Current Medicinal Chemistry

Author(s): Prakash Shyambabu Mishra, Amit Kumar, Kamalpreet Kaur and Vikas Jaitak*

DOI: 10.2174/0929867331666230714160047

DownloadDownload PDF Flyer Cite As
Recent Developments in Coumarin Derivatives as Neuroprotective Agents

Page: [5702 - 5738] Pages: 37

  • * (Excluding Mailing and Handling)

Abstract

Background: Neurodegenerative diseases are among the diseases that cause the foremost burden on the health system of the world. The diseases are multifaceted and difficult to treat because of their complex pathophysiology, which includes protein aggregation, neurotransmitter breakdown, metal dysregulation, oxidative stress, neuroinflammation, excitotoxicity, etc. None of the currently available therapies has been found to be significant in producing desired responses without any major side effects; besides, they only give symptomatic relief otherwise indicated off-episode relief. Targeting various pathways, namely choline esterase, monoamine oxidase B, cannabinoid system, metal chelation, β-secretase, oxidative stress, etc., may lead to neurodegeneration. By substituting various functional moieties over the coumarin nucleus, researchers are trying to produce safer and more effective neuroprotective agents.

Objectives: This study aimed to review the current literature to produce compounds with lower side effects using coumarin as a pharmacophore.

Methods: In this review, we have attempted to compile various synthetic strategies that have been used to produce coumarin and various substitutional strategies used to produce neuroprotective agents from the coumarin pharmacophore. Moreover, structure-activity relationships of substituting coumarin scaffold at various positions, which could be instrumental in designing new compounds, were also discussed.

Results: The literature review suggested that coumarins and their derivatives can act as neuroprotective agents following various mechanisms.

Conclusion: Various studies have demonstrated the neuroprotective activity of coumarin due to an oxaheterocyclic loop, which allows binding with a broad array of proteins, thus motivating researchers to explore its potential as a lead against various neurodegenerative diseases.

Keywords: Neuroprotection, neurodegeneration, coumarins, MAO-B inhibitors, ChE inhibitors, neuro.

[1]
Farooqui, A.A. Neurochemical aspects of neurotraumatic and neurodegenerative diseases; Springer, 2010, pp. 14-18.
[http://dx.doi.org/10.1007/978-1-4419-6652-0]
[2]
Deleidi, M.; Jäggle, M.; Rubino, G. Immune aging, dysmetabolism, and inflammation in neurological diseases. Front. Neurosci., 2015, 9, 172.
[http://dx.doi.org/10.3389/fnins.2015.00172] [PMID: 26089771]
[3]
Bansal, R.; Singh, R. Exploring the potential of natural and synthetic neuroprotective steroids against neurodegenerative disorders: A literature review. Med. Res. Rev., 2018, 38(4), 1126-1158.
[http://dx.doi.org/10.1002/med.21458] [PMID: 28697282]
[4]
Farooqui, A.A. Molecular aspects of neurodegeneration, neuroprotection, and regeneration in neurological disorders; Academic Press, 2020, pp. 2-4.
[5]
Przedborski, S.; Vila, M.; Jackson-Lewis, V. Series Introduction: Neurodegeneration: What is it and where are we? J. Clin. Invest., 2003, 111(1), 3-10.
[http://dx.doi.org/10.1172/JCI200317522] [PMID: 12511579]
[6]
Agrawal, M.; Biswas, A. Molecular diagnostics of neurodegenerative disorders. Front. Mol. Biosci., 2015, 2, 54.
[http://dx.doi.org/10.3389/fmolb.2015.00054] [PMID: 26442283]
[7]
Poddar, M.K.; Chakraborty, A.; Banerjee, S. Neurodegeneration: Diagnosis, prevention, and therapy. In: Oxidoreductase; Mansour, M.A.; Blumenberg, M., Eds.; IntechOPen, 2021.
[8]
Feigin, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Culpepper, W.J.; Dorsey, E.R.; Elbaz, A.; Ellenbogen, R.G.; Fisher, J.L.; Fitzmaurice, C.; Giussani, G.; Glennie, L.; James, S.L.; Johnson, C.O.; Kassebaum, N.J.; Logroscino, G.; Marin, B.; Mountjoy-Venning, W.C.; Nguyen, M.; Ofori-Asenso, R.; Patel, A.P.; Piccininni, M.; Roth, G.A.; Steiner, T.J.; Stovner, L.J.; Szoeke, C.E.I.; Theadom, A.; Vollset, S.E.; Wallin, M.T.; Wright, C.; Zunt, J.R.; Abbasi, N.; Abd-Allah, F.; Abdelalim, A.; Abdollahpour, I.; Aboyans, V.; Abraha, H.N.; Acharya, D.; Adamu, A.A.; Adebayo, O.M.; Adeoye, A.M.; Adsuar, J.C.; Afarideh, M.; Agrawal, S.; Ahmadi, A.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Akinyemi, R.O.; Akseer, N.; Al-Eyadhy, A.; Al-Shahi Salman, R.; Alahdab, F.; Alene, K.A.; Aljunid, S.M.; Altirkawi, K.; Alvis-Guzman, N.; Anber, N.H.; Antonio, C.A.T.; Arabloo, J.; Aremu, O.; Ärnlöv, J.; Asayesh, H.; Asghar, R.J.; Atalay, H.T.; Awasthi, A.; Ayala Quintanilla, B.P.; Ayuk, T.B.; Badawi, A.; Banach, M.; Banoub, J.A.M.; Barboza, M.A.; Barker-Collo, S.L.; Bärnighausen, T.W.; Baune, B.T.; Bedi, N.; Behzadifar, M.; Behzadifar, M.; Béjot, Y.; Bekele, B.B.; Belachew, A.B.; Bennett, D.A.; Bensenor, I.M.; Berhane, A.; Beuran, M.; Bhattacharyya, K.; Bhutta, Z.A.; Biadgo, B.; Bijani, A.; Bililign, N.; Bin Sayeed, M.S.; Blazes, C.K.; Brayne, C.; Butt, Z.A.; Campos-Nonato, I.R.; Cantu-Brito, C.; Car, M.; Cárdenas, R.; Carrero, J.J.; Carvalho, F.; Castañeda-Orjuela, C.A.; Castro, F.; Catalá-López, F.; Cerin, E.; Chaiah, Y.; Chang, J-C.; Chatziralli, I.; Chiang, P.P-C.; Christensen, H.; Christopher, D.J.; Cooper, C.; Cortesi, P.A.; Costa, V.M.; Criqui, M.H.; Crowe, C.S.; Damasceno, A.A.M.; Daryani, A.; De la Cruz-Góngora, V.; De la Hoz, F.P.; De Leo, D.; Demoz, G.T.; Deribe, K.; Dharmaratne, S.D.; Diaz, D.; Dinberu, M.T.; Djalalinia, S.; Doku, D.T.; Dubey, M.; Dubljanin, E.; Duken, E.E.; Edvardsson, D.; El-Khatib, Z.; Endres, M.; Endries, A.Y.; Eskandarieh, S.; Esteghamati, A.; Esteghamati, S.; Farhadi, F.; Faro, A.; Farzadfar, F.; Farzaei, M.H.; Fatima, B.; Fereshtehnejad, S-M.; Fernandes, E.; Feyissa, G.T.; Filip, I.; Fischer, F.; Fukumoto, T.; Ganji, M.; Gankpe, F.G.; Garcia-Gordillo, M.A.; Gebre, A.K.; Gebremichael, T.G.; Gelaw, B.K.; Geleijnse, J.M.; Geremew, D.; Gezae, K.E.; Ghasemi-Kasman, M.; Gidey, M.Y.; Gill, P.S.; Gill, T.K.; Girma, E.T.; Gnedovskaya, E.V.; Goulart, A.C.; Grada, A.; Grosso, G.; Guo, Y.; Gupta, R.; Gupta, R.; Haagsma, J.A.; Hagos, T.B.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hamadeh, R.R.; Hamidi, S.; Hankey, G.J.; Hao, Y.; Haro, J.M.; Hassankhani, H.; Hassen, H.Y.; Havmoeller, R.; Hay, S.I.; Hegazy, M.I.; Heidari, B.; Henok, A.; Heydarpour, F.; Hoang, C.L.; Hole, M.K.; Homaie Rad, E.; Hosseini, S.M.; Hu, G.; Igumbor, E.U.; Ilesanmi, O.S.; Irvani, S.S.N.; Islam, S.M.S.; Jakovljevic, M.; Javanbakht, M.; Jha, R.P.; Jobanputra, Y.B.; Jonas, J.B.; Jozwiak, J.J.; Jürisson, M.; Kahsay, A.; Kalani, R.; Kalkonde, Y.; Kamil, T.A.; Kanchan, T.; Karami, M.; Karch, A.; Karimi, N.; Kasaeian, A.; Kassa, T.D.; Kassa, Z.Y.; Kaul, A.; Kefale, A.T.; Keiyoro, P.N.; Khader, Y.S.; Khafaie, M.A.; Khalil, I.A.; Khan, E.A.; Khang, Y-H.; Khazaie, H.; Kiadaliri, A.A.; Kiirithio, D.N.; Kim, A.S.; Kim, D.; Kim, Y-E.; Kim, Y.J.; Kisa, A.; Kokubo, Y.; Koyanagi, A.; Krishnamurthi, R.V.; Kuate Defo, B.; Kucuk Bicer, B.; Kumar, M.; Lacey, B.; Lafranconi, A.; Lansingh, V.C.; Latifi, A.; Leshargie, C.T.; Li, S.; Liao, Y.; Linn, S.; Lo, W.D.; Lopez, J.C.F.; Lorkowski, S.; Lotufo, P.A.; Lucas, R.M.; Lunevicius, R.; Mackay, M.T.; Mahotra, N.B.; Majdan, M.; Majdzadeh, R.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Manafi, N.; Mansournia, M.A.; Mantovani, L.G.; März, W.; Mashamba-Thompson, T.P.; Massenburg, B.B.; Mate, K.K.V.; McAlinden, C.; McGrath, J.J.; Mehta, V.; Meier, T.; Meles, H.G.; Melese, A.; Memiah, P.T.N.; Memish, Z.A.; Mendoza, W.; Mengistu, D.T.; Mengistu, G.; Meretoja, A.; Meretoja, T.J.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Miller, T.R.; Mini, G.K.; Mirrakhimov, E.M.; Moazen, B.; Mohajer, B.; Mohammad Gholi Mezerji, N.; Mohammadi, M.; Mohammadi-Khanaposhtani, M.; Mohammadibakhsh, R.; Mohammadnia-Afrouzi, M.; Mohammed, S.; Mohebi, F.; Mokdad, A.H.; Monasta, L.; Mondello, S.; Moodley, Y.; Moosazadeh, M.; Moradi, G.; Moradi-Lakeh, M.; Moradinazar, M.; Moraga, P.; Moreno Velásquez, I.; Morrison, S.D.; Mousavi, S.M.; Muhammed, O.S.; Muruet, W.; Musa, K.I.; Mustafa, G.; Naderi, M.; Nagel, G.; Naheed, A.; Naik, G.; Najafi, F.; Nangia, V.; Negoi, I.; Negoi, R.I.; Newton, C.R.J.; Ngunjiri, J.W.; Nguyen, C.T.; Nguyen, L.H.; Ningrum, D.N.A.; Nirayo, Y.L.; Nixon, M.R.; Norrving, B.; Noubiap, J.J.; Nourollahpour Shiadeh, M.; Nyasulu, P.S.; Ogah, O.S.; Oh, I-H.; Olagunju, A.T.; Olagunju, T.O.; Olivares, P.R.; Onwujekwe, O.E.; Oren, E.; Owolabi, M.O.; Pa, M.; Pakpour, A.H.; Pan, W-H.; Panda-Jonas, S.; Pandian, J.D.; Patel, S.K.; Pereira, D.M.; Petzold, M.; Pillay, J.D.; Piradov, M.A.; Polanczyk, G.V.; Polinder, S.; Postma, M.J.; Poulton, R.; Poustchi, H.; Prakash, S.; Prakash, V.; Qorbani, M.; Radfar, A.; Rafay, A.; Rafiei, A.; Rahim, F.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.H.U.; Rahman, M.A.; Rajati, F.; Ram, U.; Ranta, A.; Rawaf, D.L.; Rawaf, S.; Reinig, N.; Reis, C.; Renzaho, A.M.N.; Resnikoff, S.; Rezaeian, S.; Rezai, M.S.; Rios González, C.M.; Roberts, N.L.S.; Roever, L.; Ronfani, L.; Roro, E.M.; Roshandel, G.; Rostami, A.; Sabbagh, P.; Sacco, R.L.; Sachdev, P.S.; Saddik, B.; Safari, H.; Safari-Faramani, R.; Safi, S.; Safiri, S.; Sagar, R.; Sahathevan, R.; Sahebkar, A.; Sahraian, M.A.; Salamati, P.; Salehi Zahabi, S.; Salimi, Y.; Samy, A.M.; Sanabria, J.; Santos, I.S.; Santric Milicevic, M.M.; Sarrafzadegan, N.; Sartorius, B.; Sarvi, S.; Sathian, B.; Satpathy, M.; Sawant, A.R.; Sawhney, M.; Schneider, I.J.C.; Schöttker, B.; Schwebel, D.C.; Seedat, S.; Sepanlou, S.G.; Shabaninejad, H.; Shafieesabet, A.; Shaikh, M.A.; Shakir, R.A.; Shams-Beyranvand, M.; Shamsizadeh, M.; Sharif, M.; Sharif-Alhoseini, M.; She, J.; Sheikh, A.; Sheth, K.N.; Shigematsu, M.; Shiri, R.; Shirkoohi, R.; Shiue, I.; Siabani, S.; Siddiqi, T.J.; Sigfusdottir, I.D.; Sigurvinsdottir, R.; Silberberg, D.H.; Silva, J.P.; Silveira, D.G.A.; Singh, J.A.; Sinha, D.N.; Skiadaresi, E.; Smith, M.; Sobaih, B.H.; Sobhani, S.; Soofi, M.; Soyiri, I.N.; Sposato, L.A.; Stein, D.J.; Stein, M.B.; Stokes, M.A.; Sufiyan, M.B.; Sykes, B.L.; Sylaja, P.N.; Tabarés-Seisdedos, R.; Te Ao, B.J.; Tehrani-Banihashemi, A.; Temsah, M-H.; Temsah, O.; Thakur, J.S.; Thrift, A.G.; Topor-Madry, R.; Tortajada-Girbés, M.; Tovani-Palone, M.R.; Tran, B.X.; Tran, K.B.; Truelsen, T.C.; Tsadik, A.G.; Tudor Car, L.; Ukwaja, K.N.; Ullah, I.; Usman, M.S.; Uthman, O.A.; Valdez, P.R.; Vasankari, T.J.; Vasanthan, R.; Veisani, Y.; Venketasubramanian, N.; Violante, F.S.; Vlassov, V.; Vosoughi, K.; Vu, G.T.; Vujcic, I.S.; Wagnew, F.S.; Waheed, Y.; Wang, Y-P.; Weiderpass, E.; Weiss, J.; Whiteford, H.A.; Wijeratne, T.; Winkler, A.S.; Wiysonge, C.S.; Wolfe, C.D.A.; Xu, G.; Yadollahpour, A.; Yamada, T.; Yano, Y.; Yaseri, M.; Yatsuya, H.; Yimer, E.M.; Yip, P.; Yisma, E.; Yonemoto, N.; Yousefifard, M.; Yu, C.; Zaidi, Z.; Zaman, S.B.; Zamani, M.; Zandian, H.; Zare, Z.; Zhang, Y.; Zodpey, S.; Naghavi, M.; Murray, C.J.L.; Vos, T Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2019, 18(5), 459-480.
[http://dx.doi.org/10.1016/S1474-4422(18)30499-X] [PMID: 30879893]
[9]
The top 10 causes of death. 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
[10]
Hong, S.; Nagayach, A.; Lu, Y.; Peng, H.; Duong, Q.V.A.; Pham, N.B.; Vuong, C.A.; Bazan, N.G. A high fat, sugar, and salt Western diet induces motor‐muscular and sensory dysfunctions and neurodegeneration in mice during aging: Ameliorative action of metformin. CNS Neurosci. Ther., 2021, 27(12), 1458-1471.
[http://dx.doi.org/10.1111/cns.13726] [PMID: 34510763]
[11]
Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol., 2019, 15(10), 565-581.
[http://dx.doi.org/10.1038/s41582-019-0244-7] [PMID: 31501588]
[12]
Migliore, L.; Coppedè, F. Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat. Res., 2009, 667(1-2), 82-97.
[http://dx.doi.org/10.1016/j.mrfmmm.2008.10.011] [PMID: 19026668]
[13]
Cory-Slechta, D.; Sobolewski, M.; Oberdörster, G. Air pollution-related brain metal dyshomeostasis as a potential risk factor for neurodevelopmental disorders and neurodegenerative diseases. Atmosphere (Basel), 2020, 11(10), 1098.
[http://dx.doi.org/10.3390/atmos11101098]
[14]
Bombois, S.; Derambure, P.; Pasquier, F.; Monaca, C. Sleep disorders in aging and dementia. J. Nutr. Health Aging, 2010, 14(3), 212-217.
[http://dx.doi.org/10.1007/s12603-010-0052-7] [PMID: 20191256]
[15]
Jellinger, K.A. Basic mechanisms of neurodegeneration: a critical update. J. Cell. Mol. Med., 2010, 14(3), 457-487.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01010.x] [PMID: 20070435]
[16]
Fricker, M.; Tolkovsky, A.M.; Borutaite, V.; Coleman, M.; Brown, G.C. Neuronal cell death. Physiol. Rev., 2018, 98(2), 813-880.
[http://dx.doi.org/10.1152/physrev.00011.2017] [PMID: 29488822]
[17]
Wang, D.; Hiesinger, P.R. Autophagy, neuron-specific degradation and neurodegeneration. Autophagy, 2012, 8(4), 711-713.
[http://dx.doi.org/10.4161/auto.19660] [PMID: 22498474]
[18]
Plotegher, N.; Filadi, R.; Pizzo, P.; Duchen, M.R. Excitotoxicity revisited: Mitochondria on the verge of a nervous breakdown. Trends Neurosci., 2021, 44(5), 342-351.
[http://dx.doi.org/10.1016/j.tins.2021.01.001] [PMID: 33608137]
[19]
Rehman, M.U.; Wali, A.F.; Ahmad, A.; Shakeel, S.; Rasool, S.; Ali, R.; Rashid, S.M.; Madkhali, H.; Ganaie, M.A.; Khan, R. Neuroprotective strategies for neurological disorders by natural products: an update. Curr. Neuropharmacol., 2019, 17(3), 247-267.
[http://dx.doi.org/10.2174/1570159X16666180911124605] [PMID: 30207234]
[20]
Chang, R.C-C.; Ho, Y-S. Introductory chapter: Concept of neuroprotection-A new perspective. In: Neuroprotection; Chang, R.C-C.; Ho, Y-S., Eds.; InTechOpen, 2019.
[http://dx.doi.org/10.5772/intechopen.77296]
[21]
New Drugs at FDA: CDER’s New Molecular Entities and New Therapeutic Biological Products. 2021. Available from: https://www.fda.gov/drugs/development-approval-process-drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products
[22]
Durães, F.; Pinto, M.; Sousa, E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals (Basel), 2018, 11(2), 44.
[http://dx.doi.org/10.3390/ph11020044] [PMID: 29751602]
[23]
Wu, L.; Wang, X.; Xu, W.; Farzaneh, F.; Xu, R. The structure and pharmacological functions of coumarins and their derivatives. Curr. Med. Chem., 2009, 16(32), 4236-4260.
[http://dx.doi.org/10.2174/092986709789578187] [PMID: 19754420]
[24]
Matos, M.J.; Santana, L.; Uriarte, E.; Abreu, O.A.; Molina, E.; Yordi, E.G. Coumarins—an important class of phytochemicals. Phytochemicals-Isolation. Characterisation and Role in Human Health, 2015, 25, 533-538.
[25]
Stefanachi, A.; Leonetti, F.; Pisani, L.; Catto, M.; Carotti, A. Coumarin: A natural, privileged and versatile scaffold for bioactive compounds. Molecules, 2018, 23(2), 250.
[http://dx.doi.org/10.3390/molecules23020250] [PMID: 29382051]
[26]
Hu, Y.Q.; Xu, Z.; Zhang, S.; Wu, X.; Ding, J.W.; Lv, Z.S.; Feng, L.S. Recent developments of coumarin-containing derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 2017, 136, 122-130.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.004] [PMID: 28494250]
[27]
Mishra, S.; Pandey, A.; Manvati, S. Coumarin: An emerging antiviral agent. Heliyon, 2020, 6(1), e03217.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03217] [PMID: 32042967]
[28]
Seong, S.H.; Ali, M.Y.; Jung, H.A.; Choi, J.S. Umbelliferone derivatives exert neuroprotective effects by inhibiting monoamine oxidase A, self-amyloidβ aggregation, and lipid peroxidation. Bioorg. Chem., 2019, 92103293.
[http://dx.doi.org/10.1016/j.bioorg.2019.103293] [PMID: 31557622]
[29]
Kostova, I.; Bhatia, S.; Grigorov, P.; Balkansky, S.; Parmar, V.S.; Prasad, A.K.; Saso, L. Coumarins as antioxidants. Curr. Med. Chem., 2011, 18(25), 3929-3951.
[http://dx.doi.org/10.2174/092986711803414395] [PMID: 21824098]
[30]
Singh, A.; Sharma, S.; Arora, S.; Attri, S.; Kaur, P.; Kaur Gulati, H.; Bhagat, K.; Kumar, N.; Singh, H.; Vir Singh, J.; Bedi, M.S.P. New coumarin-benzotriazole based hybrid molecules as inhibitors of acetylcholinesterase and amyloid aggregation. Bioorg. Med. Chem. Lett., 2020, 30(20), 127477.
[http://dx.doi.org/10.1016/j.bmcl.2020.127477] [PMID: 32781220]
[31]
Atmaca, M.; Bilgin, H.M.; Obay, B.D.; Diken, H.; Kelle, M.; Kale, E. The hepatoprotective effect of coumarin and coumarin derivates on carbon tetrachloride-induced hepatic injury by antioxidative activities in rats. J. Physiol. Biochem., 2011, 67(4), 569-576.
[http://dx.doi.org/10.1007/s13105-011-0103-5] [PMID: 21656273]
[32]
Sutar, S.M.; Savanur, H.M.; Malunavar, S.S.; Pawashe, G.M.; Aridoss, G.; Kim, K.M.; Lee, J.Y.; Kalkhambkar, R.G. Synthesis and molecular modelling studies of coumarin and 1‐aza‐coumarin linked miconazole analogues and their antimicrobial properties. ChemistrySelect, 2020, 5(4), 1322-1330.
[http://dx.doi.org/10.1002/slct.201903572]
[33]
Chen, L.Z.; Sun, W.W.; Bo, L.; Wang, J.Q.; Xiu, C.; Tang, W.J.; Shi, J.B.; Zhou, H.P.; Liu, X.H. New arylpyrazoline-coumarins: Synthesis and anti-inflammatory activity. Eur. J. Med. Chem., 2017, 138, 170-181.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.044] [PMID: 28667873]
[34]
Kasperkiewicz, K.; Ponczek, M.B.; Owczarek, J.; Guga, P.; Budzisz, E. Antagonists of vitamin K—popular coumarin drugs and new synthetic and natural coumarin derivatives. Molecules, 2020, 25(6), 1465.
[http://dx.doi.org/10.3390/molecules25061465] [PMID: 32213944]
[35]
Bhattarai, N.; Kumbhar, A.A.; Pokharel, Y.R.; Yadav, P.N. Anticancer potential of coumarin and its derivatives. Mini Rev. Med. Chem., 2021, 21(19), 2996-3029.
[http://dx.doi.org/10.2174/18755607MTE1uMjAm4] [PMID: 33820507]
[36]
Dandriyal, J.; Kaur, K.; Jaitak, V. Synthesis and in silico studies of c-4 substituted coumarin analogues as anticancer agents. Curr. Computeraided Drug Des., 2021, 17(4), 560-570.
[http://dx.doi.org/10.2174/1573409916666200628104638] [PMID: 32598267]
[37]
Dandriyal, J.; Singla, R.; Kumar, M.; Jaitak, V. Recent developments of C-4 substituted coumarin derivatives as anticancer agents. Eur. J. Med. Chem., 2016, 119, 141-168.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.087] [PMID: 27155469]
[38]
Kumar, M.; Singla, R.; Dandriyal, J.; Jaitak, V. Coumarin derivatives as anticancer agents for lung cancer therapy: A review. Anticancer. Agents Med. Chem., 2018, 18(7), 964-984.
[http://dx.doi.org/10.2174/1871520618666171229185926] [PMID: 29298657]
[39]
Thakur, A.; Kaur, K.; Sharma, P.; Singla, R.; Singh, S.; Jaitak, V. Synthesis, in vitro, and docking analysis of C-3 substituted coumarin analogues as anticancer agents. Curr. Computeraided Drug Des., 2021, 17(2), 161-172.
[http://dx.doi.org/10.2174/1573409916666200120114641] [PMID: 31987025]
[40]
Thakur, A.; Singla, R.; Jaitak, V. Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem., 2015, 101, 476-495.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.010] [PMID: 26188907]
[41]
Li, C.; Zhu, H.; Zhang, H.; Yang, Y.; Wang, F. Synthesis of 2H-chromenones from salicylaldehydes and arylacetonitriles. Molecules, 2017, 22(7), 1197.
[http://dx.doi.org/10.3390/molecules22071197] [PMID: 28718827]
[42]
Choi, H.; Kim, J.; Lee, K. Metal-free, Brønsted acid-mediated synthesis of coumarin derivatives from phenols and propiolic acids. Tetrahedron Lett., 2016, 57(32), 3600-3603.
[http://dx.doi.org/10.1016/j.tetlet.2016.06.039]
[43]
Fiorito, S.; Taddeo, V.A.; Genovese, S.; Epifano, F. A green chemical synthesis of coumarin-3-carboxylic and cinnamic acids using crop-derived products and waste waters as solvents. Tetrahedron Lett., 2016, 57(43), 4795-4798.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.023]
[44]
Gao, W.C.; Liu, T.; Zhang, B.; Li, X.; Wei, W.L.; Liu, Q.; Tian, J.; Chang, H.H. Synthesis of 3-sulfenylated coumarins: BF3•Et2 O-mediated electrophilic cyclization of aryl alkynoates using N-sulfanylsuccinimides. J. Org. Chem., 2016, 81(22), 11297-11304.
[http://dx.doi.org/10.1021/acs.joc.6b02271] [PMID: 27704858]
[45]
Chen, L.; Cui, Y.M.; Xu, Z.; Cao, J.; Zheng, Z.J.; Xu, L.W. An efficient approach toward formation of polycyclic coumarin derivatives via carbocation-initiated [4+2] cycloaddition and atom-economical photo-irradiated cyclization. Chem. Commun. (Camb.), 2016, 52(74), 11131-11134.
[http://dx.doi.org/10.1039/C6CC05698A] [PMID: 27550635]
[46]
Li, G.T.; Li, Z.K.; Gu, Q.; You, S.L. Asymmetric synthesis of 4-Aryl-3, 4-dihydrocoumarins by N-heterocyclic carbene catalyzed annulation of phenols with enals. Org. Lett., 2017, 19(6), 1318-1321.
[http://dx.doi.org/10.1021/acs.orglett.7b00088] [PMID: 28233489]
[47]
Qiu, G.; Liu, T.; Ding, Q. Tandem oxidative radical brominative addition of activated alkynes and spirocyclization: switchable synthesis of 3-bromocoumarins and 3-bromo spiro-[4,5] trienone. Org. Chem. Front., 2016, 3(4), 510-515.
[http://dx.doi.org/10.1039/C6QO00041J]
[48]
Pérez, J.M.; Cano, R.; McGlacken, G.P.; Ramón, D.J. Palladium(II) oxide impregnated on magnetite as a catalyst for the synthesis of 4-arylcoumarins via a Heck-arylation/cyclization process. RSC Advances, 2016, 6(43), 36932-36941.
[http://dx.doi.org/10.1039/C6RA01731B]
[49]
Huang, X.; Zhu, T.; Huang, Z.; Zhang, Y.; Jin, Z.; Zanoni, G.; Chi, Y.R. Carbene-catalyzed formal [5+ 5] reaction for coumarin construction and total synthesis of defucogilvocarcins. Org. Lett., 2017, 19(22), 6188-6191.
[http://dx.doi.org/10.1021/acs.orglett.7b03102] [PMID: 29111757]
[50]
Khan, D.; Mukhtar, S.; Alsharif, M.A.; Alahmdi, M.I.; Ahmed, N.PhI. (OAc) 2 mediated an efficient Knoevenagel reaction and their synthetic application for coumarin derivatives. Tetrahedron Lett., 2017, 58(32), 3183-3187.
[http://dx.doi.org/10.1016/j.tetlet.2017.07.018]
[51]
da Silveira Pinto, L.; de Souza, M. Sonochemistry as a general procedure for the synthesis of coumarins, including multigram synthesis. Synthesis, 2017, 49(12), 2677-2682.
[http://dx.doi.org/10.1055/s-0036-1590201]
[52]
Payra, S.; Saha, A.; Banerjee, S. Magnetically recoverable Fe3O4 nanoparticles for the one-pot synthesis of coumarin-3-carboxamide derivatives in aqueous ethanol. ChemistrySelect, 2018, 3(26), 7535-7540.
[http://dx.doi.org/10.1002/slct.201800523]
[53]
Shao, A.; Zhan, J.; Li, N.; Chiang, C.W.; Lei, A. External oxidant-free dehydrogenative lactonization of 2-arylbenzoic acids via visible-light photocatalysis. J. Org. Chem., 2018, 83(7), 3582-3589.
[http://dx.doi.org/10.1021/acs.joc.7b03195] [PMID: 29505258]
[54]
Kawaai, K.; Yamaguchi, T.; Yamaguchi, E.; Endo, S.; Tada, N.; Ikari, A.; Itoh, A. Photoinduced generation of acyl radicals from simple aldehydes, access to 3-acyl-4-arylcoumarin derivatives, and evaluation of their antiandrogenic activities. J. Org. Chem., 2018, 83(4), 1988-1996.
[http://dx.doi.org/10.1021/acs.joc.7b02933] [PMID: 29327585]
[55]
Chen, L.; Wu, L.; Duan, W.; Wang, T.; Li, L.; Zhang, K.; Zhu, J.; Peng, Z.; Xiong, F. Photoredox-catalyzed cascade radical cyclization of ester arylpropiolates with CF3SO2Cl to construct 3-trifluoromethyl coumarin derivatives. J. Org. Chem., 2018, 83(15), 8607-8614.
[http://dx.doi.org/10.1021/acs.joc.8b00581] [PMID: 29878780]
[56]
Liu, Y.; Wang, Q.L.; Zhou, C.S.; Xiong, B.Q.; Zhang, P.L.; Kang, S.J.; Yang, C.A.; Tang, K.W. Visible-light-mediated cascade difunctionalization/cyclization of alkynoates with acyl chlorides for synthesis of 3-acylcoumarins. Tetrahedron Lett., 2018, 59(21), 2038-2041.
[http://dx.doi.org/10.1016/j.tetlet.2018.04.033]
[57]
Ren, H.; Zhang, M.; Zhang, A.Q. Synthesis of 3-sulfonyl coumarins through radical sulfonylation with disulfides under catalyst-free conditions. Tetrahedron, 2018, 74(33), 4435-4444.
[http://dx.doi.org/10.1016/j.tet.2018.07.014]
[58]
Yadav, V.K.; Srivastava, V.P.; Yadav, L.D.S. Pd-catalysed carbonylative annulation of salicylaldehydes with benzyl chlorides using N -formylsaccharin as a CO surrogate. New J. Chem., 2018, 42(19), 16281-16286.
[http://dx.doi.org/10.1039/C8NJ03173H]
[59]
Xu, G.D.; Huang, Z.Z.A. Rh(III)-catalyzed cascade C–H functionalization/cyclization reaction of salicylaldehydes with diazomalonates for the synthesis of 4-hydroxycoumarin derivatives. New J. Chem., 2018, 42(22), 18358-18362.
[http://dx.doi.org/10.1039/C8NJ04576C]
[60]
Mirosanloo, A.; Zareyee, D.; Khalilzadeh, M.A. Recyclable cellulose nanocrystal supported Palladium nanoparticles as an efficient heterogeneous catalyst for the solvent-free synthesis of coumarin derivatives via von Pechmann condensation. Appl. Organomet. Chem., 2018, 32(12), e4546.
[http://dx.doi.org/10.1002/aoc.4546]
[61]
Ramsay, R.R.; Majekova, M.; Medina, M.; Valoti, M. Key targets for multi-target ligands designed to combat neurodegeneration. Front. Neurosci., 2016, 10, 375.
[http://dx.doi.org/10.3389/fnins.2016.00375] [PMID: 27597816]
[62]
Bawa, P.; Pradeep, P.; Kumar, P.; Choonara, Y.E.; Modi, G.; Pillay, V. Multi-target therapeutics for neuropsychiatric and neurodegenerative disorders. Drug Discov. Today, 2016, 21(12), 1886-1914.
[http://dx.doi.org/10.1016/j.drudis.2016.08.001] [PMID: 27506871]
[63]
Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever‐increasing importance of cancer as a leading cause of premature death worldwide. Cancer, 2021, 127(16), 3029-3030.
[http://dx.doi.org/10.1002/cncr.33587] [PMID: 34086348]
[64]
Cavalli, A.; Bolognesi, M.L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.; Melchiorre, C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem., 2008, 51(3), 347-372.
[http://dx.doi.org/10.1021/jm7009364] [PMID: 18181565]
[65]
Tzvetkov, N.T.; Atanasov, A.G. Natural product-based multitargeted ligands for Alzheimer’s disease treatment? Future Med. Chem., 2018, 10(15), 1745-1748.
[http://dx.doi.org/10.4155/fmc-2018-0146] [PMID: 30043630]
[66]
Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; Khachaturian, Z.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain, 2018, 141(7), 1917-1933.
[http://dx.doi.org/10.1093/brain/awy132] [PMID: 29850777]
[67]
Larner, A.J. Cholinesterase inhibitors: beyond Alzheimer’s disease. Expert Rev. Neurother., 2010, 10(11), 1699-1705.
[http://dx.doi.org/10.1586/ern.10.105] [PMID: 21046692]
[68]
Mushtaq, G.; Greig, N.; Khan, J.; Kamal, M. Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol. Disord. Drug Targets, 2014, 13(8), 1432-1439.
[http://dx.doi.org/10.2174/1871527313666141023141545] [PMID: 25345511]
[69]
Darvesh, S.; Hopkins, D.A.; Geula, C. Neurobiology of butyrylcholinesterase. Nat. Rev. Neurosci., 2003, 4(2), 131-138.
[http://dx.doi.org/10.1038/nrn1035] [PMID: 12563284]
[70]
Pisani, L.; Catto, M.; De Palma, A.; Farina, R.; Cellamare, S.; Altomare, C.D. Discovery of potent dual binding site acetylcholinesterase inhibitors via homo-and heterodimerization of coumarin-based moieties. ChemMedChem, 2017, 12(16), 1349-1358.
[http://dx.doi.org/10.1002/cmdc.201700282] [PMID: 28570763]
[71]
Sameem, B.; Saeedi, M.; Mahdavi, M.; Nadri, H.; Moghadam, F.H.; Edraki, N.; Khan, M.I.; Amini, M. Synthesis, docking study and neuroprotective effects of some novel pyrano[3,2- c]chromene derivatives bearing morpholine/phenylpiperazine moiety. Bioorg. Med. Chem., 2017, 25(15), 3980-3988.
[http://dx.doi.org/10.1016/j.bmc.2017.05.043] [PMID: 28587871]
[72]
Sonmez, F.; Zengin Kurt, B.; Gazioglu, I.; Basile, L.; Dag, A.; Cappello, V.; Ginex, T.; Kucukislamoglu, M.; Guccione, S. Design, synthesis and docking study of novel coumarin ligands as potential selective acetylcholinesterase inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 285-297.
[http://dx.doi.org/10.1080/14756366.2016.1250753] [PMID: 28097911]
[73]
Jiang, N.; Huang, Q.; Liu, J.; Liang, N.; Li, Q.; Li, Q.; Xie, S.S. Design, synthesis and biological evaluation of new coumarin-dithiocarbamate hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2018, 146, 287-298.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.055] [PMID: 29407958]
[74]
Vafadarnejad, F.; Mahdavi, M.; Karimpour-Razkenari, E.; Edraki, N.; Sameem, B.; Khanavi, M.; Saeedi, M.; Akbarzadeh, T. Design and synthesis of novel coumarin-pyridinium hybrids: in vitro cholinesterase inhibitory activity. Bioorg. Chem., 2018, 77, 311-319.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.013] [PMID: 29421707]
[75]
Moradi, A.; Faraji, L.; Nadri, H.; Hasanpour, Z.; Moghadam, F.H.; Pakseresht, B.; Golshani, M.; Moghimi, S.; Ramazani, A.; Firoozpour, L.; Khoobi, M.; Foroumadi, A. Synthesis, docking study, and biological evaluation of novel umbellipherone/hymecromone derivatives as acetylcholinesterase/butyrylcholinesterase inhibitors. Med. Chem. Res., 2018, 27(7), 1741-1747.
[http://dx.doi.org/10.1007/s00044-018-2187-8]
[76]
Zhang, J.; Li, J.C.; Song, J.L.; Cheng, Z.Q.; Sun, J.Z.; Jiang, C.S. Synthesis and evaluation of coumarin/1,2,4-oxadiazole hybrids as selective BChE inhibitors with neuroprotective activity. J. Asian Nat. Prod. Res., 2019, 21(11), 1090-1103.
[http://dx.doi.org/10.1080/10286020.2018.1492566] [PMID: 29991292]
[77]
Najafi, Z.; Mahdavi, M.; Saeedi, M.; Karimpour-Razkenari, E.; Edraki, N.; Sharifzadeh, M.; Khanavi, M.; Akbarzadeh, T. Novel tacrine-coumarin hybrids linked to 1,2,3-triazole as anti-Alzheimer’s compounds: In vitro and in vivo biological evaluation and docking study. Bioorg. Chem., 2019, 83, 303-316.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.056] [PMID: 30396115]
[78]
Rastegari, A.; Nadri, H.; Mahdavi, M.; Moradi, A.; Mirfazli, S.S.; Edraki, N.; Moghadam, F.H.; Larijani, B.; Akbarzadeh, T.; Saeedi, M. Design, synthesis and anti-Alzheimer’s activity of novel 1,2,3-triazole-chromenone carboxamide derivatives. Bioorg. Chem., 2019, 83, 391-401.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.065] [PMID: 30412794]
[79]
Hu, Y.H.; Yang, J.; Zhang, Y.; Liu, K.C.; Liu, T.; Sun, J.; Wang, X.J. Synthesis and biological evaluation of 3–(4-aminophenyl)-coumarin derivatives as potential anti-Alzheimer’s disease agents. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1083-1092.
[http://dx.doi.org/10.1080/14756366.2019.1615484] [PMID: 31117844]
[80]
Tehrani, M.B.; Rezaei, Z.; Asadi, M.; Behnammanesh, H.; Nadri, H.; Afsharirad, F.; Moradi, A.; Larijani, B.; Mohammadi-Khanaposhtani, M.; Mahdavi, M. Design, synthesis, and cholinesterase inhibition assay of coumarin‐3‐carboxamide‐ N ‐morpholine hybrids as new anti‐alzheimer agents. Chem. Biodivers., 2019, 16(7), e1900144.
[http://dx.doi.org/10.1002/cbdv.201900144] [PMID: 31155827]
[81]
Sepehri, N.; Mohammadi-Khanaposhtani, M.; Asemanipoor, N.; Hosseini, S.; Biglar, M.; Larijani, B.; Mahdavi, M.; Hamedifar, H.; Taslimi, P.; Sadeghian, N.; Gulcin, I. Synthesis, characterization, molecular docking, and biological activities of coumarin–1,2,3‐triazole‐acetamide hybrid derivatives. Arch. Pharm. (Weinheim), 2020, 353(10), 2000109.
[http://dx.doi.org/10.1002/ardp.202000109] [PMID: 32643792]
[82]
de Souza, G.A.; da Silva, S.J.; Del Cistia, C.N.; Pitasse-Santos, P.; Pires, L.O.; Passos, Y.M.; Cordeiro, Y.; Cardoso, C.M.; Castro, R.N.; Sant’Anna, C.M.R.; Kümmerle, A.E. Discovery of novel dual-active 3-(4-(dimethylamino)phenyl)-7-aminoalcoxy-coumarin as potent and selective acetylcholinesterase inhibitor and antioxidant. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 631-637.
[http://dx.doi.org/10.1080/14756366.2019.1571270] [PMID: 30727776]
[83]
Gardelly, M.; Trimech, B.; Horchani, M.; Znati, M.; Jannet, H.B.; Romdhane, A. Anti-tyrosinase and anti-butyrylcholinesterase quinolines-based coumarin derivatives: Synthesis and insights from molecular docking studies. Chemistry Africa, 2021, 4(3), 491-501.
[http://dx.doi.org/10.1007/s42250-021-00235-x]
[84]
Cenini, G.; Lloret, A.; Cascella, R. Oxidative stress in neurodegenerative diseases: From a mitochondrial point of view. Oxid. Med. Cell. Longev., 2019, 2019, 1-18.
[http://dx.doi.org/10.1155/2019/2105607] [PMID: 31210837]
[85]
Barnham, K.J.; Masters, C.L.; Bush, A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov., 2004, 3(3), 205-214.
[http://dx.doi.org/10.1038/nrd1330] [PMID: 15031734]
[86]
Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem., 2015, 97, 55-74.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.040] [PMID: 25942353]
[87]
Jalili-Baleh, L.; Forootanfar, H.; Küçükkılınç, T.T.; Nadri, H.; Abdolahi, Z.; Ameri, A.; Jafari, M.; Ayazgok, B.; Baeeri, M.; Rahimifard, M.; Abbas Bukhari, S.N.; Abdollahi, M.; Ganjali, M.R.; Emami, S.; Khoobi, M.; Foroumadi, A. Design, synthesis and evaluation of novel multi-target-directed ligands for treatment of Alzheimer’s disease based on coumarin and lipoic acid scaffolds. Eur. J. Med. Chem., 2018, 152, 600-614.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.058] [PMID: 29763808]
[88]
Jalili-Baleh, L.; Nadri, H.; Forootanfar, H.; Samzadeh-Kermani, A.; Küçükkılınç, T.T.; Ayazgok, B.; Rahimifard, M.; Baeeri, M.; Doostmohammadi, M.; Firoozpour, L.; Bukhari, S.N.A.; Abdollahi, M.; Ganjali, M.R.; Emami, S.; Khoobi, M.; Foroumadi, A. Novel 3-phenylcoumarin–lipoic acid conjugates as multi-functional agents for potential treatment of Alzheimer’s disease. Bioorg. Chem., 2018, 79, 223-234.
[http://dx.doi.org/10.1016/j.bioorg.2018.04.030] [PMID: 29775948]
[89]
Lan, J.S.; Ding, Y.; Liu, Y.; Kang, P.; Hou, J.W.; Zhang, X.Y.; Xie, S.S.; Zhang, T. Design, synthesis and biological evaluation of novel coumarin- N -benzyl pyridinium hybrids as multi-target agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 139, 48-59.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.055] [PMID: 28797883]
[90]
Kurt, B.Z.; Gazioglu, I.; Kandas, N.O.; Sonmez, F. Synthesis, anticholinesterase, antioxidant, and anti‐aflatoxigenic activity of novel coumarin carbamate derivatives. ChemistrySelect, 2018, 3(14), 3978-3983.
[http://dx.doi.org/10.1002/slct.201800142]
[91]
Paloczi, J.; Varga, Z.V.; Hasko, G.; Pacher, P. Neuroprotection in oxidative stress-related neurodegenerative diseases: role of endocannabinoid system modulation. Antioxid. Redox Signal., 2018, 29(1), 75-108.
[http://dx.doi.org/10.1089/ars.2017.7144] [PMID: 28497982]
[92]
Pertwee, R.; Howlett, A.; Abood, M. Cannabinoid receptors and their ligands: Beyond CB1 and CB2. LXXIX International Union of basic and clinical pharmacology. Pharmacol. Rev., 2010, 62, 588-631.
[http://dx.doi.org/10.1124/pr.110.003004] [PMID: 21079038]
[93]
Di Marzo, V. Endocannabinoids: Synthesis and degradation. Rev. Physiol. Biochem. Pharmacol., 2008, 160, 1-24.
[PMID: 18481028]
[94]
Fernández-Ruiz, J. The endocannabinoid system as a target for the treatment of motor dysfunction. Br. J. Pharmacol., 2009, 156(7), 1029-1040.
[http://dx.doi.org/10.1111/j.1476-5381.2008.00088.x] [PMID: 19220290]
[95]
Ahn, K.; Johnson, D.S.; Cravatt, B.F. Fatty acid amide hydrolase as a potential therapeutic target for the treatment of pain and CNS disorders. Expert Opin. Drug Discov., 2009, 4(7), 763-784.
[http://dx.doi.org/10.1517/17460440903018857] [PMID: 20544003]
[96]
Montanari, S.; Allarà, M.; Scalvini, L.; Kostrzewa, M.; Belluti, F.; Gobbi, S.; Naldi, M.; Rivara, S.; Bartolini, M.; Ligresti, A.; Bisi, A.; Rampa, A. New coumarin derivatives as cholinergic and cannabinoid system modulators. Molecules, 2021, 26(11), 3254.
[http://dx.doi.org/10.3390/molecules26113254] [PMID: 34071439]
[97]
Gaweska, H.; Fitzpatrick, P.F. Structures and mechanism of the monoamine oxidase family. Biomol. Concepts, 2011, 2(5), 365-377.
[http://dx.doi.org/10.1515/BMC.2011.030] [PMID: 22022344]
[98]
Johnston, J.P. Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem. Pharmacol., 1968, 17(7), 1285-1297.
[http://dx.doi.org/10.1016/0006-2952(68)90066-X] [PMID: 5659776]
[99]
Mallajosyula, J.K.; Kaur, D.; Chinta, S.J.; Rajagopalan, S.; Rane, A.; Nicholls, D.G.; Di Monte, D.A.; Macarthur, H.; Andersen, J.K. MAO-B elevation in mouse brain astrocytes results in Parkinson’s pathology. PLoS One, 2008, 3(2), e1616.
[http://dx.doi.org/10.1371/journal.pone.0001616] [PMID: 18286173]
[100]
Yeung, A.W.K.; Georgieva, M.G.; Atanasov, A.G.; Tzvetkov, N.T. Monoamine oxidases (MAOs) as privileged molecular targets in neuroscience: Research literature analysis. Front. Mol. Neurosci., 2019, 12, 143.
[http://dx.doi.org/10.3389/fnmol.2019.00143] [PMID: 31191248]
[101]
Li, S.Y.; Wang, X.B.; Xie, S.S.; Jiang, N.; Wang, K.D.G.; Yao, H.Q.; Sun, H.B.; Kong, L.Y. Multifunctional tacrine–flavonoid hybrids with cholinergic, β-amyloid-reducing, and metal chelating properties for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2013, 69, 632-646.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.024] [PMID: 24095756]
[102]
Samadi, A.; de los Ríos, C.; Bolea, I.; Chioua, M.; Iriepa, I.; Moraleda, I.; Bartolini, M.; Andrisano, V.; Gálvez, E.; Valderas, C.; Unzeta, M.; Marco-Contelles, J. Multipotent MAO and cholinesterase inhibitors for the treatment of Alzheimer’s disease: Synthesis, pharmacological analysis and molecular modeling of heterocyclic substituted alkyl and cycloalkyl propargyl amine. Eur. J. Med. Chem., 2012, 52, 251-262.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.022] [PMID: 22503231]
[103]
Joubert, J.; Foka, G.B.; Repsold, B.P.; Oliver, D.W.; Kapp, E.; Malan, S.F. Synthesis and evaluation of 7-substituted coumarin derivatives as multimodal monoamine oxidase-B and cholinesterase inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 125, 853-864.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.041] [PMID: 27744252]
[104]
He, Q.; Liu, J.; Lan, J.S.; Ding, J.; Sun, Y.; Fang, Y.; Jiang, N.; Yang, Z.; Sun, L.; Jin, Y.; Xie, S.S. Coumarin-dithiocarbamate hybrids as novel multitarget AChE and MAO-B inhibitors against Alzheimer’s disease: Design, synthesis and biological evaluation. Bioorg. Chem., 2018, 81, 512-528.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.010] [PMID: 30245233]
[105]
Repsold, B.P.; Malan, S.F.; Joubert, J.; Oliver, D.W. Multi-targeted directed ligands for Alzheimer’s disease: Design of novel lead coumarin conjugates. SAR QSAR Environ. Res., 2018, 29(3), 231-255.
[http://dx.doi.org/10.1080/1062936X.2018.1423641] [PMID: 29390885]
[106]
Rullo, M.; Catto, M.; Carrieri, A.; de Candia, M.; Altomare, C.D.; Pisani, L. Chasing ChEs-MAO B multi-targeting 4-aminomethyl-7-benzyloxy-2H-chromen-2-ones. Molecules, 2019, 24(24), 4507.
[http://dx.doi.org/10.3390/molecules24244507] [PMID: 31835376]
[107]
Rehuman, N.A.; Oh, J.M.; Nath, L.R.; Khames, A.; Abdelgawad, M.A.; Gambacorta, N.; Nicolotti, O.; Jat, R.K.; Kim, H.; Mathew, B. Halogenated coumarin–chalcones as multifunctional monoamine oxidase-b and butyrylcholinesterase inhibitors. ACS Omega, 2021, 6(42), 28182-28193.
[http://dx.doi.org/10.1021/acsomega.1c04252] [PMID: 34723016]
[108]
Mzezewa, S.C.; Omoruyi, S.I.; Zondagh, L.S.; Malan, S.F.; Ekpo, O.E.; Joubert, J. Design, synthesis, and evaluation of 3,7-substituted coumarin derivatives as multifunctional Alzheimer’s disease agents. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1606-1620.
[http://dx.doi.org/10.1080/14756366.2021.1913137] [PMID: 34281458]
[109]
Quezada, E.; Rodríguez-Enríquez, F.; Laguna, R.; Cutrín, E.; Otero, F.; Uriarte, E.; Viña, D. Curcumin–coumarin hybrid analogues as multitarget agents in neurodegenerative disorders. Molecules, 2021, 26(15), 4550.
[http://dx.doi.org/10.3390/molecules26154550] [PMID: 34361702]
[110]
Rodríguez-Enríquez, F.; Viña, D.; Uriarte, E.; Laguna, R.; Matos, M.J. 7‐Amidocoumarins as multitarget agents against neurodegenerative diseases: Substitution pattern modulation. ChemMedChem, 2021, 16(1), 179-186.
[http://dx.doi.org/10.1002/cmdc.202000454] [PMID: 32700464]
[111]
Pourabdi, L.; Küçükkılınç, T.T.; Khoshtale, F.; Ayazgök, B.; Nadri, H.; Farokhi Alashti, F.; Forootanfar, H.; Akbari, T.; Shafiei, M.; Foroumadi, A.; Sharifzadeh, M.; Shafiee Ardestani, M.; Abaee, M.S.; Firoozpour, L.; Khoobi, M.; Mojtahedi, M.M. Synthesis of new 3-arylcoumarins bearing N-benzyl triazole moiety: dual lipoxygenase and butyrylcholinesterase inhibitors with anti-amyloid aggregation and neuroprotective properties against Alzheimer’s disease. Front Chem., 2022, 98, 10233.
[http://dx.doi.org/10.3389/fchem.2021.810233] [PMID: 35127652]
[112]
Rubino, J.T.; Franz, K.J. Coordination chemistry of copper proteins: How nature handles a toxic cargo for essential function. J. Inorg. Biochem., 2012, 107(1), 129-143.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.11.024] [PMID: 22204943]
[113]
Gonzalez, P.; Pota, K.; Turan, L.S.; da Costa, V.C.P.; Akkaraju, G.; Green, K.N. Synthesis, characterization, and activity of a triazine bridged antioxidant small molecule. ACS Chem. Neurosci., 2017, 8(11), 2414-2423.
[http://dx.doi.org/10.1021/acschemneuro.7b00184] [PMID: 28768410]
[114]
Costas-Lago, M.C.; Besada, P.; Rodríguez-Enríquez, F.; Viña, D.; Vilar, S.; Uriarte, E.; Borges, F.; Terán, C. Synthesis and structure-activity relationship study of novel 3-heteroarylcoumarins based on pyridazine scaffold as selective MAO-B inhibitors. Eur. J. Med. Chem., 2017, 139, 1-11.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.045] [PMID: 28797881]
[115]
Rodríguez-Enríquez, F.; Costas-Lago, M.C.; Besada, P.; Alonso-Pena, M.; Torres-Terán, I.; Viña, D.; Fontenla, J.Á.; Sturlese, M.; Moro, S.; Quezada, E.; Terán, C. Novel coumarin-pyridazine hybrids as selective MAO-B inhibitors for the Parkinson’s disease therapy. Bioorg. Chem., 2020, 104104203.
[http://dx.doi.org/10.1016/j.bioorg.2020.104203] [PMID: 32932120]