Recent Advances in Electrical & Electronic Engineering

Author(s): Ping He*, Lei Yun, Jiale Fan, Xiaopeng Wu, Zhiwen Pan and Mingyang Wang

DOI: 10.2174/2352096516666230712102828

Coordination of PSS and Multiple FACTS-POD to Improve Stability and Operation Economy of Wind-thermal-bundled Power System

Page: [373 - 387] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Aims and Background: Focusing on the low-frequency oscillation and system power loss problem in wind-thermal-bundled (WTB) transmission systems and the interaction problem due to different controllers, this study aimed to improve the low-frequency oscillation characteristics of WTB transmission system while ensuring the economy of operation and suppressing the adverse interaction between controllers.

Methods: For this purpose, a coordination and optimization strategy for a power system stabilizer (PSS), static synchronous series compensator with additional power oscillation damping controller (SSSC-POD), and static synchronous compensator with additional power oscillation damping controller (STATCOM-POD) is proposed based on multi-objective salp swarm algorithm (MSSA). The controller regulation characteristics are taken into account in the coordination method.

Results: Several designed scenarios, including changing the transmission power of the tie line and increasing wind power output, are considered in the IEEE 4-machine 2-area to test the proposed method. The power flow analysis, characteristic root analysis, and time-domain simulation are used to analyze the simulation results.

Conclusion: Simulation results demonstrate that the proposed approach can effectively suppress the low-frequency oscillation of the WTB system while reducing its net loss. The application in engineering issues for MSSA is supplemented.

Graphical Abstract

[1]
V.V. Ponkratov, A.S. Kuznetsov, I. Muda, M.J. Nasution, M. Al-Bahrani, and H.Ş. Aybar, "Investigating the index of sustainable development and reduction in greenhouse gases of renewable energies", Sustainability (Basel), vol. 14, no. 22, p. 14829, 2022.
[http://dx.doi.org/10.3390/su142214829]
[2]
A.G. Olabi, and M.A. Abdelkareem, "Renewable energy and climate change", Renew. Sustain. Energy Rev., vol. 158, p. 112111, 2022.
[http://dx.doi.org/10.1016/j.rser.2022.112111]
[3]
L. Xiang, H.W. Zhu, Y. Zhang, Q.T. Yao, and A.J. Hu, "Impact of wind power penetration on wind–thermal-bundled transmission system", IEEE Trans. Power Electron., vol. 37, no. 12, pp. 15616-15625, 2022.
[http://dx.doi.org/10.1109/TPEL.2022.3189366]
[4]
Y. Shujun, G. Wanhua, H. Wenerda, X. Hongtao, and B. Erman, "Transient stability analysis of wind‐thermal bundled system based on virtual inertia control", J. Eng. (Stevenage), vol. 2019, no. 16, pp. 862-866, 2019.
[http://dx.doi.org/10.1049/joe.2018.8762]
[5]
J. Li, F. Li, P. Wang, H. Li, and M. Chen, "Analysis of improving transient stability of dfig-type wind-thermal binding system by current-limiting SSSC", Proceedings of the CSU-EPSA, vol. 33, no. 05, pp. 68-76, 2021.
[http://dx.doi.org/10.19635/j.cnki.csu-epsa.000557]
[6]
H. Liu, S. Yang, and X. Yuan, "Inertia control strategy of DFIG-based wind turbines considering low-frequency oscillation suppression", Energies, vol. 15, no. 1, p. 29, 2021.
[http://dx.doi.org/10.3390/en15010029]
[7]
S. Ekinci, D. Izci, R. Abu Zitar, A.R. Alsoud, and L. Abualigah, "Development of Lévy flight-based reptile search algorithm with local search ability for power systems engineering design problems", Neural Comput. Appl., vol. 34, no. 22, pp. 20263-20283, 2022.
[http://dx.doi.org/10.1007/s00521-022-07575-w]
[8]
V. Snášel, R.M. Rizk-Allah, D. Izci, and S. Ekinci, "Weighted mean of vectors optimization algorithm and its application in designing the power system stabilizer", Appl. Soft Comput., vol. 136, p. 110085, 2023.
[http://dx.doi.org/10.1016/j.asoc.2023.110085]
[9]
D. Izci, and S. Ekinci, The promise of metaheuristic algorithms for efficient operation of a highly complex power system. Comprehensive Metaheuristics., Acadamic Press, 2023, pp. 325-346.
[http://dx.doi.org/10.1016/B978-0-323-91781-0.00017-X]
[10]
S. Ekinci, D. İzci, and B. Hekimoğlu, "Implementing the Henry gas solubility optimization algorithm for optimal power system stabilizer design", Electrica, vol. 21, no. 2, pp. 250-258, 2021.
[http://dx.doi.org/10.5152/electrica.2021.20088]
[11]
S. Ekinci, D. Izci, H.L. Zeynelgil, and S. Orenc, "An application of slime mould algorithm for optimizing parameters of power system stabilizer", 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) , Istanbul, Turkey, 2020.
[http://dx.doi.org/10.1109/ISMSIT50672.2020.9254597]
[12]
S. Ekinci, "Optimal design of power system stabilizer using sine cosine algorithm", J Faculty Eng Architect Gazi Univ, vol. 34, no. 3, pp. 1329-1350, 2019.
[http://dx.doi.org/10.17341/gazimmfd.460529]
[13]
P. Kundur, Power System Stability and Control., McGraw-Hill: New York, NY, USA, 1994.
[14]
A.R. Messina, Inter-area Oscillations in Power Systems., Springer: New York, NY, USA, 2009.
[http://dx.doi.org/10.1007/978-0-387-89530-7]
[15]
N. Mithulananthan, C.A. Canizares, J. Reeve, and G.J. Rogers, "Comparison of PSS, SVC, and STATCOM controllers for damping power system oscillations", IEEE Trans. Power Syst., vol. 18, no. 2, pp. 786-792, 2003.
[http://dx.doi.org/10.1109/TPWRS.2003.811181]
[16]
P. He, H. Jin, Q. Fang, P. Qi, Z. Gong, and Y. Ji, "Small-signal stability improvement of grid integrated DFIG and SOFC system with SSSC-POD using coordinated optimization approach", Recent Adv. Electr. Electron. Eng., vol. 15, no. 6, pp. 485-501, 2022.
[http://dx.doi.org/10.2174/2352096515666220613092804]
[17]
W.C.M. Yen, M.H. Mansor, S.A. Shaaya, and I. Musirin, "A computational intelligence-based technique for the installation of multi-type FACTS devices", Int J Nonlinear Anal Appl, vol. 12, no. Special Issue, pp. 1091-1102, 2021.
[http://dx.doi.org/10.22075/IJNAA.2021.5571]
[18]
J. Sangeetha, and P. Renuga, "Recurrent ANFIS-coordinated controller design for multimachine power system with FACTS devices", J. Circuits Syst. Comput., vol. 26, no. 2, p. 1750034, 2017.
[http://dx.doi.org/10.1142/S0218126617500347]
[19]
M. Ahmadi Kamarposhti, H. Shokouhandeh, Y. Gholami Omali, I. Colak, P. Thounthong, and W. Holderbaum, "Optimal coordination of TCSC and PSS2B controllers in electric power systems using MOPSO multiobjective algorithm", Int. Trans. Electr. Energy Syst., vol. 2022, pp. 1-18, 2022.
[http://dx.doi.org/10.1155/2022/5233620]
[20]
G. Shahgholian, and A. Movahedi, "Power system stabiliser and flexible alternating current transmission systems controller coordinated design using adaptive velocity update relaxation particle swarm optimisation algorithm in multi‐machine power system", IET Gener. Transm. Distrib., vol. 10, no. 8, pp. 1860-1868, 2016.
[http://dx.doi.org/10.1049/iet-gtd.2015.1002]
[21]
H. Sekhane, and D. Labed, "Identification of the weakest buses to facilitate the search for optimal placement of var sources using “Kessel and Glavitch” Index", J. Electr. Eng. Technol., vol. 14, no. 4, pp. 1473-1483, 2019.
[http://dx.doi.org/10.1007/s42835-019-00160-7]
[22]
H.P. Agrawal, and H. Bansal, "Fact controllers and their optimal location: An extensive review", Recent Adv. Electr. Electron. Eng., vol. 13, no. 8, pp. 1206-1216, 2020.
[http://dx.doi.org/10.2174/2352096513999200714102628]
[23]
Y. Zhichang, L. Yongjun, and L. Xiaolin, "Control of dynamic reactive power compensator with damping control and voltage control", Electric Power Automation Equipment, vol. 33, no. 10, pp. 74-78, 2013.
[http://dx.doi.org/10.3969/j.issn.1006-6047.2013.10.013]
[24]
H. Gong, W. Jiang, Y. Wang, X. Li, J. Chen, and D. Huang, "A survey on damping low-frequency oscillation based on coordination strategy of static synchronized compensator modulation", Transact China Electrotechn Society, vol. 32, no. 6, pp. 67-75, 2017.
[http://dx.doi.org/10.19595/j.cnki.1000-6753.tces.2017.06.009]
[25]
S. Nema, and S. George, "An optimal transmission line power control under non‐sinusoidal conditions using static synchronous series compensator", IET Gener. Transm. Distrib., vol. 15, no. 11, pp. 1730-1739, 2021.
[http://dx.doi.org/10.1049/gtd2.12129]
[26]
S. Galvani, B. Mohammadi-Ivatloo, M. Nazari-Heris, and S. Rezaeian-Marjani, "Optimal allocation of static synchronous series compensator (SSSC) in wind-integrated power system considering predictability", Electr. Power Syst. Res., vol. 191, p. 106871, 2021.
[http://dx.doi.org/10.1016/j.epsr.2020.106871]
[27]
S. Mirjalili, A.H. Gandomi, S.Z. Mirjalili, S. Saremi, H. Faris, and S.M. Mirjalili, "Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems", Adv. Eng. Softw., vol. 114, pp. 163-191, 2017.
[http://dx.doi.org/10.1016/j.advengsoft.2017.07.002]
[28]
H.R. Shabani, and M. Kalantar, "Real-time transient stability detection in the power system with high penetration of DFIG-based wind farms using transient energy function", Int. J. Electr. Power Energy Syst., vol. 133, p. 107319, 2021.
[http://dx.doi.org/10.1016/j.ijepes.2021.107319]
[29]
P. He, P. Qi, Y. Ji, and Z. Li, "Dynamic interactions stability analysis of hybrid renewable energy system with SSSC", Archives of Electrical Engineering, vol. 70, no. 2, pp. 445-462, 2021.
[http://dx.doi.org/10.24425/aee.2021.136995]
[30]
M.V.A. Nunes, "J.A. PecasLopes, H.H. Zurn, U.H. Bezerra, and R.G. Almeida, “Influence of the variable-speed wind generators in transient stability margin of the conventional generators integrated in electrical grids”", IEEE Trans. Energ. Convers., vol. 19, no. 4, pp. 692-701, 2004.
[http://dx.doi.org/10.1109/TEC.2004.832078]
[31]
P. He, F. Wen, G. Ledwich, Y. Xue, and J. Huang, "Investigation of the effects of various types of wind turbine generators on power-system stability", J. Energy Eng., vol. 141, no. 3, p. 04014007, 2015.
[http://dx.doi.org/10.1061/(ASCE)EY.1943-7897.0000176]
[32]
P. He, F. Wen, G. Ledwich, and Y. Xue, "An investigation on interarea mode oscillations of interconnected power systems with integrated wind farms", Int. J. Electr. Power Energy Syst., vol. 78, pp. 148-157, 2016.
[http://dx.doi.org/10.1016/j.ijepes.2015.11.052]
[33]
S. Ekinci, A. Demiroren, and B. Hekimoglu, "Parameter optimization of power system stabilizers via kidney-inspired algorithm", Trans. Inst. Meas. Contr., vol. 41, no. 5, pp. 1405-1417, 2019.
[http://dx.doi.org/10.1177/0142331218780947]
[34]
P. He, Q. Fang, H. Jin, Y. Ji, Z. Gong, and J. Dong, "Coordinated design of PSS and STATCOM-POD based on the GA-PSO algorithm to improve the stability of wind-PV-thermal-bundled power system", Int. J. Electr. Power Energy Syst., vol. 141, p. 108208, 2022.
[http://dx.doi.org/10.1016/j.ijepes.2022.108208]
[35]
X.Y. Bian, C.T. Tse, J.F. Zhang, and K.W. Wang, "Coordinated design of probabilistic PSS and SVC damping controllers", Int. J. Electr. Power Energy Syst., vol. 33, no. 3, pp. 445-452, 2011.
[http://dx.doi.org/10.1016/j.ijepes.2010.10.006]
[36]
R.K. Singh, and N.K. Singh, "Power system transient stability improvement with FACTS controllers using SSSC-based controller", Sustain. Energy Technol. Assess., vol. 53, no. 3, p. 102664, 2022.
[http://dx.doi.org/10.1016/j.seta.2022.102664]
[37]
R. Benabid, M. Boudour, and M.A. Abido, "Development of a new power injection model with embedded multi-control functions for static synchronous series compensator", IET Gener. Transm. Distrib., vol. 6, no. 7, pp. 680-692, 2012.
[http://dx.doi.org/10.1049/iet-gtd.2011.0296]
[38]
A.C. Pradhan, and P.W. Lehn, "Frequency-domain analysis of the static synchronous series compensator", IEEE Trans. Power Deliv., vol. 21, no. 1, pp. 440-449, 2006.
[http://dx.doi.org/10.1109/TPWRD.2005.852311]
[39]
B. Mahdad, and K. Srairi, "Application of a combined superconducting fault current limiter and STATCOM to enhancement of power system transient stability", Physica C, vol. 495, pp. 160-168, 2013.
[http://dx.doi.org/10.1016/j.physc.2013.08.009]
[40]
T. Surinkaew, and I. Ngamroo, "Coordinated robust control of DFIG wind turbine and PSS for stabilization of power oscillations considering system uncertainties", IEEE Trans. Sustain. Energy, vol. 5, no. 3, pp. 823-833, 2014.
[http://dx.doi.org/10.1109/TSTE.2014.2308358]
[41]
S. Panda, "Robust coordinated design of multiple and multi-type damping controller using differential evolution algorithm", Int. J. Electr. Power Energy Syst., vol. 33, no. 4, pp. 1018-1030, 2011.
[http://dx.doi.org/10.1016/j.ijepes.2011.01.019]