Diphenyl Ethers: Isolation, Bioactivities and Biosynthesis

Page: [590 - 598] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Diphenyl ethers (DPEs) are mainly produced by microorganisms and plants. The chemical structure of DPEs is relatively simple, and all of these compounds have the structure of biphenyl ethers in their chemical structure, the difference being the difference in the substituents on the benzene ring. Several recent studies have shown antibacterial, antioxidant, antitumor, antitumor, antihemolytic, neuroprotective, and anti-Alzheimer effects. DPEs could be candidate compounds for the treatment of Alzheimer's disease, by inhibiting the aggregation of Aβ42. Many DPEs from natural products exhibit good biological activity and they play an important role in the control of microbial infections. Diphenyl ethers have a wide range of applications and research value in the fields of pesticides, pharmaceuticals, textiles, household products, and public health. In this paper, we review the research progress of diphenyl ethers isolated from marine and plant endophytic sources in recent years, including their biosynthesis, and lay the foundation for further utilization and development.

Graphical Abstract

[1]
Mishra, B.B.; Tiwari, V.K. Natural products: An evolving role in future drug discovery. Eur. J. Med. Chem., 2011, 46(10), 4769-4807.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.057] [PMID: 21889825]
[2]
Liu, L.; Zheng, Y.Y.; Shao, C.L.; Wang, C.Y. Metabolites from marine invertebrates and their symbiotic microorganisms: molecular diversity discovery, mining, and application. Mar. Life Sci. Technol., 2019, 1(1), 60-94.
[http://dx.doi.org/10.1007/s42995-019-00021-2]
[3]
Podlesny, E.E.; Kozlowski, M.C. Structural reassignment of a marine metabolite from a binaphthalenetetrol to a tetrabrominated diphenyl ether. J. Nat. Prod., 2012, 75(6), 1125-1129.
[http://dx.doi.org/10.1021/np300141t] [PMID: 22690692]
[4]
Liu, H.; Lohith, K.; Rosario, M.; Pulliam, T.H.; O’Connor, R.D.; Bell, L.J.; Bewley, C.A. Polybrominated diphenyl ethers: structure determination and trends in antibacterial activity. J. Nat. Prod., 2016, 79(7), 1872-1876.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00229] [PMID: 27399938]
[5]
Liu, G.; Niu, S.; Liu, L. Alterchromanone A, one new chromanone derivative from the mangrove endophytic fungus Alternaria longipes. J. Antibiot. (Tokyo), 2021, 74(2), 152-155.
[http://dx.doi.org/10.1038/s41429-020-00364-4] [PMID: 32843724]
[6]
Zhang, L.; Niaz, S.; Khan, D.; Wang, Z.; Zhu, Y.; Zhou, H.; Lin, Y.; Li, J.; Liu, L. Induction of diverse bioactive secondary metabolites from the mangrove endophytic fungus Trichoderma sp. (strain 307) by co-cultivation with Acinetobacter johnsonii (strain B2). Mar. Drugs, 2017, 15(2), 35-48.
[http://dx.doi.org/10.3390/md15020035] [PMID: 28208607]
[7]
Long, J.Y.; Wang, J.F.; Liao, S.R.; Lin, X.P.; Zhou, X.F.; Li, Y.Q.; Yang, B.; Liu, Y.H. Four new steroids from the marine soft coral-derived fungus Penicillium sp. SCSIO41201. Chin. J. Nat. Med., 2020, 18(4), 250-255.
[http://dx.doi.org/10.1016/S1875-5364(20)30030-3] [PMID: 32402400]
[8]
Hou, X.M.; Li, Y.Y.; Shi, Y.W.; Fang, Y.W.; Chao, R.; Gu, Y.C.; Wang, C.Y.; Shao, C.L. Integrating molecular networking and 1H NMR to target the isolation of chrysogeamides from a library of marine-derived Penicillium fungi. J. Org. Chem., 2019, 84(3), 1228-1237.
[http://dx.doi.org/10.1021/acs.joc.8b02614] [PMID: 30609359]
[9]
Gaul, S.; Bendig, P.; Olbrich, D.; Rosenfelder, N.; Ruff, P.; Gaus, C.; Mueller, J.F.; Vetter, W. Identification of the natural product 2,3,4,5-tetrabromo-1-methylpyrrole in Pacific biota, passive samplers and seagrass from Queensland, Australia. Mar. Pollut. Bull., 2011, 62(11), 2463-2468.
[http://dx.doi.org/10.1016/j.marpolbul.2011.08.022] [PMID: 21925687]
[10]
King, G.M.; Giray, C.; Kornfield, I. Biogeographical, biochemical and genetic differentiation among North American saccoglossids (Hemichordata; Enteropneusta; Harrimaniidae). Mar. Biol., 1995, 123(2), 369-377.
[http://dx.doi.org/10.1007/BF00353628]
[11]
Choi, H.; Oh, D.C. Considerations of the chemical biology of microbial natural products provide an effective drug discovery strategy. Arch. Pharm. Res., 2015, 38(9), 1591-1605.
[http://dx.doi.org/10.1007/s12272-015-0639-y] [PMID: 26231248]
[12]
Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2017, 34(3), 235-294.
[http://dx.doi.org/10.1039/C6NP00124F] [PMID: 28290569]
[13]
Li, Z.J.; Yang, H.Y.; Li, J.; Liu, X.; Ye, L.; Kong, W.S.; Tang, S.Y.; Du, G.; Liu, Z.H.; Zhou, M.; Yang, G.Y.; Hu, Q.F.; Li, X.M. Isopentylated diphenyl ether derivatives from the fermentation products of an endophytic fungus Phomopsis fukushii. J. Antibiot. (Tokyo), 2018, 71(3), 359-362.
[http://dx.doi.org/10.1038/s41429-017-0006-y] [PMID: 29348531]
[14]
Zhang, M.M.; Qiao, Y.; Ang, E.L.; Zhao, H. Using natural products for drug discovery: the impact of the genomics era. Expert Opin. Drug Discov., 2017, 12(5), 475-487.
[http://dx.doi.org/10.1080/17460441.2017.1303478] [PMID: 28277838]
[15]
Takahashi, K. Sakai, K.; Fukasawa, W.; Nagano, Y.; Sakaguchi, S.O.; Lima, A.O.; Pellizari, V.H.; Iwatsuki, M.; Takishita, K.; Yoshida, T.; Nonaka, K.; Fujikura, K.; Ōmura, S. Quellenin, a new anti-Saprolegnia compound isolated from the deep-sea fungus, Aspergillus sp. YK-76. J. Antibiot. (Tokyo), 2018, 71(8), 741-744.
[http://dx.doi.org/10.1038/s41429-018-0053-z] [PMID: 29686353]
[16]
Zhao, H.; Wang, G.Q.; Tong, X.P.; Chen, G.D.; Huang, Y.F.; Cui, J.Y.; Kong, M.Z.; Guo, L.D.; Zheng, Y.Z.; Yao, X.S.; Gao, H. Diphenyl ethers from Aspergillus sp. and their anti-Aβ42 aggregation activities. Fitoterapia, 2014, 98, 77-83.
[http://dx.doi.org/10.1016/j.fitote.2014.07.007] [PMID: 25038471]
[17]
Agarwal, V.; Blanton, J.M.; Podell, S.; Taton, A.; Schorn, M.A.; Busch, J.; Lin, Z.; Schmidt, E.W.; Jensen, P.R.; Paul, V.J.; Biggs, J.S.; Golden, J.W.; Allen, E.E.; Moore, B.S. Metagenomic discovery of polybrominated diphenyl ether biosynthesis by marine sponges. Nat. Chem. Biol., 2017, 13(5), 537-543.
[http://dx.doi.org/10.1038/nchembio.2330] [PMID: 28319100]
[18]
Agarwal, V.; El Gamal, A.A.; Yamanaka, K.; Poth, D.; Kersten, R.D.; Schorn, M.; Allen, E.E.; Moore, B.S. Biosynthesis of polybrominated aromatic organic compounds by marine bacteria. Nat. Chem. Biol., 2014, 10(8), 640-647.
[http://dx.doi.org/10.1038/nchembio.1564] [PMID: 24974229]
[19]
Moss, T.; Howes, D.; Williams, F.M. Percutaneous penetration and dermal metabolism of triclosan (2,4,4′-trichloro-2′-hydroxydiphenyl ether). Food Chem. Toxicol., 2000, 38(4), 361-370.
[http://dx.doi.org/10.1016/S0278-6915(99)00164-7] [PMID: 10722890]
[20]
Saxton, C.A. The effects of a dentifrice containing zinc citrate and 2, 4, 4‘trichloro‐2’‐hydroxydiphenyl ether. J. Periodontol., 1986, 57(9), 555-561.
[http://dx.doi.org/10.1902/jop.1986.57.9.555] [PMID: 3463727]
[21]
Sadorn, K.; Saepua, S.; Bunbamrung, N.; Boonyuen, N.; Komwijit, S.; Rachtawee, P.; Pittayakhajonwut, P. Diphenyl ethers and depsidones from the endophytic fungus Aspergillus unguis BCC54176. Tetrahedron, 2022, 105, 132612.
[http://dx.doi.org/10.1016/j.tet.2021.132612]
[22]
Saetang, P.; Rukachaisirikul, V.; Phongpaichit, S.; Preedanon, S.; Sakayaroj, J.; Hadsadee, S.; Jungsuttiwong, S. Antibacterial and antifungal polyketides from the fungus Aspergillus unguis PSU-MF16. J. Nat. Prod., 2021, 84(5), 1498-1506.
[http://dx.doi.org/10.1021/acs.jnatprod.0c01308] [PMID: 33861594]
[23]
de Sá, J.D.M.; Pereira, J.A.; Dethoup, T.; Cidade, H.; Sousa, M.E.; Rodrigues, I.C.; Costa, P.M.; Mistry, S.; Silva, A.M.S.; Kijjoa, A. Anthraquinones, diphenyl ethers, and their derivatives from the culture of the marine sponge-associated fungus Neosartorya spinosa KUFA 1047. Mar. Drugs, 2021, 19(8), 457.
[http://dx.doi.org/10.3390/md19080457] [PMID: 34436296]
[24]
Faisal, M.R.; Kellermann, M.Y.; Rohde, S.; Putra, M.Y.; Murniasih, T.; Risdian, C.; Mohr, K.I.; Wink, J.; Praditya, D.F.; Steinmann, E.; Köck, M.; Schupp, P.J. Ecological and pharmacological activities of polybrominated diphenyl ethers (PBDEs) from the indonesian marine sponge Lamellodysidea herbacea. Mar. Drugs, 2021, 19(11), 611.
[http://dx.doi.org/10.3390/md19110611] [PMID: 34822482]
[25]
Salvá, J.; Faulkner, D.J. A new brominated diphenyl ether from a philippine dysidea species. J. Nat. Prod., 1990, 53(3), 757-760.
[http://dx.doi.org/10.1021/np50069a043]
[26]
Hanif, N.; Tyas, T.A.; Hidayati, L.; Dinelsa, F.F.; Provita, D.; Kinnary, N.R.; Prasetiawan, F.M.; Khalik, G.A.; Mubarok, Z.; Tohir, D.; Setiawan, A.; Farid, M.; Kurnianda, V.; Murni, A.; de Voogd, N.J.; Tanaka, J. Oxy-polybrominated diphenyl ethers from the indonesian marine sponge, lamellodysidea herbacea: x-ray, sar, and computational studies. Molecules, 2021, 26(21), 6328.
[http://dx.doi.org/10.3390/molecules26216328] [PMID: 34770740]
[27]
Shi, T.; Yu, Y.Y.; Dai, J.J.; Zhang, Y.T.; Hu, W.P.; Zheng, L.; Shi, D.Y. New polyketides from the antarctic fungus Pseudogymnoascus sp. HSX2#-11. Mar. Drugs, 2021, 19(3), 168.
[http://dx.doi.org/10.3390/md19030168] [PMID: 33809861]
[28]
Ji, Y.B.; Chen, W.J.; Shan, T.Z.; Sun, B.Y.; Yan, P.C.; Jiang, W. Antibacterial diphenyl ether, benzophenone and xanthone derivatives from Aspergillus flavipes. Chem. Biodivers., 2020, 17(2), e1900640.
[http://dx.doi.org/10.1002/cbdv.201900640] [PMID: 31805214]
[29]
Zhu, J.J.; Huang, Q.S.; Liu, S.Q.; Ding, W.J.; Xiong, Y.H.; Li, C.Y. Four new diphenyl ether derivatives from a mangrove endophytic fungus Epicoccum sorghinum. Chin. J. Nat. Med., 2022, 20(7), 537-540.
[http://dx.doi.org/10.1016/S1875-5364(22)60171-7] [PMID: 35907652]
[30]
Hu, S.S.; Liang, M.J.; Mi, Q.L.; Chen, W.; Ling, J.; Chen, X.; Li, J.; Yang, G.Y.; Hu, Q.F.; Wang, W.G.; Guo, Y.D. Two new diphenyl ether derivatives from the fermentation products of the endophytic fungus Phomopsis asparagi. Chem. Nat. Compd., 2019, 55(5), 843-846.
[http://dx.doi.org/10.1007/s10600-019-02828-y]
[31]
Gao, Y.H.; Zheng, R.; Li, J.; Kong, W.S.; Liu, X.; Ye, L.; Mi, Q.L.; Kong, W.S.; Zhou, M.; Yang, G.Y.; Hu, Q.F.; Du, G.; Yang, H.Y.; Li, X.M. Three new diphenyl ether derivatives from the fermentation products of an endophytic fungus Phomopsis fukushii. J. Asian Nat. Prod. Res., 2019, 21(4), 316-322.
[http://dx.doi.org/10.1080/10286020.2017.1421177] [PMID: 29338435]
[32]
Chen, M.; Shao, C.L.; Fu, X.M.; Xu, R.F.; Zheng, J.J.; Zhao, D.L.; She, Z.G.; Wang, C.Y. Bioactive indole alkaloids and phenyl ether derivatives from a marine-derived Aspergillus sp. Fungus. J. Nat. Prod., 2013, 76(4), 547-553.
[http://dx.doi.org/10.1021/np300707x] [PMID: 23527875]
[33]
Gao, H.; Zhou, L.; Cai, S.; Zhang, G.; Zhu, T.; Gu, Q.; Li, D. Diorcinols B-E, new prenylated diphenyl ethers from the marine-derived fungus Aspergillus versicolor ZLN-60. J. Antibiot. (Tokyo), 2013, 66(9), 539-542.
[http://dx.doi.org/10.1038/ja.2013.40] [PMID: 23677033]
[34]
Li, Y.; Chang, W.; Zhang, M.; Li, X.; Jiao, Y.; Lou, H.; Diorcinol, D. Diorcinol D exerts fungicidal action against candida albicans through cytoplasm membrane destruction and ros accumulation. PLoS One, 2015, 10(6), e0128693.
[http://dx.doi.org/10.1371/journal.pone.0128693] [PMID: 26047493]
[35]
Li, X.B.; Zhou, Y.H.; Zhu, R.X.; Chang, W.Q.; Yuan, H.Q.; Gao, W.; Zhang, L.L.; Zhao, Z.T.; Lou, H.X. Identification and biological evaluation of secondary metabolites from the endolichenic fungus Aspergillus versicolor. Chem. Biodivers., 2015, 12(4), 575-592.
[http://dx.doi.org/10.1002/cbdv.201400146] [PMID: 25879502]
[36]
Ningsih, B.N.S.; Rukachaisirikul, V.; Pansrinun, S.; Phongpaichit, S.; Preedanon, S.; Sakayaroj, J. New aromatic polyketides from the marine-derived fungus Pseudopithomyces maydicus PSU-AMF350 and their antimicrobial activity. Nat. Prod. Res., 2022, 36(19), 4982-4989.
[http://dx.doi.org/10.1080/14786419.2021.1915309] [PMID: 33902349]
[37]
Bunyapaiboonsri, T.; Yoiprommarat, S.; Intereya, K.; Kocharin, K. New diphenyl ethers from the insect pathogenic fungus Cordyceps sp. BCC 1861. Chem. Pharm. Bull., 2007, 55(2), 304-307.
[http://dx.doi.org/10.1248/cpb.55.304] [PMID: 17268106]
[38]
Zhuravleva, O.I.; Afiyatullov, S.S.; Vishchuk, O.S.; Denisenko, V.A.; Slinkina, N.N.; Smetanina, O.F. Decumbenone C, a new cytotoxic decaline derivative from the marine fungus Aspergillus sulphureus KMM 4640. Arch. Pharm. Res., 2012, 35(10), 1757-1762.
[http://dx.doi.org/10.1007/s12272-012-1007-9] [PMID: 23139126]
[39]
Li, C.; Xu, Y.; Fu, P.; Guo, L.; Che, Y. Neopestolides A–D, diphenyl ether derivatives from the plant endophytic fungus Neopestalotiopsis sp. J. Nat. Prod., 2022, 85(3), 607-613.
[http://dx.doi.org/10.1021/acs.jnatprod.1c01031] [PMID: 35049297]
[40]
Chen, M.; Han, L.; Shao, C.L.; She, Z.G.; Wang, C.Y. Bioactive diphenyl ether derivatives from a gorgonian-derived fungus Talaromyces sp. Chem. Biodivers., 2015, 12(3), 443-450.
[http://dx.doi.org/10.1002/cbdv.201400267] [PMID: 25766917]
[41]
Frank, M.; Hartmann, R.; Plenker, M.; Mándi, A.; Kurtán, T.; Özkaya, F.C.; Müller, W.E.G.; Kassack, M.U.; Hamacher, A.; Lin, W.; Liu, Z.; Proksch, P. Brominated azaphilones from the sponge-associated fungus Penicillium canescens strain 4.14.6a. J. Nat. Prod., 2019, 82(8), 2159-2166.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00151] [PMID: 31359750]
[42]
Tan, Y.; Wang, Y.D.; Li, Q.; Xing, X.K.; Niu, S.B.; Sun, B.D.; Chen, L.; Pan, R.L.; Ding, G. Undescribed diphenyl ethers betaethrins A-I from a desert plant endophytic strain of the fungus Phoma betae A.B. Frank (Didymellaceae). Phytochemistry, 2022, 201, 113264.
[http://dx.doi.org/10.1016/j.phytochem.2022.113264] [PMID: 35679970]
[43]
Weng, H.Z.; Zhu, J.Y.; Yuan, F.Y.; Tang, Z.Y.; Tian, X.Q.; Chen, Y.; Fan, C.Q.; Tang, G.H.; Yin, S. Homo/hetero-dimers of aromatic bisabolane sesquiterpenoids with neuroprotective activity from the fungus Aspergillus versicolor a18 from south china sea. Mar. Drugs, 2022, 20(5), 322.
[http://dx.doi.org/10.3390/md20050322] [PMID: 35621973]
[44]
Xu, X.; Liu, L.; Zhang, F.; Wang, W.; Li, J.; Guo, L.; Che, Y.; Liu, G. Identification of the first diphenyl ether gene cluster for pestheic acid biosynthesis in plant endophyte Pestalotiopsis fici. ChemBioChem, 2014, 15(2), 284-292.
[http://dx.doi.org/10.1002/cbic.201300626] [PMID: 24302702]
[45]
Klejnstrup, M.L.; Frandsen, R.J.N.; Holm, D.K.; Nielsen, M.T.; Mortensen, U.H.; Larsen, T.O.; Nielsen, J.B. Genetics of polyketide metabolism in Aspergillus nidulans. Metabolites, 2012, 2(1), 100-133.
[http://dx.doi.org/10.3390/metabo2010100] [PMID: 24957370]
[46]
Nielsen, M.L.; Nielsen, J.B.; Rank, C.; Klejnstrup, M.L.; Holm, D.K.; Brogaard, K.H.; Hansen, B.G.; Frisvad, J.C.; Larsen, T.O.; Mortensen, U.H. A genome-wide polyketide synthase deletion library uncovers novel genetic links to polyketides and meroterpenoids in Aspergillus nidulans. FEMS Microbiol. Lett., 2011, 321(2), 157-166.
[http://dx.doi.org/10.1111/j.1574-6968.2011.02327.x] [PMID: 21658102]
[47]
Feng, C.; Wei, Q.; Hu, C.; Zou, Y. Biosynthesis of diphenyl ethers in fungi. Org. Lett., 2019, 21(9), 3114-3118.
[http://dx.doi.org/10.1021/acs.orglett.9b00768] [PMID: 30990700]