selkoe, D.J. Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev., 2001, 81(2), 741-766.
[http://dx.doi.org/10.1152/physrev.2001.81.2.741] [PMID: 11274343]
[117]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science, 2002, 297(5580), 353-356.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[118]
Blennow, K.; de Leon, M.J.; Zetterberg, H. Alzheimer’s disease. Lancet, 2006, 368(9533), 387-403.
[http://dx.doi.org/10.1016/S0140-6736(06)69113-7] [PMID: 16876668]
[119]
Han, Y.T.; Kim, K.; Choi, G.I.; An, H.; Son, D.; Kim, H.; Ha, H.J.; Son, J.H.; Chung, S.J.; Park, H.J.; Lee, J.; Suh, Y.G. Pyrazole-5-carboxamides, novel inhibitors of receptor for advanced glycation end products (RAGE). Eur. J. Med. Chem., 2014, 79, 128-142.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.072] [PMID: 24727489]
[120]
Zanaletti, R.; Bettinetti, L.; Castaldo, C.; Ceccarelli, I.; Cocconcelli, G.; Comery, T.A.; Dunlop, J.; Genesio, E.; Ghiron, C.; Haydar, S.N.; Jow, F.; Maccari, L.; Micco, I.; Nencini, A.; Pratelli, C.; Scali, C.; Turlizzi, E.; Valacchi, M. N-[5-(5-fluoropyridin-3-yl)-1H-pyrazol-3-yl]-4-piperidin-1-ylbutyramide (SEN78702, WYE-308775): a medicinal chemistry effort toward an α7 nicotinic acetylcholine receptor agonist preclinical candidate. J. Med. Chem., 2012, 55(22), 10277-10281.
[http://dx.doi.org/10.1021/jm3013568] [PMID: 23083093]