Thiadiazole and Thiazole Derivatives as Potential Antimicrobial Agents

Page: [531 - 545] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: This review summarizes data on heterocyclic systems with thiadiazole and thiazole fragments in molecules as promising antimicrobial agents.

Introduction: Thiadiazole and thiazole backbones are the most favored and well-known heterocycles, a common and essential feature of various drugs. These scaffolds occupy a central position and are the main structural components of numerous drugs with a wide spectrum of action. These include antimicrobial, antituberculous, anti-inflammatory, analgesic, antiepileptic, antiviral, and anticancer agents.

Method: The research is based on bibliosemantic and analytical methods using bibliographic and abstract databases, as well as databases of chemical compounds.

Result: This review reports on thiadiazole and thiazole derivatives, which have important pharmacological properties. We are reviewing the structural modifications of various thiadiazole and thiazole derivatives, more specifically, the antimicrobial activity reported over the last years, as we have taken this as our main research area. 80 compounds were illustrated, and various derivatives containing hydrazone bridged thiazole and pyrrole rings, 2-pyridine and 4-pyridine substituted thiazole derivatives, compounds containing di-, tri- and tetrathiazole moieties, spiro-substituted 4- thiazolidinone-imidazoline-pyridines were analyzed. Derivatives of 5-heteroarylidene-2,4- thiazolidinediones, fluoroquinolone-thiadiazole hybrids, and others.

Conclusion: 1,3,4-thiadiazoles and thiazoles are valuable resource for researchers engaged in rational drug design and development in this area.

Graphical Abstract

[1]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[2]
Annabel, B.; Anna, D.; Hannah, M.D. Global Tuberculosis Report 2019; World Health Organization: Geneva, 2019.
[3]
Strzemecka, L. Hawrył, A.; Świeboda, R.; Hawrył, M.; Jagiełło-Wójtowicz, E.; Piątkowska-Chmiel, I.; Herbet, M.; Chodkowska, A. Determination of lipophilicity of allyl thiosemicarbazide, N 1 -thiocarbamylamidrazone derivatives, and their cyclic products by RP-HPLC, RP-TLC, and theoretical methods: Effects of selected compounds on the CNS of mice. J. Liq. Chromatogr. Relat. Technol., 2015, 38(15), 1452-1465.
[http://dx.doi.org/10.1080/10826076.2015.1050502]
[4]
Ibraheem, H.; Al-Majedy, Y.; Al-Amiery, A. 4-thiadiazole: The biological activities. Systemat. Rev. Pharm., 2018, 9(1), 36-40.
[http://dx.doi.org/10.5530/srp.2018.1.7]
[5]
Sever, B. Türkeş, C.; Altıntop, M.D.; Demir, Y.; Akalın Çiftçi, G.; Beydemir, ş,. Novel metabolic enzyme inhibitors designed through the molecular hybridization of thiazole and pyrazoline scaffolds. Arch. Pharm., 2021, 354(12), 2100294.
[http://dx.doi.org/10.1002/ardp.202100294] [PMID: 34569655]
[6]
Demir, Y.; Taslimi, P. Koçyiğit, Ü.M.; Akkuş, M.; Özaslan, M.S.; Duran, H.E.; Budak, Y.; Tüzün, B.; Gürdere, M.B.; Ceylan, M.; Taysi, S.; Gülçin, İ.; Beydemir, Ş. Determination of the inhibition profiles of pyrazolyl–thiazole derivatives against aldose reductase and α‐glycosidase and molecular docking studies. Arch. Pharm., 2020, 353(12), 2000118.
[http://dx.doi.org/10.1002/ardp.202000118] [PMID: 32761859]
[7]
Sever, B.; Altıntop, M.D.; Demir, Y.; Akalın Çiftçi, G.; Beydemir, Ş.; Özdemir, A. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds. Bioorg. Chem., 2020, 102, 104110.
[http://dx.doi.org/10.1016/j.bioorg.2020.104110] [PMID: 32739480]
[8]
Glossman, M.D. Application of density functional theory concepts to the study of the chemical reactivity of thiadiazoles. J. Mol. Struct. THEOCHEM, 1995, 330(1-3), 385-388.
[http://dx.doi.org/10.1016/0166-1280(94)03865-I]
[9]
Hemanth, K.; Lakshmanan, K.; Rajagopal, K. Piyongsola; Byran, G. A review on biological activities: 1,3,4- thiadiazole and its derivatives. Rasayan J. Chem., 2022, 15(2), 1573-1587.
[http://dx.doi.org/10.31788/RJC.2022.1516443]
[10]
Yousif, E.; Majeed, A.; Al-Sammarrae, K.; Salih, N.; Salimon, J.; Abdullah, B. Metal complexes of Schiff base: Preparation, characterization and antibacterial activity. Arab. J. Chem., 2017, 10, S1639-S1644.
[http://dx.doi.org/10.1016/j.arabjc.2013.06.006]
[11]
Serban, G.; Stanasel, O.; Serban, E.; Bota, S. 2-Amino-1,3,4-thiadiazole as a potential scaffold for promising antimicrobial agents. Drug Des. Devel. Ther., 2018, 12, 1545-1566.
[http://dx.doi.org/10.2147/DDDT.S155958] [PMID: 29910602]
[12]
El-Masry, R.M.; Kadry, H.H.; Taher, A.T.; Abou-Seri, S.M. Comparative study of the synthetic approaches and biological activities of the bioisosteres of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles over the past decade. Molecules, 2022, 27(9), 2709.
[http://dx.doi.org/10.3390/molecules27092709] [PMID: 35566059]
[13]
Gomha, S.; Kheder, N.; Abdelhamid, A.; Mabkhot, Y. One pot single step synthesis and biological evaluation of some novel bis(1,3,4-thiadiazole) derivatives as potential cytotoxic agents. Molecules, 2016, 21(11), 1532.
[http://dx.doi.org/10.3390/molecules21111532] [PMID: 27854300]
[14]
Khan, I.; Tantray, M.A.; Hamid, H.; Alam, M.S.; Kalam, A.; Dhulap, A. Synthesis of benzimidazole based thiadiazole and carbohydrazide conjugates as glycogen synthase kinase-3β inhibitors with anti-depressant activity. Bioorg. Med. Chem. Lett., 2016, 26(16), 4020-4024.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.084] [PMID: 27406796]
[15]
Shkair, M.H. Molecular modeling, synthesis and pharmacological evaluation of 1,3,4- thiadiazoles as anti-inflammatory and analgesic agents. Med. Chem., 2016, 12(11), 90-100.
[16]
Chandrakantha, B.; Isloor, A.M.; Shetty, P.; Fun, H.K.; Hegde, G. Synthesis and biological evaluation of novel substituted 1,3,4-thiadiazole and 2,6-di aryl substituted imidazo [2,1-b] [1,3,4] thiadiazole derivatives. Eur. J. Med. Chem., 2014, 71, 316-323.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.056] [PMID: 24321835]
[17]
Ali, S.H.; Sayed, A.R. Review of the synthesis and biological activity of thiazoles. Synth. Commun., 2021, 51(5), 670-700.
[http://dx.doi.org/10.1080/00397911.2020.1854787]
[18]
Jadhav, P.M.; Kantevari, S.; Tekale, A.B.; Bhosale, S.V.; Pawar, R.P.; Tekale, S.U. A review on biological and medicinal significance of thiazoles. Phosphorus Sulfur Silicon Relat. Elem., 2021, 196(10), 879-895.
[http://dx.doi.org/10.1080/10426507.2021.1945601]
[19]
Karayel, K.G.; Tatar, E.; Okullu, S.Ö.; Ünübol, N. Taşli, P.N.; Kocagöz, Z.T.; Şahı̇n, F. Synthesis and evaluation of novel 1,3,4-thiadiazole{ uoroquinolone hybrids as antibacterial, anti-tuberculosis, and anticancer agents. Turkish J. Chem., 2018, 42.
[http://dx.doi.org/10.3906/kim-1710-35]
[20]
Tang, X.; Wang, Z.; Zhong, X.; Wang, X.; Chen, L.; He, M.; Xue, W. Synthesis and biological activities of benzothiazole derivatives bearing a 1,3,4-thiadiazole moiety. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(3), 241-248.
[http://dx.doi.org/10.1080/10426507.2018.1539992]
[21]
Muğlu, H.; Yakan, H.; Shouaib, H.A. New 1,3,4-thiadiazoles based on thiophene-2-carboxylic acid: Synthesis, characterization, and antimicrobial activities. J. Mol. Struct., 2020, 1203, 127470.
[http://dx.doi.org/10.1016/j.molstruc.2019.127470]
[22]
Madhu Sekhar, M.; Nagarjuna, U.; Padmavathi, V.; Padmaja, A.; Reddy, N.V.; Vijaya, T. Synthesis and antimicrobial activity of pyrimidinyl 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazoles. Eur. J. Med. Chem., 2018, 145, 1-10.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.067] [PMID: 29310025]
[23]
Tahtaci, H. Karacık, H.; Ece, A.; Er, M.; Şeker, M.G. Design, synthesis, SAR and molecular modeling studies of novel imidazo[2,1- b][1,3,4]thiadiazole derivatives as highly potent antimicrobial agents. Mol. Inform., 2018, 37(3), 1700083.
[http://dx.doi.org/10.1002/minf.201700083] [PMID: 28876536]
[24]
El-Naggar, M.; Sallam, H.A.; Shaban, S.S.; Abdel-Wahab, S.S.; EAmr, A.E.; Azab, M.E.; Nossier, E.S.; Al-Omar, M.A. Design, synthesis, and molecular docking study of novel heterocycles incorporating 1,3,4-thiadiazole moiety as potential antimicrobial and anticancer agents. Molecules, 2019, 24(6), 1066.
[http://dx.doi.org/10.3390/molecules24061066] [PMID: 30889918]
[25]
Qu, T.; Qu, L.; Wang, X.; Xu, T.; Xiao, X.; Ding, M.; Deng, L.; Guo, Y. Design, synthesis, and antibacterial activity of novel 8-methoxyquinoline-2-carboxamide compounds containing 1,3,4-thiadiazole moiety. Z. Naturforsch. C J. Biosci., 2018, 73(3-4), 117-122.
[http://dx.doi.org/10.1515/znc-2017-0063] [PMID: 28753551]
[26]
Taflan, E.; Bayrak, H.; Er, M. Alpay Karaoğlu, Ş.; Bozdeveci, A. Novel imidazo[2,1-b][1,3,4]thiadiazole (ITD) hybrid compounds: Design, synthesis, efficient antibacterial activity and antioxidant effects. Bioorg. Chem., 2019, 89, 102998.
[http://dx.doi.org/10.1016/j.bioorg.2019.102998] [PMID: 31128819]
[27]
KARAKUŞ S.; MARYAM, A.; ORUÇ-EMRE, E.E.; TÜRK, S. Synthesis, characterization, anti-tuberculosis activity and computational studies on novel schiff bases of 1,3,4-thiadiazole derivatives. J. Res. Pharm., 2020, 24, 793-800.
[http://dx.doi.org/10.35333/jrp.2020.232]
[28]
Angelova, V.T.; Pencheva, T.; Vassilev, N.; Simeonova, R.; Momekov, G.; Valcheva, V. New indole and indazole derivatives as potential antimycobacterial agents. Med. Chem. Res., 2019, 28(4), 485-497.
[http://dx.doi.org/10.1007/s00044-019-02293-w]
[29]
Angelova, V.T.; Pencheva, T.; Vassilev, N. K-Yovkova, E.; Mihaylova, R.; Petrov, B.; Valcheva, V. Development of new antimycobacterial sulfonyl hydrazones and 4-methyl-1,2,3-thiadiazole-based hydrazone derivatives. Antibiotics, 2022, 11(5), 562.
[http://dx.doi.org/10.3390/antibiotics11050562] [PMID: 35625207]
[30]
Mali, J.K.; Sutar, Y.B.; Pahelkar, A.R.; Verma, P.M.; Telvekar, V.N. Novel fatty acid-thiadiazole derivatives as potential antimycobacterial agents. Chem. Biol. Drug Des., 2020, 95(1), 174-181.
[http://dx.doi.org/10.1111/cbdd.13634] [PMID: 31581353]
[31]
F Costacurta, G.; Souza, M.R.P.; Sampiron, E.G.; Almeida, A.L.; Baldin, V.P.; Ieque, A.L.; Santos, N.C.S.; Amaral, P.H.R.; Silva, C.C.; Siqueira, V.L.D.; Caleffi-Ferracioli, K.R.; Cardoso, R.F.; Vandresen, F.; Scodro, R.B.L. Synthesis and biological evaluation of 12 novel (-)-camphene-based 1,3,4-thiadiazoles against Mycobacterium tuberculosis. Future Microbiol., 2020, 15(9), 723-738.
[http://dx.doi.org/10.2217/fmb-2019-0258] [PMID: 32686961]
[32]
Patel, H.; Jadhav, H.; Ansari, I.; Pawara, R.; Surana, S. Pyridine and nitro-phenyl linked 1,3,4-thiadiazoles as MDR-TB inhibitors. Eur. J. Med. Chem., 2019, 167, 1-9.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.073] [PMID: 30743094]
[33]
Brown, F.C. 4-Thiazolidinones. Chem. Rev., 1961, 61(5), 463-521.
[http://dx.doi.org/10.1021/cr60213a002]
[34]
Singh, S.P.; Parmar, S.S.; Raman, K.; Stenberg, V.I. Chemistry and biological activity of thiazolidinones. Chem. Rev., 1981, 81(2), 175-203.
[http://dx.doi.org/10.1021/cr00042a003]
[35]
FDA New Drugs at FDA. CDER’s new molecular entities and new therapeutic biological products., http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugInnovation/default.htm
[36]
Chen, L.F.; Chopra, T.; Kaye, K.S. Pathogens resistant to antibacterial agents. Infect. Dis. Clin. North Am., 2009, 23(4), 817-845. [vii.]
[http://dx.doi.org/10.1016/j.idc.2009.06.002] [PMID: 19909886]
[37]
Parvez, A.; Jyotsna, M.; Youssoufi, M.H.; Hadda, T.B. Theoretical calculations and experimental verification of the antibacterial potential of some monocyclic β-lactams containing two synergetic buried antibacterial pharmacophore sites. Phosphorus Sulfur Silicon Relat. Elem., 2010, 185(7), 1500-1510.
[http://dx.doi.org/10.1080/10426500903095556]
[38]
Sim, M.M.; Ng, S.B.; Buss, A.D.; Crasta, S.C.; Goh, K.L.; Lee, S.K. Benzylidene rhodanines as novel inhibitors of UDP-N-acetylmuramate/L-alanine ligase. Bioorg. Med. Chem. Lett., 2002, 12(4), 697-699.
[http://dx.doi.org/10.1016/S0960-894X(01)00832-0] [PMID: 11844704]
[39]
Lesyk, R.; Zimenkovskii, B.; Kutsik, R. Synthesis and study of antimicrobial activity of azolidine derivatives with 2-(2-chlorobenzyloxy)-5-nitrophenyl fragment in molecules. Pharm. J., 2003, 2, 52-56.
[40]
Chen, Z.H.; Zheng, C.J.; Sun, L.P.; Piao, H.R. Synthesis of new chalcone derivatives containing a rhodanine-3-acetic acid moiety with potential anti-bacterial activity. Eur. J. Med. Chem., 2010, 45(12), 5739-5743.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.031] [PMID: 20889240]
[41]
Jin, X.; Zheng, C.J.; Song, M.X.; Wu, Y.; Sun, L.P.; Li, Y.J.; Yu, L.J.; Piao, H.R. Synthesis and antimicrobial evaluation of l-phenylalanine-derived C5-substituted rhodanine and chalcone derivatives containing thiobarbituric acid or 2-thioxo-4-thiazolidinone. Eur. J. Med. Chem., 2012, 56, 203-209.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.026] [PMID: 22982124]
[42]
Ge, X.; Wakim, B.; Sem, D.S. Chemical proteomics-based drug design: Target and antitarget fishing with a catechol-rhodanine privileged scaffold for NAD(P)(H) binding proteins. J. Med. Chem., 2008, 51(15), 4571-4580.
[http://dx.doi.org/10.1021/jm8002284] [PMID: 18616236]
[43]
Orchard, M.G.; Neuss, J.C.; Galley, C.M.S.; Carr, A.; Porter, D.W.; Smith, P.; Scopes, D.I.C.; Haydon, D.; Vousden, K.; Stubberfield, C.R.; Young, K.; Page, M. Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein mannosyl transferase 1 (PMT1). Bioorg. Med. Chem. Lett., 2004, 14(15), 3975-3978.
[http://dx.doi.org/10.1016/j.bmcl.2004.05.050] [PMID: 15225710]
[44]
Schepetkin, I.A.; Khlebnikov, A.I.; Kirpotina, L.N.; Quinn, M.T. Novel small-molecule inhibitors of anthrax lethal factor identified by high-throughput screening. J. Med. Chem., 2006, 49(17), 5232-5244.
[http://dx.doi.org/10.1021/jm0605132] [PMID: 16913712]
[45]
Soltero-Higgin, M.; Carlson, E.E.; Phillips, J.H.; Kiessling, L.L. Identification of inhibitors for UDP-galactopyranose mutase. J. Am. Chem. Soc., 2004, 126(34), 10532-10533.
[http://dx.doi.org/10.1021/ja048017v] [PMID: 15327298]
[46]
Yar, M.S.; Ali, M.A.; Sriram, D.; Yogeeswari, P. Synthesis and antimicrobial activity of 3-(4′-hydroxy-3′-methylphenyl)-5-[(substuted) phenyl]-4,5-dihydro-1H-1-pyrazolyl-4-pyridylmethanone derivatives. Acta Pol. Pharm., 2006, 63(6), 491-496.
[PMID: 17438865]
[47]
Sharma, R.; Nagda, D.P.; Talesara, G.L. Synthesis of various isoniazidothiazolidinones and their imidoxy derivatives of potential biological interest. ARKIVOC, 2005, 2006(1), 1-12.
[http://dx.doi.org/10.3998/ark.5550190.0007.101]
[48]
Bondock, S.; Naser, T.; Ammar, Y.A. Synthesis of some new 2-(3-pyridyl)-4,5-disubstituted thiazoles as potent antimicrobial agents. Eur. J. Med. Chem., 2013, 62, 270-279.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.050] [PMID: 23357308]
[49]
Rajput, S.; Sisodia, D.; Badwaik, H.; Thakur, D.; Nagori, K. Synthesis, characterization and antimicrobial activity of a 5(4-(4-Substituted)Aminobenzylidine)Thiazolidine-2,4-Dione derivatives. Asian J. Res. Chem, 2011, 4, 40-43.
[50]
Tripathi, A.C.; Gupta, S.J.; Fatima, G.N.; Sonar, P.K.; Verma, A.; Saraf, S.K. 4-Thiazolidinones: The advances continue. Eur. J. Med. Chem., 2014, 72, 52-77.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.017] [PMID: 24355348]
[51]
Özdemir, A.; Turan-Zitouni, G.; Asım Kaplancıklı, Z.; Revial, G.; Güven, K. Synthesis and antimicrobial activity of 1-(4-aryl-2-thiazolyl)-3-(2-thienyl)-5-aryl-2-pyrazoline derivatives. Eur. J. Med. Chem., 2007, 42(3), 403-409.
[http://dx.doi.org/10.1016/j.ejmech.2006.10.001] [PMID: 17125888]
[52]
Patel, N.B.; Shaikh, F.M. New 4-thiazolidinones of nicotinic acid with 2-Amino-6-methylbenzothiazole and their biological activity. Sci. Pharm., 2010, 78(4), 753-765.
[http://dx.doi.org/10.3797/scipharm.1009-15] [PMID: 21179315]
[53]
Verçoza, G.L.; Feitoza, D.D.; Alves, A.J.; Aquino, T.M.; Lima, J.G.; Araújo, J.M.; Cunha, I.G.B.; Góes, A.J.S. Synthesis and evaluation of the antimicrobial activity of new 4-thiazolidinones obtained from formylpyridine thiosemicarbazones. Quim. Nova, 2009, 32(6), 1405-1410.
[http://dx.doi.org/10.1590/S0100-40422009000600008]
[54]
Hassan, H.Y.; El-KOUSSI, N.A.; Farghaly, Z.S. Synthesis and antimicrobial activity of pyridines bearing thiazoline and moieties. Chem. Pharm. Bull., 1998, 46(5), 863-866.
[http://dx.doi.org/10.1248/cpb.46.863] [PMID: 9621420]
[55]
Shrivastava, S.P.; Seelam, N.; Rai, R. Synthesis and antimicrobial activity of new thiazolidinone derivatives with the use of γ-ferrite catalyst. E-J. Chem., 2012, 9(2), 825-831.
[http://dx.doi.org/10.1155/2012/251450]
[56]
Patel, N.B. Synthesis of new pyridine based 4-thiazolidinones incorporated benzothiazoles and evaluation of their antimicrobial activity. J. Sci. Islam. Repub. Iran, 2010, 21, 121-129.
[57]
Vodela, S.; Mekala, R.; Vardhan, R.; Modugu, N.R.; Vannada, J. Synthesis and antimicrobial evaluation of some novel spirothiazolidin-based derivatives. World J. Pharm. Pharm. Sci., 2014, 3, 800-810.
[58]
Szymańska, E.; Kieć-Kononowicz, K. Antimycobacterial activity of 5-arylidene aromatic derivatives of hydantoin. Farmaco, 2002, 57(5), 355-362.
[http://dx.doi.org/10.1016/S0014-827X(01)01194-6] [PMID: 12058809]
[59]
Jaju, S.; Palkar, M.; Maddi, V.; Ronad, P.; Mamledesai, S.; Satyanarayana, D.; Ghatole, M. Synthesis and antimycobacterial activity of a novel series of isonicotinylhydrazide derivatives. Arch. Pharm., 2009, 342(12), 723-731.
[http://dx.doi.org/10.1002/ardp.200900001] [PMID: 19899098]
[60]
Turan-Zitouni, G. Kaplancıklı Z.A.; Özdemir, A. Synthesis and antituberculosis activity of some N-pyridyl-N′-thiazolylhydrazine derivatives. Eur. J. Med. Chem., 2010, 45(5), 2085-2088.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.017] [PMID: 20149489]
[61]
Abdel Moty, S.G.; Hussein, M.A.; Abdel Aziz, S.A.; Abou-Salim, M.A. Design and synthesis of some substituted thiazolo[3,2-a]pyrimidine derivatives of potential biological activities. Saudi Pharm. J., 2016, 24(2), 119-132.
[http://dx.doi.org/10.1016/j.jsps.2013.12.016] [PMID: 27013904]
[62]
Öcal, N. Aydoǧan, F.; Yolaçan, Ç.; Turgut, Z. Synthesis of some furo-thiazolidine derivatives starting from aldimines. J. Heterocycl. Chem., 2003, 40(4), 721-724.
[http://dx.doi.org/10.1002/jhet.5570400427]
[63]
Sahu, S.K.; Banerjee, M.; Mishra, S.K.; Mohanta, R.K.; Panda, P.K.; Misro, P.K. Synthesis, partition coefficients and antibacterial activity of 3′-phenyl (substituted)-6′-aryl-2′ (1H)-cis-3′,3‘a-dihydrospiro. [3-H-indole-3,5’-pyrazolo (3′,4′-d)-thiazolo-2-(1H)-ones]. [3-H-Indole-3,5’-Pyrazolo (3’,4’-d)-Thiazolo-2-(1H)-Ones Acta Pol. Pharm., 2007, 64(2), 121-126.
[PMID: 17665861]
[64]
Althagafi, I.; El-Metwaly, N.; Farghaly, T.A. New series of thiazole derivatives: Synthesis, structural elucidation, antimicrobial activity, molecular modeling and MOE docking. Molecules, 2019, 24(9), 1741.
[http://dx.doi.org/10.3390/molecules24091741] [PMID: 31060260]
[65]
Desai, N.C.; Joshi, V.V.; Rajpara, K.M.; Vaghani, H.V.; Satodiya, H.M. Facile synthesis of novel fluorine containing pyrazole based thiazole derivatives and evaluation of antimicrobial activity. J. Fluor. Chem., 2012, 142, 67-78.
[http://dx.doi.org/10.1016/j.jfluchem.2012.06.021]
[66]
Eryılmaz, S.; Türk Çelikoğlu, E.; İdil, Ö.; İnkaya, E.; Kozak, Z.; Mısır, E.; Gül, M. Derivatives of pyridine and thiazole hybrid: Synthesis, DFT, biological evaluation via antimicrobial and DNA cleavage activity. Bioorg. Chem., 2020, 95, 103476.
[http://dx.doi.org/10.1016/j.bioorg.2019.103476] [PMID: 31838288]
[67]
Turan-Zitouni, G.; Demirayak, Ş.; Özdemir, A.; Kaplancıklı, Z.A.; Yıldız, M.T. Synthesis of some 2-[(benzazole-2-yl)thioacetylamino]thiazole derivatives and their antimicrobial activity and toxicity. Eur. J. Med. Chem., 2004, 39(3), 267-272.
[http://dx.doi.org/10.1016/j.ejmech.2003.11.001] [PMID: 15051175]
[68]
Gaikwad, N.D.; Patil, S.V.; Bobade, V.D. Synthesis and antimicrobial activity of novel thiazole substituted pyrazole derivatives. J. Heterocycl. Chem., 2013, 50(3), 519-527.
[http://dx.doi.org/10.1002/jhet.1513]
[69]
Yurttaş, L.; Özkay, Y.; Kaplancıklı, Z.A.; Tunalı Y.; Karaca, H. Synthesis and antimicrobial activity of some new hydrazone-bridged thiazole-pyrrole derivatives. J. Enzyme Inhib. Med. Chem., 2013, 28(4), 830-835.
[http://dx.doi.org/10.3109/14756366.2012.688043] [PMID: 22651798]
[70]
Capasso, C.; Supuran, C.T. Dihydropteroate Synthase (Sulfonamides) and dihydrofolate reductase inhibitors. Bacterial resistance to antibiotics – From molecules to man; Wiley, 2019, pp. 163-172.
[http://dx.doi.org/10.1002/9781119593522.ch7]
[71]
Apaydın, S.; Török, M. Sulfonamide derivatives as multi-target agents for complex diseases. Bioorg. Med. Chem. Lett., 2019, 29(16), 2042-2050.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.041] [PMID: 31272793]
[72]
Tacic, A.; Nikolic, V.; Nikolic, L.; Savic, I. Antimicrobial sulfonamide drugs. Adv. technol., 2017, 6(1), 58-71.
[http://dx.doi.org/10.5937/savteh1701058T]
[73]
Miceli, M.H.; Kauffman, C.A. isavuconazole: A new broad-spectrum triazole antifungal agent. Clin. Infect. Dis., 2015, 61(10), 1558-1565.
[http://dx.doi.org/10.1093/cid/civ571] [PMID: 26179012]
[74]
Ellsworth, M.; Ostrosky-Zeichner, L. Isavuconazole: Mechanism of action, clinical efficacy, and resistance. J. Fungi, 2020, 6(4), 324.
[http://dx.doi.org/10.3390/jof6040324] [PMID: 33260353]
[75]
Pasqualotto, A.C.; Thiele, K.O.; Goldani, L.Z. Novel triazole antifungal drugs: Focus on isavuconazole, ravuconazole and albaconazole. Curr. Opin. Investig. Drugs, 2010, 11(2), 165-174.
[PMID: 20112166]
[76]
Yamaguchi, H. Potential of ravuconazole and its prodrugs as the new oraltherapeutics for onychomycosis. Med. Mycol. J., 2016, 57(4), E93-E110.
[http://dx.doi.org/10.3314/mmj.16-00006] [PMID: 27904057]
[77]
Gupta, A.K.; Leonardi, C.; Stoltz, R.R.; Pierce, P.F.; Conetta, B. A phase I/II randomized, double-blind, placebo-controlled, dose-ranging study evaluating the efficacy, safety and pharmacokinetics of ravuconazole in the treatment of onychomycosis. J. Eur. Acad. Dermatol. Venereol., 2005, 19(4), 437-443.
[http://dx.doi.org/10.1111/j.1468-3083.2005.01212.x] [PMID: 15987289]
[78]
Pfaller, M.A.; Messer, S.A.; Hollis, R.J.; Jones, R.N. Antifungal activities of posaconazole, ravuconazole, and voriconazole compared to those of itraconazole and amphotericin B against 239 clinical isolates of Aspergillus Spp. and other filamentous fungi: Report from SENTRY Antimicrobial Surveillance Program, 2000. Antimicrob. Agents Chemother., 2002, 46(4), 1032-1037.
[http://dx.doi.org/10.1128/AAC.46.4.1032-1037.2002] [PMID: 11897586]
[79]
Borelli, C.; Schaller, M.; Niewerth, M.; Nocker, K.; Baasner, B.; Berg, D.; Tiemann, R.; Tietjen, K.; Fugmann, B.; Lang-Fugmann, S.; Korting, H.C. Modes of action of the new arylguanidine abafungin beyond interference with ergosterol biosynthesis and in vitro activity against medically important fungi. Chemotherapy, 2008, 54(4), 245-259.
[http://dx.doi.org/10.1159/000142334] [PMID: 18587237]
[80]
Thevissen, K.; Pellens, K.; De Brucker, K.; François, I.E.J.A.; Chow, K.K.; Meert, E.M.K.; Meert, W.; Van Minnebruggen, G.; Borgers, M.; Vroome, V.; Levin, J.; De Vos, D.; Maes, L.; Cos, P.; Cammue, B.P.A. Novel fungicidal benzylsulfanyl-phenylguanidines. Bioorg. Med. Chem. Lett., 2011, 21(12), 3686-3692.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.075] [PMID: 21576022]
[81]
Rouf, A.; Tanyeli, C. Bioactive thiazole and benzothiazole derivatives. Eur. J. Med. Chem., 2015, 97, 911-927.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.058] [PMID: 25455640]
[82]
Li, Y.; Geng, J.; Liu, Y.; Yu, S.; Zhao, G. Thiadiazole-a promising structure in medicinal chemistry. ChemMedChem, 2013, 8(1), 27-41.
[http://dx.doi.org/10.1002/cmdc.201200355] [PMID: 23208773]