Phytochemical, Pharmacological, and Toxicological Prospection of Morus nigra L.: A Systematic Review

Article ID: e130723218715 Pages: 33

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Morus nigra L. has industrial relevance due to the presence of specialized metabolites, which possess pharmaceutical potential in various parts and preparations. This review presents updated information on traditional, phytochemical, and pharmacological applications, as well as toxicity data, pertaining to different parts of Morus nigra L.

Method: Phytochemical research and ethnobotanical studies were conducted using reviewed databases. Mulberry leaves have demonstrated several biological activities, attributed to the presence of phenolic acids, flavonoids, and fatty acids. Stems and roots contain additional compounds such as stilbenes and benzofurans. Morus nigra L. exhibits various biological activities, including hepatoprotective, hypolipidemic, anti-inflammatory, antioxidant, antimicrobial, neuroprotective, hypoglycemic, skin whitening, cytotoxic, antiatherosclerotic, and antiobesity effects. The choice of extraction technique and plant part is crucial to obtain a diverse range of compounds necessary for specific indications.

Result: Accelerated solvent extraction (ASE) has proven to be the most advantageous method compared to supercritical fluid maceration and extraction (SFE), yielding a wide variety of compounds.

Conclusion: Overall, this review aims to provide scientists and companies interested in Morus nigra L. with opportunities and challenges for innovation in this field.

Graphical Abstract

[1]
Turan, I.; Demir, S.; Kilinc, K.; Burnaz, N.A.; Yaman, S.O.; Akbulut, K.; Mentese, A.; Aliyazicioglu, Y.; Deger, O. Antiproliferative and apoptotic effect of Morus nigra extract on human prostate cancer cells. Saudi Pharm. J., 2017, 25(2), 241-248.
[http://dx.doi.org/10.1016/j.jsps.2016.06.002] [PMID: 28344475]
[2]
Koyu, H.; Kazan, A.; Ozturk, T.K.; Yesil-Celiktas, O.; Haznedaroglu, M.Z. Optimizing subcritical water extraction of Morus nigra L. fruits for maximization of tyrosinase inhibitory activity. J. Supercrit. Fluids, 2017, 127, 15-22.
[http://dx.doi.org/10.1016/j.supflu.2017.03.007]
[3]
Mallhi, T.H.; Qadir, M.I.; Khan, Y.H. Determination of phytoconstituents of n-hexane extract of leaves of Morus nigra and evaluation of their effects on biochemical and histopathological parameters in paracetamol intoxicated mice liver. Braz. J. Pharm. Sci., 2018, 54(3), 1-9.
[http://dx.doi.org/10.1590/s2175-97902018000318101]
[4]
Xu, L.; Huang, T.; Huang, C.; Wu, C.; Jia, A.; Hu, X. Chiral separation, absolute configuration, and bioactivity of two pairs of flavonoid enantiomers from Morus nigra. Phytochemistry, 2019, 163, 33-37.
[http://dx.doi.org/10.1016/j.phytochem.2019.03.029] [PMID: 30986688]
[5]
Sánchez-Salcedo, E.M.; Tassotti, M.; Del Rio, D.; Hernández, F.; Martínez, J.J.; Mena, P. (Poly)phenolic fingerprint and chemometric analysis of white (Morus alba L.) and black (Morus nigra L.) mulberry leaves by using a non-targeted UHPLC–MS approach. Food Chem., 2016, 212, 250-255.
[http://dx.doi.org/10.1016/j.foodchem.2016.05.121] [PMID: 27374530]
[6]
de Pádua Lúcio, K.; Rabelo, A.C.S.; Araújo, C.M.; Brandão, G.C.; de Souza, G.H.B.; da Silva, R.G.; de Souza, D.M.S.; Talvani, A.; Bezerra, F.S.; Cruz Calsavara, A.J.; Costa, D.C. Anti-inflammatory and antioxidant properties of black mulberry (Morus nigra L.) in a Model of LPS-Induced Sepsis. Oxid. Med. Cell. Longev., 2018, 2018, 1-13.
[http://dx.doi.org/10.1155/2018/5048031] [PMID: 30524657]
[7]
Mallhi, T.H.; Abbas, K.; Ali, M.; Qadir, M.I.; Saleem, M.; Khan, Y.H. Hepatoprotective activity of methanolic extract of Malva parviflora against paracetamol-induced hepatotoxicity in mice. Bangladesh J. Pharmacol., 2014, 9(3), 342-346.
[http://dx.doi.org/10.3329/bjp.v9i3.19105]
[8]
Tag, H.M. Hepatoprotective effect of mulberry (Morus nigra) leaves extract against methotrexate induced hepatotoxicity in male albino rat. BMC Complement. Altern. Med., 2015, 15(1), 252.
[http://dx.doi.org/10.1186/s12906-015-0744-y] [PMID: 26209437]
[9]
Jan, B.; Parveen, R.; Zahiruddin, S.; Khan, M.U.; Mohapatra, S.; Ahmad, S. Nutritional constituents of mulberry and their potential applications in food and pharmaceuticals: A review. Saudi J. Biol. Sci., 2021, 28(7), 3909-3921.
[http://dx.doi.org/10.1016/j.sjbs.2021.03.056] [PMID: 34220247]
[10]
Zeni, A.L.B.; Moreira, T.D.; Dalmagro, A.P.; Camargo, A.; Bini, L.A.; Simionatto, E.L.; Scharf, D.R. Evaluation of phenolic compounds and lipid-lowering effect of Morus nigra leaves extract. An. Acad. Bras. Cienc., 2017, 89(4), 2805-2815.
[http://dx.doi.org/10.1590/0001-3765201720160660] [PMID: 29236863]
[11]
Souza, G.R.; Oliveira-Junior, R.G.; Diniz, T.C.; Branco, A.; Lima-Saraiva, S.R.G.; Guimarães, A.L.; Oliveira, A.P.; Pacheco, A.G.M.; Silva, M.G.; Moraes-Filho, M.O.; Costa, M.P.; Pessoa, C.Ó.; Almeida, J.R.G.S. Assessment of the antibacterial, cytotoxic and antioxidant activities of Morus nigra L. (Moraceae). Braz. J. Biol., 2017, 78(2), 248-254.
[http://dx.doi.org/10.1590/1519-6984.05316] [PMID: 28832831]
[12]
Hao, J.; Gao, Y.; Xue, J.; Yang, Y.; Yin, J.; Wu, T.; Zhang, M. Phytochemicals, pharmacological effects and molecular mechanisms of mulberry. Foods, 2022, 11(8), 1170.
[http://dx.doi.org/10.3390/foods11081170] [PMID: 35454757]
[13]
Rodrigues, E.; Marcelino, G.; Silva, G.; Figueiredo, P.; Garcez, W.; Corsino, J.; Guimarães, R.; Freitas, K. Nutraceutical and medicinal potential of the Morus species in metabolic dysfunctions. Int. J. Mol. Sci., 2019, 20(2), 301.
[http://dx.doi.org/10.3390/ijms20020301] [PMID: 30646503]
[14]
Dalmagro, A.P.; Camargo, A.; Zeni, A.L.B. Morus nigra and its major phenolic, syringic acid, have antidepressant-like and neuroprotective effects in mice. Metab. Brain Dis., 2017, 32(6), 1963-1973.
[http://dx.doi.org/10.1007/s11011-017-0089-y] [PMID: 28822021]
[15]
Jiao, Y.; Wang, X.; Jiang, X.; Kong, F.; Wang, S.; Yan, C. Antidiabetic effects of Morus alba fruit polysaccharides on high-fat diet- and streptozotocin-induced type 2 diabetes in rats. J. Ethnopharmacol., 2017, 199, 119-127.
[http://dx.doi.org/10.1016/j.jep.2017.02.003] [PMID: 28163112]
[16]
Rasul, A.; Hussain, G.; Selamoglu, Z.; López-Alberca, M.P. Nature-inspired drugs: Expanding horizons of contemporary therapeutics. Adv. Pharmacol. Sci., 2019, 2019, 1-2.
[http://dx.doi.org/10.1155/2019/6218183] [PMID: 31191650]
[17]
Yan, J.; Ruan, J.; Huang, P.; Sun, F.; Zheng, D.; Zhang, Y.; Wang, T. The structure–activity relationship review of the main bioactive constituents of Morus genus plants. J. Nat. Med., 2020, 74(2), 331-340.
[http://dx.doi.org/10.1007/s11418-019-01383-8] [PMID: 31897975]
[18]
Yadav, S.K.; Kauldhar, B.S.; Sandhu, P.P.; Thakur, K.; Sucheta, T.R.; Sharma, T.R. Retrospect and prospects of secondary agriculture and bioprocessing. J. Plant Biochem. Biotechnol., 2020, 29(1), 1-14.
[http://dx.doi.org/10.1007/s13562-020-00550-3]
[19]
Yadav, S.; Nair, N.; Biharee, A.; Prathap, V.M.; Majeed, J. Updated ethnobotanical notes, phytochemistry and phytopharmacology of plants belonging to the genus Morus (Family: Moraceae). Phytomedicine Plus, 2022, 2(1), 100120.
[http://dx.doi.org/10.1016/j.phyplu.2021.100120]
[20]
Memete, A.R.; Timar, A.V.; Vuscan, A.N.; Miere, F.; Venter, A.C.; Vicas, S.I. Phytochemical composition of different botanical parts of morus species, health benefits and application in food industry, plants. Plants, 2022, 11(2), 152.
[http://dx.doi.org/10.3390/plants11020152]
[21]
Chen, H.; Pu, J.; Liu, D.; Yu, W.; Shao, Y.; Yang, G.; Xiang, Z.; He, N. Anti-inflammatory and antinociceptive properties of flavonoids from the fruits of black mulberry (Morus nigra L.). PLoS One, 2016, 11(4), e0153080.
[http://dx.doi.org/10.1371/journal.pone.0153080] [PMID: 27046026]
[22]
Ribeiro, R.V.; Bieski, I.G.C.; Balogun, S.O.; Martins, D.T.O. Ethnobotanical study of medicinal plants used by Ribeirinhos in the North Araguaia microregion, Mato Grosso, Brazil. J. Ethnopharmacol., 2017, 205, 69-102.
[http://dx.doi.org/10.1016/j.jep.2017.04.023] [PMID: 28476677]
[23]
Miranda, M.A.; Vieira, G.D-V.; Alves, M.S.; Yamamoto, C.H.; De Pinho, J.D.J.R.G.; De Sousa, O.V. Uso etnomedicinal do chá de Morus nigra L. no tratamento dos sintomas do climatério de mulheres de Muriaé, Minas Gerais, Brasil, HU Revista. 2010. Available From: https://doi.org/periodicos.ufjf.br/index.php/hurevista/article/view/817
[24]
Zoofishan, Z.; Kúsz, N.; Csorba, A.; Tóth, G.; Hajagos-Tóth, J.; Kothencz, A.; Gáspár, R.; Hunyadi, A. Antispasmodic activity of prenylated phenolic compounds from the root bark of Morus nigra. Molecules, 2019, 24(13), 2497.
[http://dx.doi.org/10.3390/molecules24132497] [PMID: 31288489]
[25]
Júnior, I.I.S.; Barbosa, H.M.; Carvalho, D.C.R.; Barros, R.A.; Albuquerque, F.P.; da Silva, D.H.A.; Souza, G.R.; Souza, N.A.C.; Rolim, L.A.; Silva, F.M.M.; Duarte, G.I.B.P.; Almeida, J.R.G.S.; Oliveira Júnior, F.M.; Gomes, D.A.; Lira, E.C. Brazilian Morus nigra Attenuated Hyperglycemia, Dyslipidemia, and Prooxidant status in Alloxan-Induced Diabetic Rats. ScientificWorldJournal, 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/5275813] [PMID: 28567440]
[26]
Figueredo, K.C.; Guex, C.G.; Reginato, F.Z.; Haas da Silva, A.R.; Cassanego, G.B.; Lhamas, C.L.; Boligon, A.A.; Lopes, G.H.H.; de Freitas Bauermann, L. Safety assessment of Morus nigra L. leaves: Acute and subacute oral toxicity studies in Wistar rats. J. Ethnopharmacol., 2018, 224, 290-296.
[http://dx.doi.org/10.1016/j.jep.2018.05.013] [PMID: 29772355]
[27]
Farahani, M.; Salehi-Arjmand, H.; Khadivi, A.; Akramian, M. Phenotypic diversity among Morus alba var. nigra genotypes as revealed by multivariate analysis. Sci. Hortic. (Amsterdam), 2019, 248, 41-49.
[http://dx.doi.org/10.1016/j.scienta.2018.12.055]
[28]
Zoofishan, Z.; Hohmann, J.; Hunyadi, A. Phenolic antioxidants of Morus nigra roots, and antitumor potential of morusin. Phytochem. Rev., 2018, 17(5), 1031-1045.
[http://dx.doi.org/10.1007/s11101-018-9565-1]
[29]
Alseekh, S.; Perez de Souza, L.; Benina, M.; Fernie, A.R. The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry, 2020, 174, 112347.
[http://dx.doi.org/10.1016/j.phytochem.2020.112347] [PMID: 32203741]
[30]
Kumar, B.R. Application of HPLC and ESI-MS techniques in the analysis of phenolic acids and flavonoids from green leafy vegetables (GLVs). J. Pharm. Anal., 2017, 7(6), 349-364.
[http://dx.doi.org/10.1016/j.jpha.2017.06.005] [PMID: 29404060]
[31]
Tang, H.; Huang, L.; Zhao, D.; Sun, C.; Song, P. Interaction mechanism of flavonoids on bovine serum albumin: Insights from molecular property-binding affinity relationship. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 239, 118519.
[http://dx.doi.org/10.1016/j.saa.2020.118519] [PMID: 32480277]
[32]
Song, H.; Zhang, L.; Wu, L.; Huang, W.; Wang, M.; Zhang, L.; Shao, Y.; Wang, M.; Zhang, F.; Zhao, Z.; Mei, X.; Li, T.; Wang, D.; Liang, Y.; Li, J.; Xu, T.; Zhao, Y.; Zhong, Y.; Chen, Q.; Lu, B. Phenolic acid profiles of common food and estimated natural intake with different structures and forms in five regions of China. Food Chem., 2020, 321, 126675.
[http://dx.doi.org/10.1016/j.foodchem.2020.126675] [PMID: 32240915]
[33]
Zhang, Y.; Wu, S.; Qin, Y.; Liu, J.; Liu, J.; Wang, Q.; Ren, F.; Zhang, H. Interaction of phenolic acids and their derivatives with human serum albumin: Structure–affinity relationships and effects on antioxidant activity. Food Chem., 2018, 240, 1072-1080.
[http://dx.doi.org/10.1016/j.foodchem.2017.07.100] [PMID: 28946225]
[34]
Arvaniti, O.S.; Samaras, Y.; Gatidou, G.; Thomaidis, N.S.; Stasinakis, A.S. Review on fresh and dried figs: Chemical analysis and occurrence of phytochemical compounds, antioxidant capacity and health effects. Food Res. Int., 2019, 119, 244-267.
[http://dx.doi.org/10.1016/j.foodres.2019.01.055] [PMID: 30884655]
[35]
Radojković, M.; Zeković, Z.; Mašković, P.; Vidović, S.; Mandić, A.; Mišan, A.; Đurović, S. Biological activities and chemical composition of Morus leaves extracts obtained by maceration and supercritical fluid extraction. J. Supercrit. Fluids, 2016, 117, 50-58.
[http://dx.doi.org/10.1016/j.supflu.2016.05.004]
[36]
Dalmagro, A.P.; Camargo, A.; da Silva Filho, H.H.; Valcanaia, M.M.; de Jesus, P.C.; Zeni, A.L.B. Seasonal variation in the antioxidant phytocompounds production from the Morus nigra leaves. Ind. Crops Prod., 2018, 123, 323-330.
[http://dx.doi.org/10.1016/j.indcrop.2018.06.085]
[37]
Sánchez-Salcedo, E.M.; Mena, P.; García-Viguera, C.; Martínez, J.J.; Hernández, F. Phytochemical evaluation of white (Morus alba L.) and black (Morus nigra L.) mulberry fruits, a starting point for the assessment of their beneficial properties. J. Funct. Foods, 2015, 12, 399-408.
[http://dx.doi.org/10.1016/j.jff.2014.12.010]
[38]
Tomas, M.; Toydemir, G.; Boyacioglu, D.; Hall, R.; Beekwilder, J.; Capanoglu, E. The effects of juice processing on black mulberry antioxidants. Food Chem., 2015, 186, 277-284.
[http://dx.doi.org/10.1016/j.foodchem.2014.11.151] [PMID: 25976822]
[39]
Pérez-Gregorio, M.R.; Regueiro, J.; Alonso-González, E.; Pastrana-Castro, L.M.; Simal-Gándara, J. Influence of alcoholic fermentation process on antioxidant activity and phenolic levels from mulberries (Morus nigra L.). Lebensm. Wiss. Technol., 2011, 44(8), 1793-1801.
[http://dx.doi.org/10.1016/j.lwt.2011.03.007]
[40]
Mascarello, A.; Orbem Menegatti, A.C.; Calcaterra, A.; Martins, P.G.A.; Chiaradia-Delatorre, L.D.; D’Acquarica, I.; Ferrari, F.; Pau, V.; Sanna, A.; De Logu, A.; Botta, M.; Botta, B.; Terenzi, H.; Mori, M. Naturally occurring Diels-Alder-type adducts from Morus nigra as potent inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase B. Eur. J. Med. Chem., 2018, 144, 277-288.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.087] [PMID: 29275228]
[41]
Abdel Bar, F.M.; Abbas, G.M.; Gohar, A.A.; Lahloub, M.F.I. Antiproliferative activity of stilbene derivatives and other constituents from the stem bark of Morus nigra L. Nat. Prod. Res., 2019, 0, 1-8.
[http://dx.doi.org/10.1080/14786419.2019.1573236] [PMID: 30822142]
[42]
Korzeniowska, K. Łęska, B.; Wieczorek, P.P. Isolation and determination of phenolic compounds from freshwater Cladophora glomerata. Algal Res., 2020, 48, 101912.
[http://dx.doi.org/10.1016/j.algal.2020.101912]
[43]
Yabré, M.; Ferey, L.; Somé, I.T.; Gaudin, K. Greening reversed-phase liquid chromatography methods using alternative solvents for pharmaceutical analysis. Molecules, 2018, 23(5), 1065.
[http://dx.doi.org/10.3390/molecules23051065]
[44]
Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep., 2019, 24, e00370.
[http://dx.doi.org/10.1016/j.btre.2019.e00370] [PMID: 31516850]
[45]
Ribeiro, A.E.A.S.; Soares, J.M.D.; Silva, H.A.L.; Wanderley, C.W.S.; Moura, C.A.; de Oliveira-Junior, R.G.; de Oliveira, A.P.; Rolim, L.A.; Costa, E.V.; Almeida, J.R.G.S.; de Oliveira, H.P.; Palheta-Junior, R.C. Inhibitory effects of Morus nigra L. (Moraceae) against local paw edema and mechanical hypernociception induced by Bothrops jararacussu snake venom in mice. Biomed. Pharmacother., 2019, 111, 1046-1056.
[http://dx.doi.org/10.1016/j.biopha.2019.01.011] [PMID: 30841418]
[46]
Rashighi, M.; Harris, J.E. Modulation of nuclear factor-κB signaling and reduction of neural tube defects by quercetin-3-glucoside in embryos of diabetic mice. Physiol. Behav., 2017, 176, 139-148.
[http://dx.doi.org/10.1053/j.gastro.2016.08.014.CagY]
[47]
Szewczyk, K.; Sezai Cicek, S.; Zidorn, C.; Granica, S. Phenolic constituents of the aerial parts of Impatiens glandulifera Royle (Balsaminaceae) and their antioxidant activities. Nat. Prod. Res., 2019, 33(19), 2851-2855.
[http://dx.doi.org/10.1080/14786419.2018.1499644] [PMID: 30175924]
[48]
Wang, M.; Cao, Y.; Wei, Y.; Ren, Y.; Liu, Y.; Chen, X.; He, C.; Zheng, X.; Feng, W. Saffloflavone, a new flavonoid from the flowers of Carthamus tinctorius L. and its cardioprotective activity. Nat. Prod. Res., 2021, 36, 1-6.
[http://dx.doi.org/10.1080/14786419.2020.1855167]
[49]
Govindarasu, M.; Abirami, P.; Rajakumar, G.; Ansari, M.A.; Alomary, M.N.; Aba Alkhayl, F.F.; Aloliqi, A.A.; Thiruvengadam, M.; Vaiyapuri, M. Kaempferitrin inhibits colorectal cancer cells by inducing reactive oxygen species and modulating PI3K/AKT signalling pathway. Process Biochem., 2022, 116, 26-37.
[http://dx.doi.org/10.1016/j.procbio.2022.02.021]
[50]
Govindarasu, M.; Ganeshan, S.; Ansari, M.A.; Alomary, M.N.; AlYahya, S.; Alghamdi, S.; Almehmadi, M.; Rajakumar, G.; Thiruvengadam, M.; Vaiyapuri, M. In silico modeling and molecular docking insights of kaempferitrin for colon cancer-related molecular targets. J. Saudi Chem. Soc., 2021, 25(9), 101319.
[http://dx.doi.org/10.1016/j.jscs.2021.101319]
[51]
Patel, K.; Patel, D.K. T131 Insulin-mimetic role of kaempferitrin in glucose homeostasis: A dietary flavonoid exhibits anti-diabetic complications and promotes glucose uptake. Clin. Chim. Acta, 2022, 530, S118.
[http://dx.doi.org/10.1016/j.cca.2022.04.610]
[52]
Sánchez-Salcedo, E.M.; Mena, P.; García-Viguera, C.; Hernández, F.; Martínez, J.J. (Poly)phenolic compounds and antioxidant activity of white (Morus alba) and black (Morus nigra) mulberry leaves: Their potential for new products rich in phytochemicals. J. Funct. Foods, 2015, 18, 1039-1046.
[http://dx.doi.org/10.1016/j.jff.2015.03.053]
[53]
da Silva, D.H.A.; de Moura Barbosa, H.; Hernández, F.; de Almeida Beltrão, R.L.; Silva, C.F.O.; Moura, C.A.; Castro, R.N.; da Silva Almeida, J.R.G.; Gomes, D.A.; Lira, E.C. Hexane fraction from Brazilian Morus nigra leaves improved oral carbohydrate tolerance and inhibits α-amylase and α-glucosidase activities in diabetic mice. Nat. Prod. Res., 2020, 0, 1-4.
[http://dx.doi.org/10.1080/14786419.2020.1723087]
[54]
Liu, J.; Ren, L.; Wang, H.; Li, Z. Isoquercitrin induces endoplasmic reticulum stress and immunogenic cell death in gastric cancer cells. Biochem. Genet., 2022.
[http://dx.doi.org/10.1007/s10528-022-10309-1] [PMID: 36480095]
[55]
Li, R.; Yuan, C.; Dong, C.; Shuang, S.; Choi, M.M.F. In vivo antioxidative effect of isoquercitrin on cadmium-induced oxidative damage to mouse liver and kidney. Naunyn Schmiedebergs Arch. Pharmacol., 2011, 383(5), 437-445.
[http://dx.doi.org/10.1007/s00210-011-0613-2] [PMID: 21336539]
[56]
Jayachandran, M.; Wu, Z.; Ganesan, K.; Khalid, S.; Chung, S.M.; Xu, B. Isoquercetin upregulates antioxidant genes, suppresses inflammatory cytokines and regulates AMPK pathway in streptozotocin-induced diabetic rats. Chem. Biol. Interact., 2019, 303, 62-69.
[http://dx.doi.org/10.1016/j.cbi.2019.02.017] [PMID: 30817903]
[57]
Ghorbani, A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed. Pharmacother., 2017, 96, 305-312.
[http://dx.doi.org/10.1016/j.biopha.2017.10.001] [PMID: 29017142]
[58]
Ma, Y.; Yang, L.; Ma, J.; Lu, L.; Wang, X.; Ren, J.; Yang, J. Rutin attenuates doxorubicin-induced cardiotoxicity via regulating autophagy and apoptosis. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(8), 1904-1911.
[http://dx.doi.org/10.1016/j.bbadis.2016.12.021] [PMID: 28069395]
[59]
Lin, Y.C.; Wu, C.J.; Kuo, P.C.; Chen, W.Y.; Tzen, J.T.C. Quercetin 3 O malonylglucoside in the leaves of mulberry (Morus alba) is a functional analog of ghrelin. J. Food Biochem., 2020, 44(9), e13379.
[http://dx.doi.org/10.1111/jfbc.13379] [PMID: 32700782]
[60]
Chen, H.; Yu, W.; Chen, G.; Meng, S.; Xiang, Z.; He, N. Antinociceptive and antibacterial properties of anthocyanins and flavonols from fruits of black and non-black mulberries. Molecules, 2017, 23(1), 4.
[http://dx.doi.org/10.3390/molecules23010004] [PMID: 29267231]
[61]
D’Urso, G.; Mes, J.J.; Montoro, P.; Hall, R.D.; de Vos, R.C.H. Identification of bioactive phytochemicals in mulberries. Metabolites, 2019, 10(1), 7.
[http://dx.doi.org/10.3390/metabo10010007] [PMID: 31861822]
[62]
Hua, F.; Zhou, P.; Liu, P.; Bao, G.H. Rat plasma protein binding of kaempferol3 O rutinoside from Lu’an GuaPian tea and its antiinflammatory mechanism for cardiovascular protection. J. Food Biochem., 2021, 45(7), e13749.
[http://dx.doi.org/10.1111/jfbc.13749] [PMID: 34041764]
[63]
Sánchez-Marzo, N.; Pérez-Sánchez, A.; Ruiz-Torres, V.; Martínez-Tébar, A.; Castillo, J.; Herranz-López, M.; Barrajón-Catalán, E. Antioxidant and photoprotective activity of apigenin and its potassium salt derivative in human keratinocytes and absorption in Caco-2 cell monolayers. Int. J. Mol. Sci., 2019, 20(9), 2148.
[http://dx.doi.org/10.3390/ijms20092148] [PMID: 31052292]
[64]
López-Lázaro, M. Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. Chem., 2009, 9(1), 31-59.
[http://dx.doi.org/10.2174/138955709787001712] [PMID: 19149659]
[65]
Paudel, P.; Yu, T.; Seong, S.; Kuk, E.; Jung, H.; Choi, J. Protein tyrosine phosphatase 1B inhibition and glucose uptake potentials of mulberrofuran G, albanol B, and kuwanon G from root bark of Morus alba L. in insulin-resistant HepG2 cells: An in vitro and in silico study. Int. J. Mol. Sci., 2018, 19(5), 1542.
[http://dx.doi.org/10.3390/ijms19051542] [PMID: 29786669]
[66]
Wang, J.; Liu, X.; Zheng, H.; Liu, Q.; Zhang, H.; Wang, X.; Shen, T.; Wang, S.; Ren, D. Morusin induces apoptosis and autophagy via JNK, ERK and PI3K/Akt signaling in human lung carcinoma cells. Chem. Biol. Interact., 2020, 331, 109279.
[http://dx.doi.org/10.1016/j.cbi.2020.109279] [PMID: 33035517]
[67]
Cheng, P.S.; Hu, C.C.; Wang, C.J.; Lee, Y.J.; Chung, W.C.; Tseng, T.H. Involvement of the antioxidative property of morusin in blocking phorbol ester–induced malignant transformation of JB6 P+ mouse epidermal cells. Chem. Biol. Interact., 2017, 264, 34-42.
[http://dx.doi.org/10.1016/j.cbi.2017.01.009] [PMID: 28108223]
[68]
Zelova, H.; Hana, Z.; Zuzana, C. Evaluation of Anti-In fl ammatory Activity of Prenylated Substances Isolated from Morus alba and Morus nigra. J. Nat. Prod., 2013.
[http://dx.doi.org/10.1021/np401025f] [PMID: 24901948]
[69]
Han, H.; Chou, C.C.; Li, R.; Liu, J.; Zhang, L.; Zhu, W.; Hu, J.; Yang, B.; Tian, J. Chalcomoracin is a potent anticancer agent acting through triggering Oxidative stress via a mitophagy- and paraptosis-dependent mechanism. Sci. Rep., 2018, 8(1), 9566.
[http://dx.doi.org/10.1038/s41598-018-27724-3] [PMID: 29934599]
[70]
Ko, W.; Yoon, C.S.; Kim, K.W.; Lee, H.; Kim, N.; Woo, E.R.; Kim, Y.C.; Kang, D.G.; Lee, H.S.; Oh, H.; Lee, D.S. Neuroprotective and anti-inflammatory effects of kuwanon c from cudrania tricuspidata are mediated by heme oxygenase-1 in ht22 hippocampal cells, raw264.7 macrophage, and bv2 microglia. Int. J. Mol. Sci., 2020, 21(14), 4839.
[http://dx.doi.org/10.3390/ijms21144839] [PMID: 32650596]
[71]
Park, K.M.; You, J.S.; Lee, H.Y.; Baek, N.I.; Hwang, J.K.; Kuwanon, G.; Kuwanon, G. An antibacterial agent from the root bark of Morus alba against oral pathogens. J. Ethnopharmacol., 2003, 84(2-3), 181-185.
[http://dx.doi.org/10.1016/S0378-8741(02)00318-5] [PMID: 12648813]
[72]
Kim, I.; Lee, J. Variations in anthocyanin profiles and antioxidant activity of 12 genotypes of mulberry (Morus spp.) fruits and their changes during processing. Antioxidants, 2020, 9(3), 242.
[http://dx.doi.org/10.3390/antiox9030242] [PMID: 32192116]
[73]
Karim, N.; Shishir, M.R.I.; Li, Y.; Zineb, O.Y.; Mo, J.; Tangpong, J.; Chen, W. Pelargonidin-3-O-Glucoside encapsulated pectin-chitosan-nanoliposomes recovers palmitic acid-induced hepatocytes injury. Antioxidants, 2022, 11(4), 623.
[http://dx.doi.org/10.3390/antiox11040623] [PMID: 35453309]
[74]
Yang, Y.; Shi, Z.; Reheman, A.; Jin, J.W.; Li, C.; Wang, Y.; Andrews, M.C.; Chen, P.; Zhu, G.; Ling, W.; Ni, H. Plant food delphinidin-3-glucoside significantly inhibits platelet activation and thrombosis: Novel protective roles against cardiovascular diseases. PLoS One, 2012, 7(5), e37323.
[http://dx.doi.org/10.1371/journal.pone.0037323] [PMID: 22624015]
[75]
Husain, A.; Chanana, H.; Khan, S.A.; Dhanalekshmi, U.M.; Ali, M.; Alghamdi, A.A.; Ahmad, A. Chemistry and pharmacological actions of delphinidin, a dietary purple pigment in anthocyanidin and anthocyanin forms. Front. Nutr., 2022, 9, 746881.
[http://dx.doi.org/10.3389/fnut.2022.746881] [PMID: 35369062]
[76]
Jiang, Y.; Dai, M.; Nie, W.J.; Yang, X.R.; Zeng, X.C. Effects of the ethanol extract of black mulberry (Morus nigra L.) fruit on experimental atherosclerosis in rats. J. Ethnopharmacol., 2017, 200, 228-235.
[http://dx.doi.org/10.1016/j.jep.2017.02.037] [PMID: 28242382]
[77]
Tchabo, W.; Ma, Y.; Kwaw, E.; Zhang, H.; Li, X.; Afoakwah, N.A. Effects of ultrasound, high pressure, and manosonication processes on phenolic profile and antioxidant properties of a sulfur dioxide-free mulberry (Morus nigra) wine. Food Bioprocess Technol., 2017, 10(7), 1210-1223.
[http://dx.doi.org/10.1007/s11947-017-1892-5]
[78]
Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Barroso, C.G.; Barbero, G.F. Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp. Food Chem., 2017, 219, 23-32.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.122] [PMID: 27765221]
[79]
Chaves, V.C.; Soares, M.S.P.; Spohr, L.; Teixeira, F.; Vieira, A.; Constantino, L.S.; Pizzol, F.D.; Lencina, C.L.; Spanevello, R.M.; Freitas, M.P.; Simões, C.M.O.; Reginatto, F.H.; Stefanello, F.M. Blackberry extract improves behavioral and neurochemical dysfunctions in a ketamine-induced rat model of mania. Neurosci. Lett., 2020, 714, 134566.
[http://dx.doi.org/10.1016/j.neulet.2019.134566] [PMID: 31698027]
[80]
Koyu, H.; Kazan, A.; Demir, S.; Haznedaroglu, M.Z.; Yesil-Celiktas, O. Optimization of microwave assisted extraction of Morus nigra L. fruits maximizing tyrosinase inhibitory activity with isolation of bioactive constituents. Food Chem., 2018, 248, 183-191.
[http://dx.doi.org/10.1016/j.foodchem.2017.12.049] [PMID: 29329842]
[81]
Koss-Mikołajczyk, I.; Kusznierewicz, B.; Bartoszek, A. The relationship between phytochemical composition and biological activities of differently pigmented varieties of berry fruits; comparison between embedded in food matrix and isolated anthocyanins. Foods, 2019, 8(12), 646.
[http://dx.doi.org/10.3390/foods8120646] [PMID: 31817505]
[82]
Yazdankhah, S.; Hojjati, M.; Azizi, M.H. The Antidiabetic Potential of Black Mulberry Extract-Enriched Pasta through Inhibition of Enzymes and Glycemic Index. Plant Foods Hum. Nutr., 2019, 74(1), 149-155.
[http://dx.doi.org/10.1007/s11130-018-0711-0] [PMID: 30632080]
[83]
Schafranski, K.; Postigo, M.; Vitali, L.; Micke, G.; Richter, W.; Chaves, E. Avaliação de compostos bioativos e atividade antioxidante de extratos de folhas de amoreira preta (Morus nigra l.) utilizando planejamento experimental. Quim. Nova, 2019, 42, 736-744.
[http://dx.doi.org/10.21577/0100-4042.20170389]
[84]
Nastić N.; Borrás-Linares, I.; Lozano-Sánchez, J.; Švarc-Gajić J.; Segura-Carretero, A. Optimization of the extraction of phytochemicals from black mulberry (Morus nigra L.) leaves. J. Ind. Eng. Chem., 2018, 68, 282-292.
[http://dx.doi.org/10.1016/j.jiec.2018.07.055]
[85]
Gao, X.; Zhang, S.; Wang, L.; Yu, L.; Zhao, X.; Ni, H.; Wang, Y.; Wang, J.; Shan, C.; Fu, Y. Anti-inflammatory effects of neochlorogenic acid extract from mulberry leaf (Morus alba L.) against LPS-stimulated inflammatory response through mediating the AMPK/Nrf2 signaling pathway in A549 cells. Molecules, 2020, 25(6), 1385.
[http://dx.doi.org/10.3390/molecules25061385]
[86]
Ganzon, J.G.; Chen, L.G.; Wang, C.C. 4- O -Caffeoylquinic acid as an antioxidant marker for mulberry leaves rich in phenolic compounds. J. Food Drug Anal., 2018, 26(3), 985-993.
[http://dx.doi.org/10.1016/j.jfda.2017.11.011] [PMID: 29976416]
[87]
Turgut, N.H.; Mert, D.G.; Kara, H.; Egilmez, H.R.; Arslanbas, E.; Tepe, B.; Gungor, H.; Yilmaz, N.; Tuncel, N.B. Effect of black mulberry (Morus nigra) extract treatment on cognitive impairment and oxidative stress status of D -galactose-induced aging mice. Pharm. Biol., 2016, 54(6), 1052-1064.
[http://dx.doi.org/10.3109/13880209.2015.1101476] [PMID: 26510817]
[88]
de Freitas, M.M.; Fontes, P.R.; Souza, P.M.; William Fagg, C.; Neves Silva Guerra, E.; de Medeiros Nóbrega, Y.K.; Silveira, D.; Fonseca-Bazzo, Y.; Simeoni, L.A.; Homem-de-Mello, M.; Oliveira Magalhães, P. Extracts of Morus nigra L. Leaves standardized in chlorogenic acid, rutin and isoquercitrin: Tyrosinase inhibition and cytotoxicity. PLoS One, 2016, 11(9), e0163130.
[http://dx.doi.org/10.1371/journal.pone.0163130] [PMID: 27655047]
[89]
Piechocka, J.; Szulc, P. Dziedziński, M.; Kobus-Cisowska, J.; Szczepaniak, O.; Szymanowska-Powałowska, D. Antioxidant potential of various solvent extract from Morus alba fruits and its major polyphenols composition. Cienc. Rural, 2020, 50(1), 1-12.
[90]
Kakkar, S.; Bais, S. A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/952943] [PMID: 25006494]
[91]
Mena, P.; Sánchez-Salcedo, E.M.; Tassotti, M.; Martínez, J.J.; Hernández, F.; Del Rio, D. Phytochemical evaluation of eight white (Morus alba L.) and black (Morus nigra L.) mulberry clones grown in Spain based on UHPLC-ESI-MSn metabolomic profiles. Food Res. Int., 2016, 89, 1116-1122.
[http://dx.doi.org/10.1016/j.foodres.2016.06.012]
[92]
Celep, E.; Charehsaz, M.; Akyüz, S.; Acar, E.T.; Yesilada, E. Effect of in vitro gastrointestinal digestion on the bioavailability of phenolic components and the antioxidant potentials of some Turkish fruit wines. Food Res. Int., 2015, 78, 209-215.
[http://dx.doi.org/10.1016/j.foodres.2015.10.009] [PMID: 28433284]
[93]
Xu, X.; Huang, Y.; Xu, J.; He, X.; Wang, Y. Anti-neuroinflammatory and antioxidant phenols from mulberry fruit (Morus alba L.). J. Funct. Foods, 2020, 68, 103914.
[http://dx.doi.org/10.1016/j.jff.2020.103914]
[94]
Lu, H.P.; Jia, Y.N.; Peng, Y.L.; Yu, Y.; Sun, S.L.; Yue, M.T.; Pan, M.H.; Zeng, L.S.; Xu, L. Oxyresveratrol, a Stilbene Compound from Morus alba L. Twig Extract Active Against Trichophyton rubrum. Phytother. Res., 2017, 31(12), 1842-1848.
[http://dx.doi.org/10.1002/ptr.5926] [PMID: 29024160]
[95]
Hardianti, B.; Umeyama, L.; Li, F.; Yokoyama, S.; Hayakawa, Y. Anti inflammatory compounds moracin O and P from Morus alba Linn. (Sohakuhi) target the NF κB pathway. Mol. Med. Rep., 2020, 22(6), 5385-5391.
[http://dx.doi.org/10.3892/mmr.2020.11615] [PMID: 33173971]
[96]
Kikuchi, T.; Nihei, M.; Nagai, H.; Fukushi, H.; Tabata, K.; Suzuki, T.; Akihisa, T. Albanol A from the root bark of Morus alba L. induces apoptotic cell death in HL60 human leukemia cell line. Chem. Pharm. Bull., 2010, 58(4), 568-571.
[http://dx.doi.org/10.1248/cpb.58.568] [PMID: 20410645]
[97]
Xu, L.; Yu, M.; Niu, L.; Huang, C.; Wang, Y.; Wu, C.; Yang, P.; Hu, X. Phenolic compounds isolated from Morus nigra and their α-glucosidase inhibitory activities. Nat. Prod. Res., 2020, 34(5), 605-612.
[http://dx.doi.org/10.1080/14786419.2018.1491041] [PMID: 30369248]
[98]
Wen, P.; Hu, T.G.; Linhardt, R.J.; Liao, S.T.; Wu, H.; Zou, Y.X. Mulberry: A review of bioactive compounds and advanced processing technology. Trends Food Sci. Technol., 2019, 83, 138-158.
[http://dx.doi.org/10.1016/j.tifs.2018.11.017]
[99]
Naviglio, D.; Scarano, P.; Ciaravolo, M.; Gallo, M. Rapid solid-liquid dynamic extraction (RSLDE): A powerful and greener alternative to the latest solid-liquid extraction techniques. Foods, 2019, 8(7), 245.
[http://dx.doi.org/10.3390/foods8070245] [PMID: 31284507]
[100]
Santos, S.A.O.; Félix, R.; Pais, A.C.S.; Rocha, S.M.; Silvestre, A.J.D. The quest for phenolic compounds from macroalgae: A review of extraction and identification methodologies. Biomolecules, 2019, 9(12), 847.
[http://dx.doi.org/10.3390/biom9120847] [PMID: 31835386]
[101]
Grosso, C.; Valentão, P.; Ferreres, F.; Andrade, P. Alternative and efficient extraction methods for marine-derived compounds. Mar. Drugs, 2015, 13(5), 3182-3230.
[http://dx.doi.org/10.3390/md13053182] [PMID: 26006714]
[102]
Duarte Trujillo, A.S.; Jiménez Forero, J.A.; Pineda Insuasti, J.A.; González Trujillo, C.A.; García Juarez, M. Extracción de sustancias bioactivas de Pleurotus ostreatus (Pleurotaceae) por maceración dinámica. Acta Biol. Colomb., 2020, 25(1), 61-74.
[http://dx.doi.org/10.15446/abc.v25n1.72409]
[103]
Aleixandre-Tudo, J.L.; du Toit, W. Cold maceration application in red wine production and its effects on phenolic compounds: A review. Lebensm. Wiss. Technol., 2018, 95, 200-208.
[http://dx.doi.org/10.1016/j.lwt.2018.04.096]
[104]
Lama-Muñoz, A.; Contreras, M.M.; Espínola, F.; Moya, M.; Romero, I.; Castro, E. Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: Extraction with the Soxhlet method and pressurized liquids. Food Chem., 2020, 320, 126626.
[http://dx.doi.org/10.1016/j.foodchem.2020.126626] [PMID: 32222659]
[105]
Plaza, M.; Marina, M.L. Pressurized hot water extraction of bioactives. Trends Analyt. Chem., 2019, 116, 236-247.
[http://dx.doi.org/10.1016/j.trac.2019.03.024]
[106]
Cea Pavez, I.; Lozano-Sánchez, J.; Borrás-Linares, I.; Nuñez, H.; Robert, P.; Segura-Carretero, A. Obtaining an extract rich in phenolic compounds from olive pomace by pressurized liquid extraction. Molecules, 2019, 24(17), 3108.
[http://dx.doi.org/10.3390/molecules24173108] [PMID: 31461900]
[107]
Djas, M.; Henczka, M. Reactive extraction of carboxylic acids using organic solvents and supercritical fluids: A review. Separ. Purif. Tech., 2018, 201, 106-119.
[http://dx.doi.org/10.1016/j.seppur.2018.02.010]
[108]
Molino, A.; Mehariya, S.; Di Sanzo, G.; Larocca, V.; Martino, M.; Leone, G.P.; Marino, T.; Chianese, S.; Balducchi, R.; Musmarra, D. Recent developments in supercritical fluid extraction of bioactive compounds from microalgae: Role of key parameters, technological achievements and challenges. J. CO2 Util., 2020, 36, 196- 209.
[http://dx.doi.org/10.1016/j.jcou.2019.11.014]
[109]
Tyśkiewicz, K.; Konkol, M.; Rój, E. The application of supercritical fluid extraction in phenolic compounds isolation from natural plant materials. Molecules, 2018, 23(10), 2625.
[http://dx.doi.org/10.3390/molecules23102625] [PMID: 30322098]
[110]
Gallo, M.; Formato, A.; Ianniello, D.; Andolfi, A.; Conte, E.; Ciaravolo, M.; Varchetta, V.; Naviglio, D. Supercritical fluid extraction of pyrethrins from pyrethrum flowers (Chrysanthemum cinerariifolium) compared to traditional maceration and cyclic pressurization extraction. J. Supercrit. Fluids, 2017, 119, 104-112.
[http://dx.doi.org/10.1016/j.supflu.2016.09.012]
[111]
Yousefi, M.; Rahimi-Nasrabadi, M.; Pourmortazavi, S.M.; Wysokowski, M.; Jesionowski, T.; Ehrlich, H.; Mirsadeghi, S. Supercritical fluid extraction of essential oils. Trends Analyt. Chem., 2019, 118, 182-193.
[http://dx.doi.org/10.1016/j.trac.2019.05.038]
[112]
Kala, H.K.; Mehta, R.; Sen, K.K.; Tandey, R.; Mandal, V. Critical analysis of research trends and issues in microwave assisted extraction of phenolics: Have we really done enough. Trends Analyt. Chem., 2016, 85, 140-152.
[http://dx.doi.org/10.1016/j.trac.2016.09.007]
[113]
Llompart, M.; Celeiro, M.; Dagnac, T. Microwave-assisted extraction of pharmaceuticals, personal care products and industrial contaminants in the environment. Trends Analyt. Chem., 2019, 116, 136-150.
[http://dx.doi.org/10.1016/j.trac.2019.04.029]
[114]
Belwal, T.; Ezzat, S.M.; Rastrelli, L.; Bhatt, I.D.; Daglia, M.; Baldi, A.; Devkota, H.P.; Orhan, I.E.; Patra, J.K.; Das, G.; Anandharamakrishnan, C.; Gomez-Gomez, L.; Nabavi, S.F.; Nabavi, S.M.; Atanasov, A.G. A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. Trends Analyt. Chem., 2018, 100, 82-102.
[http://dx.doi.org/10.1016/j.trac.2017.12.018]
[115]
Yang, Y.; Lei, Z.; Zhao, M.; Wu, C.; Wang, L.; Xu, Y. Microwave-assisted extraction of an acidic polysaccharide from Ribes nigrum L.: Structural characteristics and biological activities. Ind. Crops Prod., 2020, 147, 112249.
[http://dx.doi.org/10.1016/j.indcrop.2020.112249]
[116]
Sosa-Hernández, J.E.; Escobedo-Avellaneda, Z.; Iqbal, H.M.N.; Welti-Chanes, J. State-of-the-art extraction methodologies for bioactive compounds from algal biome to meet bio-economy challenges and opportunities. Molecules, 2018, 23(11), 2953.
[http://dx.doi.org/10.3390/molecules23112953] [PMID: 30424551]
[117]
Fierascu, R.C.; Fierascu, I.; Ortan, A.; Georgiev, M.I.; Sieniawska, E. Innovative approaches for recovery of phytoconstituents from medicinal/aromatic plants and biotechnological production. Molecules, 2020, 25(2), 309.
[http://dx.doi.org/10.3390/molecules25020309] [PMID: 31940923]
[118]
Albero, B.; Tadeo, J.L.; Pérez, R.A. Ultrasound-assisted extraction of organic contaminants. Trends Analyt. Chem., 2019, 118, 739-750.
[http://dx.doi.org/10.1016/j.trac.2019.07.007]
[119]
Safdar, M.N.; Kausar, T.; Jabbar, S.; Mumtaz, A.; Ahad, K.; Saddozai, A.A. Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. J. Food Drug Anal., 2017, 25(3), 488-500.
[http://dx.doi.org/10.1016/j.jfda.2016.07.010] [PMID: 28911634]
[120]
Marathe, S.J.; Jadhav, S.B.; Bankar, S.B.; Kumari Dubey, K.; Singhal, R.S. Improvements in the extraction of bioactive compounds by enzymes. Curr. Opin. Food Sci., 2019, 25, 62-72.
[http://dx.doi.org/10.1016/j.cofs.2019.02.009]
[121]
Ercisli, S.; Orhan, E. Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem., 2007, 103(4), 1380-1384.
[http://dx.doi.org/10.1016/j.foodchem.2006.10.054]
[122]
Mehmood Abbasi, A.; Shah, M.H.; Guo, X.; Khan, N. Comparison of nutritional value, antioxidant potential, and risk assessment of the mulberry (Morus) fruits. Int. J. Fruit Sci., 2016, 16(2), 113-134.
[http://dx.doi.org/10.1080/15538362.2015.1061960]
[123]
Wang, W.; Li, X.; Bao, X.; Gao, L.; Tao, Y. Extraction of polysaccharides from black mulberry fruit and their effect on enhancing antioxidant activity. Int. J. Biol. Macromol., 2018, 120(Pt B), 1420-1429.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.132] [PMID: 30266643]
[124]
Khattak, K.F.; Rahman, T.R. Effect of geographical distributions on the nutrient composition, phytochemical profile and antioxidant activity of Morus nigra. Pak. J. Pharm. Sci., 2015, 28(5), 1671-1678.
[PMID: 26408872]
[125]
Radojković M.; Moreira, M.M.; Soares, C.; Fátima Barroso, M.; Cvetanović A.; Švarc-Gajić J.; Morais, S.; Delerue-Matos, C. Microwave-assisted extraction of phenolic compounds from Morus nigra leaves: Optimization and characterization of the antioxidant activity and phenolic composition. J. Chem. Technol. Biotechnol., 2018, 93(6), 1684-1693.
[http://dx.doi.org/10.1002/jctb.5541]
[126]
Yilmaz, S.; Uçar, A. Göktaş, B. Genotoxic and genoprotective potential of black mulberry (Morus nigra) fruit. An. Acad. Bras. Cienc., 2019, 91(4), e20190337.
[127]
Nesello, L.A.N.; Beleza, M.L.M.L.; Mariot, M.; Mariano, L.N.B.; de Souza, P.; Campos, A.; Cechinel-Filho, V.; Andrade, S.F.; da Silva, L.M. Gastroprotective value of berries: Evidences from Methanolic extracts of morus nigra and rubus niveus fruits. Gastroenterol. Res. Pract., 2017, 2017, 7089697.
[http://dx.doi.org/10.1155/2017/7089697]
[128]
Hassanalilou, T.; Payahoo, L.; Shahabi, P.; Abbasi, M.M.; Asghari Jafar-Abadi, M.; Khaje Bishak, Y.; Khordadmehr, M.; Esnaashari, S.; Barzegar, A. The protective effects of Morus nigra L. leaves on the kidney function tests and kidney and liver histological structures in streptozotocin-induced diabetic rats. Biomed. Res., 2017, 28, 6113-6118.
[http://dx.doi.org/10.1159/000515032]
[129]
Diab, K.A.; Fahmy, M.A.; Hassan, E.M.; Hassan, Z.M.; Omara, E.A.; Abdel-Samie, N.S. Inhibitory activity of black mulberry (Morus nigra) extract against testicular, liver and kidney toxicity induced by paracetamol in mice. Mol. Biol. Rep., 2020, 47(3), 1733-1749.
[http://dx.doi.org/10.1007/s11033-020-05265-1] [PMID: 31983015]
[130]
Ma, X.; Chen, Z.; Wang, L.; Wang, G.; Wang, Z.; Dong, X.; Wen, B.; Zhang, Z. The Pathogenesis of Diabetes Mellitus by Oxidative Stress and Inflammation: Its Inhibition by Berberine. Front. Pharmacol., 2018, 9, 782.
[http://dx.doi.org/10.3389/fphar.2018.00782] [PMID: 30100874]
[131]
Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress—A concise review. Saudi Pharm. J., 2016, 24(5), 547-553.
[http://dx.doi.org/10.1016/j.jsps.2015.03.013] [PMID: 27752226]
[132]
Araujo, C.M.; Lúcio, K.P.; Silva, M.E.; Isoldi, M.C.; de Souza, G.H.B.; Brandão, G.C.; Schulz, R.; Costa, D.C. Morus nigra leaf extract improves glycemic response and redox profile in the liver of diabetic rats. Food Funct., 2015, 6(11), 3490-3499.
[http://dx.doi.org/10.1039/C5FO00474H] [PMID: 26294257]
[133]
Rahimi-Madiseh, M.; Naimi, A.; Heydarian, E.; Rafieian-Kopaei, M. Renal biochemical and histopathological alterations of diabetic rats under treatment with hydro alcoholic Morus nigra extrac. J. Renal Inj. Prev., 2016, 6(1), 56-60.
[http://dx.doi.org/10.15171/jrip.2017.10] [PMID: 28487873]
[134]
Eruygur, N.; Dural, E. Determination of 1-Deoxynojirimycin by a developed and validated HPLC-FLD method and assessment of In-vitro antioxidant, α-Amylase and α-Glucosidase inhibitory activity in mulberry varieties from Turkey. Phytomedicine, 2019, 53, 234-242.
[http://dx.doi.org/10.1016/j.phymed.2018.09.016] [PMID: 30668403]
[135]
Budiman, A.; Sofian, F.; Santi, N.W.S.; Aulifa, D. The formulation of lozenge using black mulberries (Morus nigra L.) leaf extract as an α-glucosidase inhibitor. J. Pharm. Bioallied Sci., 2020, 12(2), 171-176.
[http://dx.doi.org/10.4103/jpbs.JPBS_219_19] [PMID: 32742116]
[136]
Kim, S.A.; Joung, H.; Shin, S. Dietary pattern, dietary total antioxidant capacity, and dyslipidemia in Korean adults. Nutr. J., 2019, 18(1), 37.
[http://dx.doi.org/10.1186/s12937-019-0459-x] [PMID: 31301735]
[137]
Pereira-Roche, N.; Riverón-Forment, G.; Gutiérrez-Gutiérrez, R.; Nasiff-Hadad, A.; Pupo-Balboa, J.; Pandolfi-Blanco, A. Oxidative damage, antioxidant defense and DNA repair capacity in patients with Primary Dyslipidemia. Free Radic. Biol. Med., 2017, 108, S25.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.04.110]
[138]
Aydin, S.; Yilmaz, Ö.; Gökçe, Z. Protective effect of Morus nigra L. (Mulberry) fruit extract on the liver fatty acid profile of wistar rats. Pak. J. Zool., 2015, 47, 255-261.
[139]
Fan, L.; Peng, Y.; Wu, D.; Hu, J.; Shi, X.; Yang, G.; Li, X. Dietary supplementation of Morus nigra L. leaves decrease fat mass partially through elevating leptin-stimulated lipolysis in pig model. J. Ethnopharmacol., 2020, 249, 112416.
[http://dx.doi.org/10.1016/j.jep.2019.112416] [PMID: 31756448]
[140]
Fullerton, J.N.; Gilroy, D.W. Resolution of inflammation: A new therapeutic frontier. Nat. Rev. Drug Discov., 2016, 15(8), 551-567.
[http://dx.doi.org/10.1038/nrd.2016.39] [PMID: 27020098]
[141]
Tasneem, S.; Liu, B.; Li, B.; Choudhary, M.I.; Wang, W. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacol. Res., 2019, 139, 126-140.
[http://dx.doi.org/10.1016/j.phrs.2018.11.001] [PMID: 30395947]
[142]
Biswas, S.K. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid. Med. Cell. Longev., 2016, 2016, 5698931.
[http://dx.doi.org/10.1155/2016/5698931]
[143]
Akkol, E.K.; Süntar, I. Keleş, H.; Sezik, E.; Gürler, G. Bioassay-guided isolation and characterization of wound healer compounds from Morus nigra L. (Moraceae). Rec. Nat. Prod., 2015, 9, 484-495.
[http://dx.doi.org/10.1016/j.jep.2016.02.045]
[144]
Zhou, R.; Li, D.; Kou, Q.; Jiao, Z.; Ning, Z. Evaluation of anti-inflammatory, antimicrobial and wound healing activity of Morus nigra. S. Afr. J. Bot., 2019, 124, 540-545.
[http://dx.doi.org/10.1016/j.sajb.2019.06.021]
[145]
Talo Yildirim, T.; Ozan, G.; Dundar, S.; Bozoglan, A.; Karaman, T.; Dildes, N.; Kaya, C.A.; Kaya, N.; Erdem, E. The effects of morus nigra on the alveolar bone loss in experimentally-induced periodontitis. Eur. Oral Res., 2019, 53(3), 99-105.
[http://dx.doi.org/10.26650/eor.20190021] [PMID: 31579889]
[146]
Souza, G.; Silva, J.; Oliveira Júnior, R.; Lima-Saraiva, S.; Guimarães, A.; Oliveira, A.; Almeida, J. Atividade antinociceptiva do extrato etanólico das folhas de Morus nigra L. (Moraceae). Rev. Cienc. Farm. Basica Apl., 2015, 36, 36.
[147]
Prusov, E.V. Natural product-based antibiotics: Synthesis and SAR-studies. Curr. Pharm. Des., 2016, 22(12), 1730-1755.
[http://dx.doi.org/10.2174/1381612822666160115130633] [PMID: 26769331]
[148]
Kokoska, L.; Kloucek, P.; Leuner, O.; Novy, P. Plant-Derived products as antibacterial and antifungal agents in human health care, current medicinal chemistry. Curr. Med. Chem., 2019, 26(29), 5501-5541.
[http://dx.doi.org/10.2174/0929867325666180831144344]
[149]
Pisoschi, A.M.; Pop, A.; Georgescu, C. Turcuş, V.; Olah, N.K.; Mathe, E. An overview of natural antimicrobials role in food. Eur. J. Med. Chem., 2018, 143, 922-935.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.095] [PMID: 29227932]
[150]
Budiman, A.; Aulifa, D.L.; Kusuma, A.S.W.; Sulastri, A. Antibacterial and antioxidant activity of black mulberry (Morus nigra L.) extract for acne treatment. Pharmacogn. J., 2017, 9(5), 611-614.
[http://dx.doi.org/10.5530/pj.2017.5.97]
[151]
Aulifa, D.L.; Fitriansyah, S.N.; Ardiansyah, S.A.; Wibowo, D.P.; Julata, Y.A.; Christy, D.S. Phytochemical screening, antibacterial activity, and mode of action on morus nigra. Pharmacogn. J., 2017, 10(1), 167-171.
[http://dx.doi.org/10.5530/pj.2018.1.28]
[152]
Issa, N.K.; Abd-Aljabar, R.S. Phytochemical analysis, antioxidant (Dna Nicking Assay) and antibacterial activities of Morus Nigra L. fruits secondary metabolites. J. Univ. Zakho, 2017, 5(2), 198.
[http://dx.doi.org/10.25271/2017.5.2.368]
[153]
Montenote, M.C.; Wajsman, V.Z.; Konno, Y.T.; Ferreira, P.C.; Silva, R.M.G.; Therezo, A.L.S.; Silva, L.P.; Martins, L.P.A. Antioxidant effect of Morus nigra on Chagas disease progression. Rev. Inst. Med. Trop. Sao Paulo, 2017, 59, e73.
[154]
Sowmya Shree, G. Yogendra Prasad, K.; Arpitha, H.S.; Deepika, U.R.; Nawneet Kumar, K.; Mondal, P.; Ganesan, P. β-carotene at physiologically attainable concentration induces apoptosis and down-regulates cell survival and antioxidant markers in human breast cancer (MCF-7) cells. Mol. Cell. Biochem., 2017, 436(1-2), 1-12.
[http://dx.doi.org/10.1007/s11010-017-3071-4] [PMID: 28550445]
[155]
Mileo, A.M.; Miccadei, S. Polyphenols as Modulator of Oxidative Stress in Cancer Disease: New therapeutic strategies. Oxid. Med. Cell. Longev., 2016, 7, 1-17.
[156]
Martí, R.; Roselló, S.; Cebolla-Cornejo, J. Tomato as a source of carotenoids and polyphenols targeted to cancer prevention, cancers. Cancers, 2016, 8(6), 58.
[http://dx.doi.org/10.3390/cancers8060058]
[157]
Khan, H.Y.; Zubair, H.; Faisal, M.; Ullah, M.F.; Farhan, M.; Sarkar, F.H.; Ahmad, A.; Hadi, S.M. Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: A mechanism for cancer chemopreventive action. Mol. Nutr. Food Res., 2014, 58(3), 437-446.
[http://dx.doi.org/10.1002/mnfr.201300417] [PMID: 24123728]
[158]
Ahmed, A.; Ali, M.; El-Kholie, E.; Sherif, N. Anticancer activity of Morus nigra on human breast cancer cell line (MCF-7) the role of fresh and dry fruit extracts. J. Biosci. App. Res., 2016, 2(6), 352-361.
[http://dx.doi.org/10.21608/jbaar.2016.108382]
[159]
Ht-, C.L.; Çakıroğlu, E.; Uysal, T.; Koçal, G.Ç.; Aygenli, F.; Baran, G.; Baskın, Y. The role of Morus Nigra extract and its active compounds as drug candidate on human colorectal adenocarcinoma. Int J Clinic Oncology Cancer Res., 2017, 2, 10-14.
[http://dx.doi.org/10.11648/j.ijcocr.20170201.13]
[160]
Tang, Q.; Xia, H.; Liang, W.; Huo, X.; Wei, X. Synthesis and characterization of zinc oxide nanoparticles from Morus nigra and its anticancer activity of AGS gastric cancer cells. J. Photochem. Photobiol. B, 2020, 202, 111698.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111698] [PMID: 31734436]
[161]
Oliveira, A.C.B.; Oliveira, A.P.; Guimarães, A.L.; Oliveira, R.A.; Silva, F.S.; Reis, S.A.G.B.; Ribeiro, L.A.A.; Almeida, J.R.G.S. Avaliação toxicológica pré-clínica do chá das folhas de Morus nigra L. (Moraceae). Rev. Bras. Plantas Med., 2013, 15(2), 244-249.
[http://dx.doi.org/10.1590/S1516-05722013000200012]
[162]
de Queiroz, G.T.; Santos, T.R.; Macedo, R.; Peters, V.M.; Leite, M.N. da Silveira e Sá, R.C.; Guerra, M.O. Efficacy of Morus nigra L. on reproduction in female Wistar rats. Food Chem. Toxicol., 2012, 50(3-4), 816-822.
[http://dx.doi.org/10.1016/j.fct.2011.12.014] [PMID: 22198063]
[163]
Zawiah, M.; Yousef, A.M.; Khan, A.H. AL-Ashwal, F.Y.; Matar, A.; ALKhawaldeh, B.; Nassar, R.; Abduljabbar, R.; Abdo Ahmed, A.A. Food-drug interactions: Knowledge among pharmacists in Jordan. PLoS One, 2020, 15(6), e0234779.
[http://dx.doi.org/10.1371/journal.pone.0234779] [PMID: 32555684]
[164]
Koziolek, M. Alcaro, S.; Augustijns, P.; Basit, A.W.; Grimm, M.; Hens, B.; Hoad, C.L.; Jedamzik, P.; Madla, C.M.; Maliepaard, M.; Marciani, L.; Maruca, A.; Parrott, N.; Pávek, P.; Porter, C.J.H.; Reppas, C.; van Riet-Nales, D.; Rubbens, J.; Statelova, M.; Trevaskis, N.L.; Valentová, K.; Vertzoni, M.; Čepo, D.V.; Corsetti, M. The mechanisms of pharmacokinetic food-drug interactions – A perspective from the UNGAP group. Eur. J. Pharm. Sci., 2019, 134, 31-59.
[http://dx.doi.org/10.1016/j.ejps.2019.04.003] [PMID: 30974173]
[165]
Dincer, C.; Tontul, I.; Topuz, A. A comparative study of black mulberry juice concentrates by thermal evaporation and osmotic distillation as influenced by storage. Innov. Food Sci. Emerg. Technol., 2016, 38, 57-64.
[http://dx.doi.org/10.1016/j.ifset.2016.09.012]
[166]
Lim, S.; Choi, C.I. Pharmacological properties of morus nigra L. (Black Mulberry) as a promising nutraceutical resource. Nutrients, 2019, 11(2), 437.
[http://dx.doi.org/10.3390/nu11020437] [PMID: 30791521]
[167]
Kim, H.; Yoon, Y.J.; Shon, J.H.; Cha, I.J.; Shin, J.G.; Liu, K.H. Inhibitory effects of fruit juices on CYP3A activity. Drug Metab. Dispos., 2006, 34(4), 521-523.
[http://dx.doi.org/10.1124/dmd.105.007930] [PMID: 16415112]
[168]
Adan, A.; Kiraz, Y.; Baran, Y. Cell proliferation and cytotoxicity assays. Curr. Pharm. Biotechnol., 2016, 17(14), 1213-1221.
[http://dx.doi.org/10.2174/1389201017666160808160513] [PMID: 27604355]
[169]
Donato, M.T.; Tolosa, L. Stem-cell derived hepatocyte-like cells for the assessment of drug-induced liver injury. Differentiation, 2019, 106, 15-22.
[http://dx.doi.org/10.1016/j.diff.2019.02.004] [PMID: 30844688]
[170]
Ghasemnezhad Targhi, R.; Homayoun, M.; Mansouri, S.; Soukhtanloo, M.; Soleymanifard, S.; Seghatoleslam, M. Radio protective effect of black mulberry extract on radiation-induced damage in bone marrow cells and liver in the rat. Radiat. Phys. Chem., 2017, 130, 297-302.
[http://dx.doi.org/10.1016/j.radphyschem.2016.08.030]