Synthesis and Biomedical Applications of DNA Hydrogel

Page: [327 - 337] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Deoxyribonucleic acid (DNA), as a natural polymer material, carries almost all the genetic information and is recognized as one of the most intelligent natural polymers. In the past 20 years, there have been many exciting advances in the synthesis of hydrogels using DNA as the main backbone or cross-linking agent. Different methods, such as physical entanglement and chemical cross-linking, have been developed to perform the gelation of DNA hydrogels. The good designability, biocompatibility, designable responsiveness, biodegradability and mechanical strength provided by DNA building blocks facilitate the application of DNA hydrogels in cytoscaffolds, drug delivery systems, immunotherapeutic carriers, biosensors and nanozyme-protected scaffolds. This review provides an overview of the main classification and synthesis methods of DNA hydrogels and highlights the application of DNA hydrogel in biomedical fields. It aims to give readers a better understanding of DNA hydrogels and development trends.

Graphical Abstract

[1]
Downs, J.A.; Nussenzweig, M.C.; Nussenzweig, A. Chromatin dynamics and the preservation of genetic information. Nature, 2007, 447(7147), 951-958.
[http://dx.doi.org/10.1038/nature05980] [PMID: 17581578]
[2]
Ma, W.; Yang, Y.; Zhu, J.; Jia, W.; Zhang, T.; Liu, Z.; Chen, X.; Lin, Y. Biomimetic nanoerythrosome‐coated aptamer-DNA tetrahedron/maytansine conjugates: pH‐responsive and targeted cytotoxicity for HER2‐positive breast cancer. Adv. Mater., 2022, 34(46)2109609
[http://dx.doi.org/10.1002/adma.202109609] [PMID: 35064993]
[3]
Zhang, T.; Tian, T.; Lin, Y. Functionalizing framework nucleic‐acid‐based nanostructures for biomedical application. Adv. Mater., 2022, 34(46), 2107820-2107848.
[http://dx.doi.org/10.1002/adma.202107820]
[4]
Wang, Y.; Li, Y.; Gao, S.; Yu, X.; Chen, Y.; Lin, Y. Tetrahedral framework nucleic acids can alleviate taurocholate-induced severe acute pancreatitis and its subsequent multiorgan injury in mice. Nano Lett., 2022, 22(4), 1759-1768.
[http://dx.doi.org/10.1021/acs.nanolett.1c05003] [PMID: 35138113]
[5]
Zhang, Q.; Lin, S.; Wang, L.; Peng, S.; Tian, T.; Li, S.; Xiao, J.; Lin, Y. Tetrahedral framework nucleic acids act as antioxidants in acute kidney injury treatment. Chem. Eng. J., 2021, 413, 127426-127437.
[http://dx.doi.org/10.1016/j.cej.2020.127426]
[6]
Qin, X.; Xiao, L.; Li, N.; Hou, C.; Li, W.; Li, J.; Yan, N.; Lin, Y. Tetrahedral framework nucleic acids-based delivery of microRNA-155 inhibits choroidal neovascularization by regulating the polarization of macrophages. Bioact. Mater., 2022, 14, 134-144.
[http://dx.doi.org/10.1016/j.bioactmat.2021.11.031] [PMID: 35310341]
[7]
Zhang, M.; Zhang, X.; Tian, T.; Zhang, Q.; Wen, Y.; Zhu, J.; Xiao, D.; Cui, W.; Lin, Y. Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis. Bioact. Mater., 2022, 8, 368-380.
[http://dx.doi.org/10.1016/j.bioactmat.2021.06.003] [PMID: 34541407]
[8]
Minasov, G.; Tereshko, V.; Egli, M. Atomic-resolution crystal structures of B-DNA reveal specific influences of divalent metal ions on conformation and packing. J. Mol. Biol., 1999, 291(1), 83-99.
[http://dx.doi.org/10.1006/jmbi.1999.2934] [PMID: 10438608]
[9]
Guéron, M.; Leroy, J.L. The i-motif in nucleic acids. Curr. Opin. Struct. Biol., 2000, 10(3), 326-331.
[http://dx.doi.org/10.1016/S0959-440X(00)00091-9] [PMID: 10851195]
[10]
Rhee, S.; Han, Z.; Liu, K.; Miles, H.T.; Davies, D.R. Structure of a triple helical DNA with a triplex-duplex junction. Biochemistry, 1999, 38(51), 16810-16815.
[http://dx.doi.org/10.1021/bi991811m] [PMID: 10606513]
[11]
Phan, A.T.; Mergny, J.L. Human telomeric DNA: G-quadruplex, i-motif and Watson-Crick double helix. Nucleic Acids Res., 2002, 30(21), 4618-4625.
[http://dx.doi.org/10.1093/nar/gkf597] [PMID: 12409451]
[12]
Kahn, J.S.; Hu, Y.; Willner, I. Stimuli-responsive DNA-based hydrogels: From basic principles to applications. Acc. Chem. Res., 2017, 50(4), 680-690.
[http://dx.doi.org/10.1021/acs.accounts.6b00542] [PMID: 28248486]
[13]
Zhou, M.; Zhang, T.; Zhang, B.; Zhang, X.; Gao, S.; Zhang, T.; Li, S.; Cai, X.; Lin, Y. A DNA nanostructure-based neuroprotectant against neuronal apoptosis via inhibiting toll-like receptor 2 signaling pathway in acute ischemic stroke. ACS Nano, 2022, 16(1), 1456-1470.
[http://dx.doi.org/10.1021/acsnano.1c09626] [PMID: 34967217]
[14]
Nagahara, S.; Matsuda, T. Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers. Polym. Gels Netw., 1996, 4(2), 111-127.
[http://dx.doi.org/10.1016/0966-7822(96)00001-9]
[15]
Um, S.H.; Lee, J.B.; Park, N.; Kwon, S.Y.; Umbach, C.C.; Luo, D. Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater., 2006, 5(10), 797-801.
[http://dx.doi.org/10.1038/nmat1741] [PMID: 16998469]
[16]
Yang, D.; Hartman, M.R.; Derrien, T.L.; Hamada, S.; An, D.; Yancey, K.G.; Cheng, R.; Ma, M.; Luo, D. DNA materials: Bridging nanotechnology and biotechnology. Acc. Chem. Res., 2014, 47(6), 1902-1911.
[http://dx.doi.org/10.1021/ar5001082] [PMID: 24884022]
[17]
Roh, Y.H.; Ruiz, R.C.H.; Peng, S.; Lee, J.B.; Luo, D. Engineering DNA-based functional materials. Chem. Soc. Rev., 2011, 40(12), 5730-5744.
[http://dx.doi.org/10.1039/c1cs15162b] [PMID: 21858293]
[18]
Wei, Y.; Wang, K.; Luo, S.; Li, F.; Zuo, X.; Fan, C.; Li, Q. Programmable DNA hydrogels as artificial extracellular matrix. Small, 2022, 18(36)2107640
[http://dx.doi.org/10.1002/smll.202107640] [PMID: 35119201]
[19]
Zhao, L.; Li, L.; Yang, G.; Wei, B.; Ma, Y.; Qu, F. Aptamer functionalized DNA hydrogels: Design, applications and kinetics. Biosens. Bioelectron., 2021, 194, 113597-113610.
[http://dx.doi.org/10.1016/j.bios.2021.113597] [PMID: 34534951]
[20]
Mo, F.; Jiang, K.; Zhao, D.; Wang, Y.; Song, J.; Tan, W. DNA hydrogel-based gene editing and drug delivery systems. Adv. Drug Deliv. Rev., 2021, 168, 79-98.
[http://dx.doi.org/10.1016/j.addr.2020.07.018] [PMID: 32712197]
[21]
Zhou, L.; Jiao, X.; Liu, S.; Hao, M.; Cheng, S.; Zhang, P.; Wen, Y. Functional DNA-based hydrogel intelligent materials for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(10), 1991-2009.
[http://dx.doi.org/10.1039/C9TB02716E] [PMID: 32073097]
[22]
Kimura, T.; Iwai, S.; Moritan, T.; Nam, K.; Mutsuo, S.; Yoshizawa, H.; Okada, M.; Furuzono, T.; Fujisato, T.; Kishida, A. Preparation of poly(vinyl alcohol)/DNA hydrogels via hydrogen bonds formed on ultra-high pressurization and controlled release of DNA from the hydrogels for gene delivery. J. Artif. Organs, 2007, 10(2), 104-108.
[http://dx.doi.org/10.1007/s10047-006-0367-7] [PMID: 17574513]
[23]
Basu, S.; Pacelli, S.; Feng, Y.; Lu, Q.; Wang, J.; Paul, A. Harnessing the noncovalent interactions of DNA backbone with 2D silicate nanodisks to fabricate injectable therapeutic hydrogels. ACS Nano, 2018, 12(10), 9866-9880.
[http://dx.doi.org/10.1021/acsnano.8b02434] [PMID: 30189128]
[24]
Tang, H.; Duan, X.; Feng, X.; Liu, L.; Wang, S.; Li, Y.; Zhu, D. Fluorescent DNA–poly(phenylenevinylene) hybrid hydrogels for monitoring drug release. Chem. Commun., 2009, 14(6), 641-643.
[http://dx.doi.org/10.1039/B817788K] [PMID: 19322407]
[25]
Li, C.; Faulkner-Jones, A.; Dun, A.R.; Jin, J.; Chen, P.; Xing, Y.; Yang, Z.; Li, Z.; Shu, W.; Liu, D.; Duncan, R.R. Rapid formation of a supramolecular polypeptide-DNA hydrogel for in situ three-dimensional multilayer bioprinting. Angew. Chem. Int. Ed., 2015, 54(13), 3957-3961.
[http://dx.doi.org/10.1002/anie.201411383] [PMID: 25656851]
[26]
Guo, W.; Lu, C.H.; Qi, X.J.; Orbach, R.; Fadeev, M.; Yang, H.H.; Willner, I. Switchable bifunctional stimuli-triggered poly-N-isopropylacrylamide/DNA hydrogels. Angew. Chem. Int. Ed., 2014, 53(38), 10134-10138.
[http://dx.doi.org/10.1002/anie.201405692] [PMID: 25098550]
[27]
Yata, T.; Takahashi, Y.; Tan, M.; Nakatsuji, H.; Ohtsuki, S.; Murakami, T.; Imahori, H.; Umeki, Y.; Shiomi, T.; Takakura, Y.; Nishikawa, M. DNA nanotechnology-based composite-type gold nanoparticle-immunostimulatory DNA hydrogel for tumor photothermal immunotherapy. Biomaterials, 2017, 146, 136-145.
[http://dx.doi.org/10.1016/j.biomaterials.2017.09.014] [PMID: 28918263]
[28]
Zinchenko, A.; Miwa, Y.; Lopatina, L.I.; Sergeyev, V.G.; Murata, S. DNA hydrogel as a template for synthesis of ultrasmall gold nanoparticles for catalytic applications. ACS Appl. Mater. Interfaces, 2014, 6(5), 3226-3232.
[http://dx.doi.org/10.1021/am5008886] [PMID: 24533931]
[29]
Singh, S.; Mishra, A.; Kumari, R.; Sinha, K.K.; Singh, M.K.; Das, P. Carbon dots assisted formation of DNA hydrogel for sustained release of drug. Carbon, 2017, 114, 169-176.
[http://dx.doi.org/10.1016/j.carbon.2016.12.020]
[30]
Chen, W.H.; Liao, W.C.; Sohn, Y.S.; Fadeev, M.; Cecconello, A.; Nechushtai, R.; Willner, I. Stimuli‐responsive nucleic acid‐based polyacrylamide hydrogel‐coated metal–organic framework nanoparticles for controlled drug release. Adv. Funct. Mater., 2018, 28(8), 1705137-1705146.
[http://dx.doi.org/10.1002/adfm.201705137]
[31]
Zinchenko, A.; Che, Y.; Taniguchi, S.; Lopatina, L.I.; Sergeyev, G. Metallization of DNA hydrogel: Application of soft matter host for preparation and nesting of catalytic nanoparticles. J. Nanopart. Res., 2016, 18, 1-9.
[http://dx.doi.org/10.1007/s11051-016-3480-4]
[32]
Li, F.; Tang, J.; Geng, J.; Luo, D.; Yang, D. Polymeric DNA hydrogel: Design, synthesis and applications. Prog. Polym. Sci., 2019, 98, 101163-101237.
[http://dx.doi.org/10.1016/j.progpolymsci.2019.101163]
[33]
Nishida, Y.; Ohtsuki, S.; Araie, Y.; Umeki, Y.; Endo, M.; Emura, T.; Hidaka, K.; Sugiyama, H.; Takahashi, Y.; Takakura, Y.; Nishikawa, M. Self-assembling DNA hydrogel-based delivery of immunoinhibitory nucleic acids to immune cells. Nanomedicine, 2016, 12(1), 123-130.
[http://dx.doi.org/10.1016/j.nano.2015.08.004] [PMID: 26364795]
[34]
Cheng, E.; Xing, Y.; Chen, P.; Yang, Y.; Sun, Y.; Zhou, D.; Xu, L.; Fan, Q.; Liu, D. A pH-triggered, fast-responding DNA hydrogel. Angew. Chem. Int. Ed., 2009, 48(41), 7660-7663.
[http://dx.doi.org/10.1002/anie.200902538] [PMID: 19739155]
[35]
Lee, J.B.; Peng, S.; Yang, D.; Roh, Y.H.; Funabashi, H.; Park, N.; Rice, E.J.; Chen, L.; Long, R.; Wu, M.; Luo, D. A mechanical metamaterial made from a DNA hydrogel. Nat. Nanotechnol., 2012, 7(12), 816-820.
[http://dx.doi.org/10.1038/nnano.2012.211] [PMID: 23202472]
[36]
Silva, G.A.; Czeisler, C.; Niece, K.L.; Beniash, E.; Harrington, D.A.; Kessler, J.A.; Stupp, S.I. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science, 2004, 303(5662), 1352-1355.
[http://dx.doi.org/10.1126/science.1093783] [PMID: 14739465]
[37]
Zhu, X.; Mao, X.; Wang, Z.; Feng, C.; Chen, G.; Li, G. Fabrication of nanozyme@DNA hydrogel and its application in biomedical analysis. Nano Res., 2017, 10(3), 959-970.
[http://dx.doi.org/10.1007/s12274-016-1354-9]
[38]
Faley, S.L.; Copland, M.; Reboud, J.; Cooper, J.M. Cell chip array for microfluidic proteomics enabling rapid in situ assessment of intracellular protein phosphorylation. Biomicrofluidics, 2011, 5(2)024106
[http://dx.doi.org/10.1063/1.3587095] [PMID: 21673844]
[39]
Kim, S.H.; Yamamoto, T.; Fourmy, D.; Fujii, T. Electroactive microwell arrays for highly efficient single-cell trapping and analysis. Small, 2011, 7(22), 3239-3247.
[http://dx.doi.org/10.1002/smll.201101028] [PMID: 21932278]
[40]
Jin, J.; Xing, Y.; Xi, Y.; Liu, X.; Zhou, T.; Ma, X.; Yang, Z.; Wang, S.; Liu, D. A triggered DNA hydrogel cover to envelop and release single cells. Adv. Mater., 2013, 25(34), 4714-4717.
[http://dx.doi.org/10.1002/adma.201301175] [PMID: 23836697]
[41]
Li, D.; Song, S.; Fan, C. Target-responsive structural switching for nucleic acid-based sensors. Acc. Chem. Res., 2010, 43(5), 631-641.
[http://dx.doi.org/10.1021/ar900245u] [PMID: 20222738]
[42]
Zhao, L-P.; Yang, G.; Zhang, X.M.; Qu, F. Development of aptamer screening against proteins and its applications. Chin. J. Anal. Chem., 2020, 48(5), 560-572.
[http://dx.doi.org/10.1016/S1872-2040(20)60012-3]
[43]
Yao, C.; Tang, H.; Wu, W.; Tang, J.; Guo, W.; Luo, D.; Yang, D. Double rolling circle amplification generates physically cross-linked DNA network for stem cell fishing. J. Am. Chem. Soc., 2020, 142(7), 3422-3429.
[http://dx.doi.org/10.1021/jacs.9b11001] [PMID: 31893497]
[44]
Helwa, Y.; Dave, N.; Froidevaux, R.; Samadi, A.; Liu, J. Aptamer-functionalized hydrogel microparticles for fast visual detection of mercury(II) and adenosine. ACS Appl. Mater. Interfaces, 2012, 4(4), 2228-2233.
[http://dx.doi.org/10.1021/am300241j] [PMID: 22468717]
[45]
Zhu, Z.; Wu, C.; Liu, H.; Zou, Y.; Zhang, X.; Kang, H.; Yang, C.J.; Tan, W. An aptamer cross-linked hydrogel as a colorimetric platform for visual detection. Angew. Chem. Int. Ed., 2010, 49(6), 1052-1056.
[http://dx.doi.org/10.1002/anie.200905570] [PMID: 20084650]
[46]
Zhang, L.; Jean, S.R.; Ahmed, S.; Aldridge, P.M.; Li, X.; Fan, F.; Sargent, E.H.; Kelley, S.O. Multifunctional quantum dot DNA hydrogels. Nat. Commun., 2017, 8(1), 381-390.
[http://dx.doi.org/10.1038/s41467-017-00298-w] [PMID: 28851869]
[47]
Wang, F.; Liu, X.; Willner, I. DNA switches: From principles to applications. Angew. Chem. Int. Ed., 2015, 54(4), 1098-1129.
[http://dx.doi.org/10.1002/anie.201404652] [PMID: 25521588]
[48]
Cecconello, A.; Besteiro, L.V.; Govorov, A.O.; Willner, I. Chiroplasmonic DNA-based nanostructures. Nat. Rev. Mater., 2017, 2(9), 17039.
[http://dx.doi.org/10.1038/natrevmats.2017.39]
[49]
Krieg, A.M. Immune effects and mechanisms of action of CpG motifs. Vaccine, 2000, 19(6), 618-622.
[http://dx.doi.org/10.1016/S0264-410X(00)00249-8] [PMID: 11090712]
[50]
Klinman, D.M. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat. Rev. Immunol., 2004, 4(4), 249-259.
[http://dx.doi.org/10.1038/nri1329] [PMID: 15057783]
[51]
Lou, Y.; Liu, C.; Lizée, G.; Peng, W.; Xu, C.; Ye, Y.; Rabinovich, B.A.; Hailemichael, Y.; Gelbard, A.; Zhou, D.; Overwijk, W.W.; Hwu, P. Antitumor activity mediated by CpG: The route of administration is critical. J. Immunother., 2011, 34(3), 279-288.
[http://dx.doi.org/10.1097/CJI.0b013e31820d2a05] [PMID: 21389870]
[52]
Luo, L.; Bian, Y.; Liu, Y.; Zhang, X.; Wang, M.; Xing, S.; Li, L.; Gao, D. Combined near infrared photothermal therapy and chemotherapy using gold nanoshells coated liposomes to enhance antitumor effect. Small, 2016, 12(30), 4103-4112.
[http://dx.doi.org/10.1002/smll.201503961] [PMID: 27294601]
[53]
Yang, J.; Su, H.; Sun, W.; Cai, J.; Liu, S.; Chai, Y.; Zhang, C. Dual chemodrug-loaded single-walled carbon nanohorns for multimodal imaging-guided chemo-photothermal therapy of tumors and lung metastases. Theranostics, 2018, 8(7), 1966-1984.
[http://dx.doi.org/10.7150/thno.23848] [PMID: 29556368]
[54]
Li, N.; Sun, Q.; Yu, Z.; Gao, X.; Pan, W.; Wan, X.; Tang, B. Nuclear-targeted photothermal therapy prevents cancer recurrence with near-infrared triggered copper sulfide nanoparticles. ACS Nano, 2018, 12(6), 5197-5206.
[http://dx.doi.org/10.1021/acsnano.7b06870] [PMID: 29894162]
[55]
Pan, H.; Zhang, C.; Wang, T.; Chen, J.; Sun, S.K. In situ fabrication of intelligent photothermal indocyanine green–alginate hydrogel for localized tumor ablation. ACS Appl. Mater. Interfaces, 2019, 11(3), 2782-2789.
[http://dx.doi.org/10.1021/acsami.8b16517] [PMID: 30584767]
[56]
Xu, P.; Liang, F. Nanomaterial-based tumor photothermal immunotherapy. Int. J. Nanomedicine, 2020, 15, 9159-9180.
[http://dx.doi.org/10.2147/IJN.S249252] [PMID: 33244232]
[57]
Nishikawa, M.; Ogawa, K.; Umeki, Y.; Mohri, K.; Kawasaki, Y.; Watanabe, H.; Takahashi, N.; Kusuki, E.; Takahashi, R.; Takahashi, Y.; Takakura, Y. Injectable, self-gelling, biodegradable, and immunomodulatory DNA hydrogel for antigen delivery. J. Control. Release, 2014, 180, 25-32.
[http://dx.doi.org/10.1016/j.jconrel.2014.02.001] [PMID: 24530618]
[58]
Stunz, L.L.; Lenert, P.; Peckham, D.; Yi, A.K.; Haxhinasto, S.; Chang, M.; Krieg, A.M.; Ashman, R.F. Inhibitory oligonucleotides specifically block effects of stimulatory CpG oligonucleotides in B cells. Eur. J. Immunol., 2002, 32(5), 1212-1222.
[http://dx.doi.org/10.1002/1521-4141(200205)32:5<1212:AID-IMMU1212>3.0.CO;2-D] [PMID: 11981808]
[59]
Nummelin, S.; Kommeri, J.; Kostiainen, M.A.; Linko, V. Evolution of structural DNA nanotechnology. Adv. Mater., 2018, 30(24)1703721
[http://dx.doi.org/10.1002/adma.201703721] [PMID: 29363798]
[60]
Zhang, B.; Tian, T.; Xiao, D.; Gao, S.; Cai, X.; Lin, Y. Facilitating In Situ tumor imaging with a tetrahedral dna framework‐enhanced hybridization chain reaction probe. Adv. Funct. Mater., 2022, 32(16), 2109728-2109739.
[http://dx.doi.org/10.1002/adfm.202109728]
[61]
Shahbazi, M.A.; Bauleth-Ramos, T.; Santos, H.A. DNA hydrogel assemblies: Bridging synthesis principles to biomedical applications. Adv. Ther., 2018, 1(4), 1800042-1800064.
[http://dx.doi.org/10.1002/adtp.201800042]
[62]
Li, F.; Lyu, D.; Liu, S.; Guo, W. DNA hydrogels and microgels for biosensing and biomedical applications. Adv. Mater., 2020, 32(3)1806538
[http://dx.doi.org/10.1002/adma.201806538] [PMID: 31379017]
[63]
Baeissa, A.; Dave, N.; Smith, B.D.; Liu, J. DNA-functionalized monolithic hydrogels and gold nanoparticles for colorimetric DNA detection. ACS Appl. Mater. Interfaces, 2010, 2(12), 3594-3600.
[http://dx.doi.org/10.1021/am100780d] [PMID: 21077647]
[64]
Khajouei, S.; Ravan, H.; Ebrahimi, A. DNA hydrogel-empowered biosensing. Adv. Colloid Interface Sci., 2020, 275, 102060-102072.
[http://dx.doi.org/10.1016/j.cis.2019.102060] [PMID: 31739981]
[65]
Wang, F.; Lu, C.H.; Willner, I. From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: Controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem. Rev., 2014, 114(5), 2881-2941.
[http://dx.doi.org/10.1021/cr400354z] [PMID: 24576227]
[66]
Zhou, W.; Saran, R.; Liu, J. Metal sensing by DNA. Chem. Rev., 2017, 117(12), 8272-8325.
[http://dx.doi.org/10.1021/acs.chemrev.7b00063] [PMID: 28598605]
[67]
Jiang, C.; Li, Y.; Wang, H.; Chen, D.; Wen, Y. A portable visual capillary sensor based on functional DNA crosslinked hydrogel for point-of-care detection of lead ion. Sens. Actuators B Chem., 2020, 307, 127625-127633.
[http://dx.doi.org/10.1016/j.snb.2019.127625]
[68]
Zhang, L.; Lei, J.; Liu, L.; Li, C.; Ju, H. Self-assembled DNA hydrogel as switchable material for aptamer-based fluorescent detection of protein. Anal. Chem., 2013, 85(22), 11077-11082.
[http://dx.doi.org/10.1021/ac4027725] [PMID: 24138007]
[69]
Wang, Q.; Hu, Y.; Jiang, N.; Wang, J.; Yu, M.; Zhuang, X. Preparation of aptamer responsive DNA functionalized hydrogels for the sensitive detection of α-fetoprotein using SERS method. Bioconjug. Chem., 2020, 31(3), 813-820.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00874] [PMID: 31977189]
[70]
He, Y.; Yang, X.; Yuan, R.; Chai, Y. Switchable target-responsive 3D DNA hydrogels as a signal amplification strategy combining with SERS technique for ultrasensitive detection of miRNA 155. Anal. Chem., 2017, 89(16), 8538-8544.
[http://dx.doi.org/10.1021/acs.analchem.7b02321] [PMID: 28745490]
[71]
He, Y.; Yang, X.; Yuan, R.; Chai, Y. A novel ratiometric SERS biosensor with one Raman probe for ultrasensitive microRNA detection based on DNA hydrogel amplification. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(16), 2643-2647.
[http://dx.doi.org/10.1039/C8TB02894J] [PMID: 32254997]
[72]
Lin, Y.; Ren, J.; Qu, X. Nano-gold as artificial enzymes: Hidden talents. Adv. Mater., 2014, 26(25), 4200-4217.
[http://dx.doi.org/10.1002/adma.201400238] [PMID: 24692212]
[73]
Li, W.; Fan, G.C.; Gao, F.; Cui, Y.; Wang, W.; Luo, X. High-activity Fe3O4 nanozyme as signal amplifier: A simple, low-cost but efficient strategy for ultrasensitive photoelectrochemical immunoassay. Biosens. Bioelectron., 2019, 127, 64-71.
[http://dx.doi.org/10.1016/j.bios.2018.11.043] [PMID: 30594076]
[74]
Li, D.; Garisto, S.L.; Huang, P.J.J.; Yang, J.; Liu, B.; Liu, J. Fluorescent detection of fluoride by CeO2 nanozyme oxidation of Amplex red. Inorg. Chem. Commun., 2019, 106, 38-42.
[http://dx.doi.org/10.1016/j.inoche.2019.05.028]
[75]
Dai, Z.; Guo, J.; Xu, J.; Liu, C.; Gao, Z.; Song, Y.Y. Target-driven nanozyme growth in TiO2 nanochannels for improving selectivity in electrochemical biosensing. Anal. Chem., 2020, 92(14), 10033-10041.
[http://dx.doi.org/10.1021/acs.analchem.0c01815] [PMID: 32603589]
[76]
Sato, K.; Hosokawa, K.; Maeda, M. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J. Am. Chem. Soc., 2003, 125(27), 8102-8103.
[http://dx.doi.org/10.1021/ja034876s] [PMID: 12837070]