Recent Advances in Bioactive Peptides as Functional Food for Health Promotions and Medicinal Applications

Page: [626 - 639] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Bioactive peptides obtained from natural resources are useful due to their ability to prevent the risk of dreadful conditions such as hypertension, cancers, obesity and cardiovascular diseases. Proteins from food, plants, animals and dairy products are chemically or enzymatically hydrolyzed or fermented in the presence of microbes to produce bioactive peptides. Bioactive peptides are antioxidant, antihypertensive, anti-inflammatory, antiproliferative, antibacterial, anticancer, antimicrobial and some of them also show multiple bioactivities. Also, bioactive peptides offer much potential as nutraceuticals or functional food components. This paper reviews recent progress (2020-2022) on bioactive peptides derived from food, animals, plants, and dairy products. Emphasis is given to their production, purification, and potential use for health promotions and medicinal applications.

Graphical Abstract

[1]
Ghanbari, R. Review on the bioactive peptides from marine sources: indication for health effects. Int. J. Pept. Res. Ther., 2019, 25(3), 1187-1199.
[http://dx.doi.org/10.1007/s10989-018-9766-x]
[2]
Shahidi, F.; Zhong, Y. Bioactive Peptides. J. AOAC Int., 2008, 91(4), 914-931.
[http://dx.doi.org/10.1093/jaoac/91.4.914] [PMID: 18727554]
[3]
Gallego, M.; Mora, L.; Toldrá, F. Health relevance of antihypertensive peptides in foods. Curr. Opin. Food Sci., 2018, 19, 8-14.
[http://dx.doi.org/10.1016/j.cofs.2017.12.004]
[4]
Dullius, A.; Goettert, M.I.; de Souza, C.F.V. Whey protein hydrolysates as a source of bioactive peptides for functional foods – Biotechnological facilitation of industrial scale-up. J. Funct. Foods, 2018, 42, 58-74.
[http://dx.doi.org/10.1016/j.jff.2017.12.063]
[5]
de Castro, R.J.S.; Sato, H.H. Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Res. Int., 2015, 74, 185-198.
[http://dx.doi.org/10.1016/j.foodres.2015.05.013] [PMID: 28411983]
[6]
v, D.; P J, S.; Rajeev, N.; S, A.L.; Chandran, A.; G B, G.; Sadanandan, S. Recent advances in peptides-based stimuli-responsive materials for biomedical and therapeutic applications: A review. Mol. Pharm., 2022, 19(7), 1999-2021.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00983] [PMID: 35730605]
[7]
Sarker, A. A review on the application of bioactive peptides as preservatives and functional ingredients in food model systems. J. Food Process. Preserv., 2022, 46(8), e16800.
[http://dx.doi.org/10.1111/jfpp.16800]
[8]
Sánchez, A.; Vázquez, A. Bioactive peptides: A review. Food quality Safety, 2017, 1(1), 29-46.
[http://dx.doi.org/10.1093/fqs/fyx006]
[9]
Bhat, Z.F.; Kumar, S.; Bhat, H.F. Bioactive peptides of animal origin: A review. J. Food Sci. Technol., 2015, 52(9), 5377-5392.
[http://dx.doi.org/10.1007/s13197-015-1731-5] [PMID: 26344955]
[10]
Perez, E.P.J.; de Fátima, F.S.N.; dos Reis, C.J.S.; de Andrade, N.J.; Souza, C.R.; Alves, M.E.A. Bioactive peptides: Synthesis, properties, and applications in the packaging and preservation of food. Compr. Rev. Food Sci. Food Saf., 2012, 11(2), 187-204.
[http://dx.doi.org/10.1111/j.1541-4337.2011.00179.x] [PMID: 32368201]
[11]
Bhullar, K.S.; Drews, S.J.; Wu, J. Translating bioactive peptides for COVID-19 therapy. Eur. J. Pharmacol., 2021, 890, 173661.
[http://dx.doi.org/10.1016/j.ejphar.2020.173661] [PMID: 33098835]
[12]
Görgüç, A.; Gençdağ, E.; Yılmaz, F.M. Bioactive peptides derived from plant origin by-products: Biological activities and techno-functional utilizations in food developments – A review. Food Res. Int., 2020, 136, 109504.
[http://dx.doi.org/10.1016/j.foodres.2020.109504] [PMID: 32846583]
[13]
Chai, T.T.; Xiao, J.; Mohana, D.S.; Teoh, J.Y.; Ee, K.Y.; Ng, W.J.; Wong, F.C. Identification of antioxidant peptides derived from tropical jackfruit seed and investigation of the stability profiles. Food Chem., 2021, 340, 127876.
[http://dx.doi.org/10.1016/j.foodchem.2020.127876] [PMID: 32871354]
[14]
Kaneko, K. Appetite regulation by plant-derived bioactive peptides for promoting health. Peptides, 2021, 144, 170608.
[http://dx.doi.org/10.1016/j.peptides.2021.170608] [PMID: 34265369]
[15]
Daroit, D.J.; Brandelli, A. in vivo bioactivities of food protein-derived peptides – a current review. Curr. Opin. Food Sci., 2021, 39, 120-129.
[http://dx.doi.org/10.1016/j.cofs.2021.01.002]
[16]
Kumari, C. V.; Patil, S.M.; Shirahatti, P.S. Bioactive Peptides: Its Production and Potential Role on Health. 2020. Available from: www.ijiset.com
[17]
Zaky, A.A.; Simal-Gandara, J.; Eun, J.B.; Shim, J.H.; Abd El-Aty, A.M. Bioactivities, applications, safety, and health benefits of bioactive peptides from food and by-products: A review. Front. Nutr., 2022, 8, 815640.
[http://dx.doi.org/10.3389/fnut.2021.815640] [PMID: 35127796]
[18]
Giromini, C.; Cheli, F.; Rebucci, R.; Baldi, A. Invited review: Dairy proteins and bioactive peptides: Modeling digestion and the intestinal barrier. J. Dairy Sci., 2019, 102(2), 929-942.
[http://dx.doi.org/10.3168/jds.2018-15163] [PMID: 30591343]
[19]
Bechaux, J.; Gatellier, P.; Le Page, J.F.; Drillet, Y.; Sante-Lhoutellier, V. A comprehensive review of bioactive peptides obtained from animal byproducts and their applications. Food Funct., 2019, 10(10), 6244-6266.
[http://dx.doi.org/10.1039/C9FO01546A] [PMID: 31577308]
[20]
Toldrá, F.; Gallego, M.; Reig, M.; Aristoy, M.C.; Mora, L. Recent progress in enzymatic release of peptides in foods of animal origin and assessment of bioactivity. J. Agric. Food Chem., 2020, 68(46), 12842-12855.
[http://dx.doi.org/10.1021/acs.jafc.9b08297] [PMID: 32157886]
[21]
Guha, S.; Sharma, H.; Deshwal, G.K.; Rao, P.S. A comprehensive review on bioactive peptides derived from milk and milk products of minor dairy species. Food Prod. Proc. Nutr., 2021, 3(1), 2.
[http://dx.doi.org/10.1186/s43014-020-00045-7]
[22]
Samtiya, M.; Samtiya, S.; Badgujar, P.C.; Puniya, A.K.; Dhewa, T.; Aluko, R.E. Health-promoting and therapeutic attributes of milk-derived bioactive peptides. Nutrients, 2022, 14(15), 3001.
[http://dx.doi.org/10.3390/nu14153001] [PMID: 35893855]
[23]
Punia, H.; Tokas, J.; Malik, A.; Sangwan, S.; Baloda, S. Identification and detection of bioactive peptides in dairy products. Molecules, 2020, 3328, 2-35.
[http://dx.doi.org/10.3390/molecules25153328] [PMID: 32707993]
[24]
Pathak, N.M.; Pathak, V.; Gault, V.A.; McClean, S.; Irwin, N.; Flatt, P.R. Novel dual incretin agonist peptide with antidiabetic and neuroprotective potential. Biochem. Pharmacol., 2018, 155, 264-274.
[http://dx.doi.org/10.1016/j.bcp.2018.07.021] [PMID: 30028989]
[25]
Yang, B.; Li, X.; Zhang, C.; Yan, S.; Wei, W.; Wang, X.; Deng, X.; Qian, H.; Lin, H.; Huang, W. Design, synthesis and biological evaluation of novel peptide MC2 analogues from Momordica charantia as potential anti-diabetic agents. Org. Biomol. Chem., 2015, 13(15), 4551-4561.
[http://dx.doi.org/10.1039/C5OB00333D] [PMID: 25778708]
[26]
Kehinde, B.A.; Sharma, P. Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: A review. Crit. Rev. Food Sci. Nutr., 2020, 60(2), 322-340.
[http://dx.doi.org/10.1080/10408398.2018.1528206] [PMID: 30463420]
[27]
Rai, A.K.; Sanjukta, S.; Jeyaram, K. Production of angiotensin I converting enzyme inhibitory (ACE-I) peptides during milk fermentation and their role in reducing hypertension. Crit. Rev. Food Sci. Nutr., 2017, 57(13), 2789-2800.
[http://dx.doi.org/10.1080/10408398.2015.1068736] [PMID: 26463100]
[28]
Puchalska, P.; Marina, A.M.L.; García, L.M.C. Isolation and characterization of peptides with antihypertensive activity in foodstuffs. Crit. Rev. Food Sci. Nutr., 2015, 55(4), 521-551.
[http://dx.doi.org/10.1080/10408398.2012.664829] [PMID: 24915368]
[29]
Li, T.; Zhang, X.; Ren, Y.; Zeng, Y.; Huang, Q.; Wang, C. Antihypertensive effect of soybean bioactive peptides: A review. Curr. Opin. Pharmacol., 2022, 62, 74-81.
[http://dx.doi.org/10.1016/j.coph.2021.11.005] [PMID: 34929528]
[30]
Agrawal, H.; Joshi, R.; Gupta, M. Isolation, purification and characterization of antioxidative peptide of pearl millet (Pennisetum glaucum) protein hydrolysate. Food Chem., 2016, 204, 365-372.
[http://dx.doi.org/10.1016/j.foodchem.2016.02.127] [PMID: 26988514]
[31]
Shanmugam, V.P.; Kapila, S.; Sonfack, T.K.; Kapila, R. Antioxidative peptide derived from enzymatic digestion of buffalo casein. Int. Dairy J., 2015, 42, 1-5.
[http://dx.doi.org/10.1016/j.idairyj.2014.11.001]
[32]
Wong, F.C.; Xiao, J.; Wang, S.; Ee, K.Y.; Chai, T.T. Advances on the antioxidant peptides from edible plant sources. Trends Food Sci. Technol., 2020, 99, 44-57.
[http://dx.doi.org/10.1016/j.tifs.2020.02.012]
[33]
Kęska, P.; Stadnik, J.; Kononiuk, A.; Libera, J.; Wójciak, K.M. Biotechnology and food science bioactive peptides from meat industry by-products as potential antimicrobial agents based on BIOPEP-UWM database, 2018. Available from: http://www.bfs.p.lodz.pl
[34]
Przybylski, R.; Firdaous, L.; Châtaigné, G.; Dhulster, P.; Nedjar, N. Production of an antimicrobial peptide derived from slaughterhouse by-product and its potential application on meat as preservative. Food Chem., 2016, 211, 306-313.
[http://dx.doi.org/10.1016/j.foodchem.2016.05.074] [PMID: 27283637]
[35]
Chalamaiah, M.; Yu, W.; Wu, J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chem., 2018, 245, 205-222.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.087] [PMID: 29287362]
[36]
Hou, H.; Fan, Y.; Wang, S.; Si, L.; Li, B. Immunomodulatory activity of Alaska pollock hydrolysates obtained by glutamic acid biosensor – Artificial neural network and the identification of its active central fragment. J. Funct. Foods, 2016, 24, 37-47.
[http://dx.doi.org/10.1016/j.jff.2016.03.033]
[37]
Aguilar-Toalá, J.E.; Santiago-López, L.; Peres, C.M.; Peres, C.; Garcia, H.S.; Vallejo-Cordoba, B.; González-Córdova, A.F.; Hernández-Mendoza, A. Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. J. Dairy Sci., 2017, 100(1), 65-75.
[http://dx.doi.org/10.3168/jds.2016-11846] [PMID: 27865495]
[38]
Elfahri, K.R.; Donkor, O.N.; Vasiljevic, T. Potential of novel Lactobacillus helveticus strains and their cell wall bound proteases to release physiologically active peptides from milk proteins. Int. Dairy J., 2014, 38(1), 37-46.
[http://dx.doi.org/10.1016/j.idairyj.2014.03.010]
[39]
Ulug, S.K.; Jahandideh, F.; Wu, J. Novel technologies for the production of bioactive peptides. Trends Food Sci. Technol., 2021, 108, 27-39.
[http://dx.doi.org/10.1016/j.tifs.2020.12.002]
[40]
Adebiyi, A.P.; Adebiyi, A.O.; Yamashita, J.; Ogawa, T.; Muramoto, K. Purification and characterization of antioxidative peptides derived from rice bran protein hydrolysates. Eur. Food Res. Technol., 2009, 228(4), 553-563.
[http://dx.doi.org/10.1007/s00217-008-0962-3]
[41]
Power, O.; Jakeman, P.; Fitz, G.R.J. Antioxidative peptides: Enzymatic production, in vitro and in vivo antioxidant activity and potential applications of milk-derived antioxidative peptides. Amino Acids, 2013, 44(3), 797-820.
[http://dx.doi.org/10.1007/s00726-012-1393-9] [PMID: 22968663]
[42]
Singh, A.; Bajar, S.; Bishnoi, N.R. Enzymatic hydrolysis of microwave alkali pretreated rice husk for ethanol production by Saccharomyces cerevisiae, Scheffersomyces stipitis and their co-culture. Fuel, 2014, 116, 699-702.
[http://dx.doi.org/10.1016/j.fuel.2013.08.072]
[43]
Savijoki, K.; Ingmer, H.; Varmanen, P. Proteolytic systems of lactic acid bacteria. Appl. Microbiol. Biotechnol., 2006, 71(4), 394-406.
[http://dx.doi.org/10.1007/s00253-006-0427-1] [PMID: 16628446]
[44]
Tagliazucchi, D.; Martini, S.; Solieri, L. Bioprospecting for bioactive peptide production by lactic acid bacteria isolated from fermented dairy food. Fermentation, 2019, 5(4), 96.
[http://dx.doi.org/10.3390/fermentation5040096]
[45]
Yu, D.; Feng, M.; Sun, J.; Xu, X.; Zhou, G. Protein degradation and peptide formation with antioxidant activity in pork protein extracts inoculated with Lactobacillus plantarum and Staphylococcus simulans. Meat Sci., 2020, 160, 107958.
[http://dx.doi.org/10.1016/j.meatsci.2019.107958] [PMID: 31669862]
[46]
Elfahri, K.R.; Vasiljevic, T.; Yeager, T.; Donkor, O.N. Anti-colon cancer and antioxidant activities of bovine skim milk fermented by selected Lactobacillus helveticus strains. J. Dairy Sci., 2016, 99(1), 31-40.
[http://dx.doi.org/10.3168/jds.2015-10160] [PMID: 26601580]
[47]
Qian, B.; Xing, M.; Cui, L.; Deng, Y.; Xu, Y.; Huang, M.; Zhang, S. Antioxidant, antihypertensive, and immunomodulatory activities of peptide fractions from fermented skim milk with Lactobacillus delbrueckii ssp. bulgaricus LB340. J. Dairy Res., 2011, 78(1), 72-79.
[http://dx.doi.org/10.1017/S0022029910000889] [PMID: 21214965]
[48]
Martínez-Medina, G.A.; Barragán, A.P.; Ruiz, H.A.; Ilyina, A.; Hernández, J.L.M.; Rodríguez-Jasso, R.M.; Hoyos-Concha, J.L.; Aguilar-González, C.N. Fungal proteases and production of bioactive peptides for the food industry. In: Enzym. Food Biotechnol. Prod. Appl. Futur. Prospect; Elsevier, 2018; pp. 221-246.
[http://dx.doi.org/10.1016/B978-0-12-813280-7.00014-1]
[49]
Zanutto-Elgui, M.R.; Vieira, J.C.S.; Prado, D.Z.; Buzalaf, M.A.R.; Padilha, P.M.; Elgui de Oliveira, D.; Fleuri, L.F. Production of milk peptides with antimicrobial and antioxidant properties through fungal proteases. Food Chem., 2019, 278, 823-831.
[http://dx.doi.org/10.1016/j.foodchem.2018.11.119] [PMID: 30583449]
[50]
Raveschot, C.; Cudennec, B.; Coutte, F.; Flahaut, C.; Fremont, M.; Drider, D.; Dhulster, P. Production of bioactive peptides by lactobacillus species: From gene to application. Front. Microbiol., 2018, 9, 2354.
[http://dx.doi.org/10.3389/fmicb.2018.02354] [PMID: 30386307]
[51]
Wang, X.; Yu, H.; Xing, R.; Li, P. Characterization, preparation, and purification of marine bioactive peptides. BioMed Res. Int., 2017, 2017, 1-16.
[http://dx.doi.org/10.1155/2017/9746720] [PMID: 28761878]
[52]
Kristinsson, H.G.; Rasco, B.A. Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. J. Agric. Food Chem., 2000, 48(3), 657-666.
[http://dx.doi.org/10.1021/jf990447v] [PMID: 10725130]
[53]
Wisuthiphaet, N.; Klinchan, S.; Kongruang, S. Fish protein hydrolysate production by acid and enzymatic hydrolysis. Int. J. Appl. Sci. Technol., 2016, 9(4)
[http://dx.doi.org/10.14416/j.ijast.2016.11.004]
[54]
Kristinsson, H.G.; Rasco, B.A. Kinetics of the hydrolysis of Atlantic salmon (Salmo salar) muscle proteins by alkaline proteases and a visceral serine protease mixture. J Agric Food Chem., 2000, 36(1–2), 131-139.
[http://dx.doi.org/10.1016/S0032-9592(00)00195-3]
[55]
Pasupuleti, V.K.; Holmes, C.; Demain, A.L. Applications of protein hydrolysates in biotechnology. In: Protein Hydrolysates Biotechnol; Springer Netherlands, 2010; pp. 1-9.
[http://dx.doi.org/10.1007/978-1-4020-6674-0]
[56]
Dai, Z.; Wu, Z.; Jia, S.; Wu, G. Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 964, 116-127.
[http://dx.doi.org/10.1016/j.jchromb.2014.03.025] [PMID: 24731621]
[57]
Kadakeri, S.; Arul, M.R.; Bordett, R.; Duraisamy, N.; Naik, H.; Rudraiah, S. Protein synthesis and characterization. In: Artif. Protein Pept. Nanofibers; Elsevier, 2020; pp. 121-161.
[http://dx.doi.org/10.1016/B978-0-08-102850-6.00006-1]
[58]
Chakrabarti, S.; Guha, S.; Majumder, K. Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients, 2018, 10(11), 1738.
[http://dx.doi.org/10.3390/nu10111738] [PMID: 30424533]
[59]
Haws, R.; Brady, S.; Davis, E.; Fletty, K.; Yuan, G.; Gordon, G.; Stewart, M.; Yanovski, J. Effect of setmelanotide, a melanocortin-4 receptor agonist, on obesity in BARDET-BIEDL syndrome. Diabetes Obes. Metab., 2020, 22(11), 2133-2140.
[http://dx.doi.org/10.1111/dom.14133] [PMID: 32627316]
[60]
Dhillon, S.; Keam, S.J. Bremelanotide: First Approval. Drugs, 2019, 79(14), 1599-1606.
[http://dx.doi.org/10.1007/s40265-019-01187-w] [PMID: 31429064]
[61]
Hamano, N.; Komaba, H.; Fukagawa, M. Etelcalcetide for the treatment of secondary hyperparathyroidism. Expert Opin. Pharmacother., 2017, 18(5), 529-534.
[http://dx.doi.org/10.1080/14656566.2017.1303482] [PMID: 28277829]
[62]
Brønden, A.; Naver, S.V.; Knop, F.K.; Christensen, M. Albiglutide for treating type 2 diabetes: An evaluation of pharmacokinetics/pharmacodynamics and clinical efficacy. Expert Opin. Drug Metab. Toxicol., 2015, 11(9), 1493-1503.
[http://dx.doi.org/10.1517/17425255.2015.1068288] [PMID: 26166682]
[63]
Jendle, J.; Grunberger, G.; Blevins, T.; Giorgino, F.; Hietpas, R.T.; Botros, F.T. Efficacy and safety of dulaglutide in the treatment of type 2 diabetes: A comprehensive review of the dulaglutide clinical data focusing on the AWARD phase 3 clinical trial program. Diabetes Metab. Res. Rev., 2016, 32(8), 776-790.
[http://dx.doi.org/10.1002/dmrr.2810] [PMID: 27102969]
[64]
Petersen, A.B.; Knop, F.K.; Christensen, M. Lixisenatide for the treatment of type 2 diabetes. Drugs Today., 2013, 49(9), 537-53.
[http://dx.doi.org/10.1358/dot.2013.49.9.2020940] [PMID: 24086950]
[65]
Evangelista, L.; Ravelli, I.; Bignotto, A.; Cecchin, D.; Zucchetta, P. Ga-68 DOTA-peptides and F-18 FDG PET/CT in patients with neuroendocrine tumor: A review. Clin. Imaging, 2020, 67, 113-116.
[http://dx.doi.org/10.1016/j.clinimag.2020.05.035] [PMID: 32559681]
[66]
Lu, L. 177 Dotatate approved by FDA. Cancer Discov., 2018, 8(4), ..
[http://dx.doi.org/10.1158/2159-8290.CD-NB2018-021] [PMID: 29487054]
[67]
DeMicco, M.; Barrow, L.; Hickey, B.; Shailubhai, K.; Griffin, P. Randomized clinical trial: Efficacy and safety of plecanatide in the treatment of chronic idiopathic constipation. Therap. Adv. Gastroenterol., 2017, 10(11), 837-851.
[http://dx.doi.org/10.1177/1756283X17734697] [PMID: 29147135]
[68]
Pratley, R.; Amod, A.; Hoff, S.T.; Kadowaki, T.; Lingvay, I.; Nauck, M.; Pedersen, K.B.; Saugstrup, T.; Meier, J.J. Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (PIONEER 4): A randomised, double-blind, phase 3a trial. Lancet, 2019, 394(10192), 39-50.
[http://dx.doi.org/10.1016/S0140-6736(19)31271-1] [PMID: 31186120]
[69]
Bhattacharyya, S.; Pal, S.; Chattopadhyay, N. Abaloparatide, the second generation osteoanabolic drug: Molecular mechanisms underlying its advantages over the first-in-class teriparatide. Biochem. Pharmacol., 2019, 166, 185-191.
[http://dx.doi.org/10.1016/j.bcp.2019.05.024] [PMID: 31136739]
[70]
Jadhav, A.P.; Sadaka, F.G. Angiotensin II in septic shock. Am. J. Emerg. Med., 2019, 37(6), 1169-1174.
[http://dx.doi.org/10.1016/j.ajem.2019.03.026] [PMID: 30935784]
[71]
Boland, M.; Singh, H. Milk proteins: From expression to food; Academic Press, 2019.
[72]
Ahmed, T.; Sun, X.; Udenigwe, C.C. Role of structural properties of bioactive peptides in their stability during simulated gastrointestinal digestion: A systematic review. Trends Food Sci. Technol., 2022, 120, 265-273.
[http://dx.doi.org/10.1016/j.tifs.2022.01.008]
[73]
Rajapakse, N.; Mendis, E.; Byun, H.G.; Kim, S.K. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. J. Nutr. Biochem., 2005, 16(9), 562-569.
[http://dx.doi.org/10.1016/j.jnutbio.2005.02.005] [PMID: 16115545]
[74]
Gupta, D. Methods for determination of antioxidant capacity: A review. Int. J. Pharm. Sci. Res., 2015, 6(2), 546-566.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.6(2).546-66]
[75]
Shivakumar, A.; Yogendra Kumar, M.S. Critical review on the analytical mechanistic steps in the evaluation of antioxidant activity. Crit. Rev. Anal. Chem., 2018, 48(3), 214-236.
[http://dx.doi.org/10.1080/10408347.2017.1400423] [PMID: 29337589]
[76]
Wayner, D.D.M.; Burton, G.W.; Ingold, K.U.; Locke, S. Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human blood plasma by controlled peroxidation. FEBS Lett., 1985, 187(1), 33-37.
[http://dx.doi.org/10.1016/0014-5793(85)81208-4] [PMID: 4018255]
[77]
Zulueta, A.; Esteve, M.J.; Frígola, A. ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chem., 2009, 114(1), 310-316.
[http://dx.doi.org/10.1016/j.foodchem.2008.09.033]
[78]
Zou, T.B.; He, T.P.; Li, H.B.; Tang, H.W.; Xia, E.Q. The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules, 2016, 21(1), 72.
[http://dx.doi.org/10.3390/molecules21010072] [PMID: 26771594]
[79]
Liang, L.; Cai, S.; Gao, M.; Chu, X.; Pan, X.; Gong, K-K.; Xiao, C.; Chen, Y.; Zhao, Y.; Wang, B.; Sun, K. Purification of antioxidant peptides of Moringa oleifera seeds and their protective effects on H2O2 oxidative damaged Chang liver cells. J. Funct. Foods, 2020, 64, 103698.
[http://dx.doi.org/10.1016/j.jff.2019.103698]
[80]
Wali, A.; Yanhua, G.; Ishimov, U.; Yili, A.; Aisa, H.A.; Salikhov, S. Isolation and identification of three novel antioxidant peptides from the bactrian camel milk hydrolysates. Int. J. Pept. Res. Ther., 2020, 26(2), 641-650.
[http://dx.doi.org/10.1007/s10989-019-09871-x]
[81]
Tonolo, F.; Fiorese, F.; Moretto, L.; Folda, A.; Scalcon, V.; Grinzato, A.; Ferro, S.; Arrigoni, G.; Bindoli, A.; Feller, E.; Bellamio, M.; Marin, O.; Rigobello, M.P. Identification of new peptides from fermented milk showing antioxidant properties: Mechanism of action. Antioxidants, 2020, 9(2), 117.
[http://dx.doi.org/10.3390/antiox9020117] [PMID: 32013158]
[82]
Phongthai, S.; Rawdkuen, S. Fractionation and characterization of antioxidant peptides from rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion. Cereal Chem., 2020, 97(2), 316-325.
[http://dx.doi.org/10.1002/cche.10247]
[83]
Ma, S.; Zhang, M.; Bao, X.; Fu, Y. Preparation of antioxidant peptides from oat globulin. CYTA J. Food, 2020, 18(1), 108-115.
[http://dx.doi.org/10.1080/19476337.2020.1716076]
[84]
Li, T.; Shi, C.; Zhou, C.; Sun, X.; Ang, Y.; Dong, X.; Huang, M.; Zhou, G. Purification and characterization of novel antioxidant peptides from duck breast protein hydrolysates. Lebensm. Wiss. Technol., 2020, 125, 109215.
[http://dx.doi.org/10.1016/j.lwt.2020.109215]
[85]
Ding, J.; Liang, R.; Yang, Y.; Sun, N.; Lin, S. Optimization of pea protein hydrolysate preparation and purification of antioxidant peptides based on an in silico analytical approach. Lebensm. Wiss. Technol., 2020, 123, 109126.
[http://dx.doi.org/10.1016/j.lwt.2020.109126]
[86]
Jiang, X.; Cui, Z.; Wang, L.; Xu, H.; Zhang, Y. Production of bioactive peptides from corn gluten meal by solid-state fermentation with Bacillus subtilis MTCC5480 and evaluation of its antioxidant capacity in vivo. Lebensm. Wiss. Technol., 2020, 131, 109767.
[http://dx.doi.org/10.1016/j.lwt.2020.109767]
[87]
Verni, M.; Pontonio, E.; Krona, A.; Jacob, S.; Pinto, D.; Rinaldi, F.; Verardo, V.; Díaz-de-Cerio, E.; Coda, R.; Rizzello, C.G. Bioprocessing of Brewers’ spent grain enhances its antioxidant activity: Characterization of phenolic compounds and bioactive peptides. Front. Microbiol., 2020, 11, 1831.
[http://dx.doi.org/10.3389/fmicb.2020.01831] [PMID: 32849431]
[88]
Aluko, R.E. Antihypertensive peptides from food proteins. Annu. Rev. Food Sci. Technol., 2015, 6(1), 235-262.
[http://dx.doi.org/10.1146/annurev-food-022814-015520] [PMID: 25884281]
[89]
Abdel-Hamid, M.; Otte, J.; De Gobba, C.; Osman, A.; Hamad, E. Angiotensin I-converting enzyme inhibitory activity and antioxidant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins. Int. Dairy J., 2017, 66, 91-98.
[http://dx.doi.org/10.1016/j.idairyj.2016.11.006]
[90]
Abdelhedi, O.; Nasri, M. Basic and recent advances in marine antihypertensive peptides: Production, structure-activity relationship and bioavailability. Trends Food Sci. Technol., 2019, 88, 543-557.
[http://dx.doi.org/10.1016/j.tifs.2019.04.002]
[91]
Parmar, H.; Hati, S.; Panchal, G.; Sakure, A.A. Purification and production of Novel Angiotensin I-Converting Enzyme (ACE) inhibitory bioactive peptides derived from fermented goat milk. Int. J. Pept. Res. Ther., 2020, 26(2), 997-1011.
[http://dx.doi.org/10.1007/s10989-019-09902-7]
[92]
Sonklin, C.; Alashi, M.A.; Laohakunjit, N.; Kerdchoechuen, O.; Aluko, R.E. Identification of antihypertensive peptides from mung bean protein hydrolysate and their effects in spontaneously hypertensive rats. J. Funct. Foods, 2020, 64, 103635.
[http://dx.doi.org/10.1016/j.jff.2019.103635]
[93]
Aiemratchanee, P.; Panyawechamontri, K.; Phaophu, P.; Reamtong, O.; Panbangred, W. in vitro antihypertensive activity of bioactive peptides derived from porcine blood corpuscle and plasma proteins. Int. J. Food Sci. Technol., 2021, 56(5), 2315-2324.
[http://dx.doi.org/10.1111/ijfs.14853]
[94]
Yu, Z.; Yin, Y.; Zhao, W.; Wang, F.; Yu, Y.; Liu, B.; Liu, J.; Chen, F. Characterization of ACE-inhibitory peptide associated with antioxidant and anticoagulation properties. J. Food Sci., 2011, 76(8), C1149-C1155.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02367.x] [PMID: 22417578]
[95]
Yu, Z.; Zhao, W.; Liu, J.; Lu, J.; Chen, F. QIGLF, a novel angiotensin I-converting enzyme-inhibitory peptide from egg white protein. J. Sci. Food Agric., 2011, 91(5), 921-926.
[http://dx.doi.org/10.1002/jsfa.4266] [PMID: 21384361]
[96]
Yu, Z.; Wang, L.; Wu, S.; Zhao, W.; Ding, L.; Liu, J. in vivo anti-hypertensive effect of peptides from egg white and its molecular mechanism with ACE. Int. J. Food Sci. Technol., 2021, 56(2), 1030-1039.
[http://dx.doi.org/10.1111/ijfs.14756]
[97]
Wang, R.; Lu, X.; Sun, Q.; Gao, J.; Ma, L.; Huang, J. Novel ACE inhibitory peptides derived from simulated gastrointestinal digestion in vitro of sesame (Sesamum indicum L.) protein and molecular docking study. Int. J. Mol. Sci., 2020, 21(3), 1059.
[http://dx.doi.org/10.3390/ijms21031059] [PMID: 32033479]
[98]
Singh, B.P.; Aluko, R.E.; Hati, S.; Solanki, D. Bioactive peptides in the management of lifestyle-related diseases: Current trends and future perspectives. Crit. Rev. Food Sci. Nutr., 2022, 62(17), 4593-4606.
[http://dx.doi.org/10.1080/10408398.2021.1877109] [PMID: 33506720]
[99]
Yan, J.; Zhao, J.; Yang, R.; Zhao, W. Bioactive peptides with antidiabetic properties: A review. Int. J. Food Sci. Technol., 2019, 54(6), 1909-1919.
[http://dx.doi.org/10.1111/ijfs.14090]
[100]
Wang, J.; Wu, T.; Fang, L.; Liu, C.; Liu, X.; Li, H.; Shi, J.; Li, M.; Min, W. Anti-diabetic effect by walnut (Juglans mandshurica Maxim.)-derived peptide LPLLR through inhibiting α-glucosidase and α-amylase, and alleviating insulin resistance of hepatic HepG2 cells. J. Funct. Foods, 2020, 69, 103944.
[http://dx.doi.org/10.1016/j.jff.2020.103944]
[101]
Jia, C.; Hussain, N.; Joy Ujiroghene, O.; Pang, X.; Zhang, S.; Lu, J.; Liu, L.; Lv, J. Generation and characterization of dipeptidyl peptidase-IV inhibitory peptides from trypsin-hydrolyzed α-lactalbumin-rich whey proteins. Food Chem., 2020, 318, 126333.
[http://dx.doi.org/10.1016/j.foodchem.2020.126333]
[102]
Nongonierma, A.B.; Paolella, S.; Mudgil, P.; Maqsood, S.; FitzGerald, R.J. Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates. Food Chem., 2018, 244, 340-348.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.033] [PMID: 29120791]
[103]
Jin, R.; Teng, X.; Shang, J.; Wang, D.; Liu, N. Identification of novel DPP–IV inhibitory peptides from Atlantic salmon (Salmo salar) skin. Food Res. Int., 2020, 133, 109161.
[http://dx.doi.org/10.1016/j.foodres.2020.109161] [PMID: 32466942]
[104]
Manikkam, V.; Vasiljevic, T.; Donkor, O.N.; Mathai, M.L. A review of potential marine-derived hypotensive and anti-obesity Peptides. Crit. Rev. Food Sci. Nutr., 2016, 56(1), 92-112.
[http://dx.doi.org/10.1080/10408398.2012.753866] [PMID: 25569557]
[105]
Oh, S.; Soon, K.K.; Sun, C.Y.; Shong, M.; Bum, P.S. Anti-obesity agents: A focused review on the structural classification of therapeutic entities. Curr. Top. Med. Chem., 2009, 9(6), 466-81.
[http://dx.doi.org/10.2174/156802609788897862] [PMID: 19689361]
[106]
Kumar, M.S. Peptides and peptidomimetics as potential antiobesity agents: Overview of current status. Front. Nutr., 2019, 6, 11.
[http://dx.doi.org/10.3389/fnut.2019.00011] [PMID: 30834248]
[107]
Wang, J.; Zhou, M.; Wu, T.; Fang, L.; Liu, C.; Min, W. Novel anti-obesity peptide (RLLPH) derived from hazelnut (Corylus heterophylla Fisch) protein hydrolysates inhibits adipogenesis in 3T3-L1 adipocytes by regulating adipogenic transcription factors and adenosine monophosphate-activated protein kinase (AMPK) activation. J. Biosci. Bioeng., 2020, 129(3), 259-268.
[http://dx.doi.org/10.1016/j.jbiosc.2019.09.012] [PMID: 31630942]
[108]
Coronado-Cáceres, L.J.; Rabadán-Chávez, G.; Mojica, L.; Hernández-Ledesma, B.; Quevedo-Corona, L.; Cervantes, E.L. Cocoa seed proteins’ (Theobroma cacao L.) anti-obesity potential through lipase inhibition using in silico, in vitro and in vivo models. Foods, 2020, 9, 1-14.
[http://dx.doi.org/10.3390/foods9101359] [PMID: 32992701]
[109]
Kumar, N.; Devi, S.; Mada, S.B.; Reddi, S.; Kapila, R.; Kapila, S. Anti-apoptotic effect of buffalo milk casein derived bioactive peptide by directing Nrf2 regulation in starving fibroblasts. Food Biosci., 2020, 35, 100566.
[http://dx.doi.org/10.1016/j.fbio.2020.100566]
[110]
Udenigwe, C.C.; Aluko, R.E. Hypolipidemic and hypocholesterolemic food proteins and peptides. In: Bioactive food proteins and peptides: Applications in human health; Hettiarachchy, N.; Sato, K.; Marshall, M.R.; Kannan, A., Eds.; CRC Press, Taylor & Francis Group., 2012; pp. 191-218.
[111]
Wergedahl, H.; Liaset, B.; Gudbrandsen, O.A.; Lied, E.; Espe, M.; Muna, Z.; Mørk, S.; Berge, R.K. Fish protein hydrolysate reduces plasma total cholesterol, increases the proportion of HDL cholesterol, and lowers Acyl-CoA:Cholesterol acyltransferase activity in liver of zucker rats. J. Nutr., 2004, 134(6), 1320-1327.
[112]
Prados, I.M.; Orellana, J.M.; Marina, M.L.; García, M.C. Identification of peptides potentially responsible for in vivo hypolipidemic activity of a hydrolysate from olive seeds. J. Agric. Food Chem., 2020, 68(14), 4237-4244.
[http://dx.doi.org/10.1021/acs.jafc.0c01280] [PMID: 32186189]
[113]
Jiang, X.; Pan, D.; Zhang, T.; Liu, C.; Zhang, J.; Su, M.; Wu, Z.; Zeng, X.; Sun, Y.; Guo, Y. Novel milk casein–derived peptides decrease cholesterol micellar solubility and cholesterol intestinal absorption in Caco-2 cells. J. Dairy Sci., 2020, 103(5), 3924-3936.
[http://dx.doi.org/10.3168/jds.2019-17586] [PMID: 32113776]
[114]
Zhang, X.; Shi, W.; He, H.; Cao, R.; Hou, T. Hypolipidemic effects and mechanisms of Val-Phe-Val-Arg-Asn in C57BL/6J mice and 3T3-L1 cell models. J. Funct. Foods, 2020, 73, 104100.
[http://dx.doi.org/10.1016/j.jff.2020.104100]
[115]
Wan, P.; Chen, D.; Chen, H.; Zhu, X.; Chen, X.; Sun, H.; Pan, J.; Cai, B. Hypolipidemic effects of protein hydrolysates from Trachinotus ovatus and identification of peptides implied in bile acid-binding activity using LC-ESI-Q-TOF-MS/MS. RSC Advances, 2020, 10(34), 20098-20109.
[http://dx.doi.org/10.1039/D0RA02428G] [PMID: 35520431]
[116]
Dadar, M.; Shahali, Y.; Chakraborty, S.; Prasad, M.; Tahoori, F.; Tiwari, R.; Dhama, K. Antiinflammatory peptides: Current knowledge and promising prospects. Inflamm. Res., 2019, 68(2), 125-145.
[http://dx.doi.org/10.1007/s00011-018-1208-x] [PMID: 30560372]
[117]
Narayanasamy, A.; Balde, A.; Raghavender, P.; Shashanth, D.; Abraham, J.; Joshi, I.; Nazeer, R.A. Isolation of marine crab (Charybdis natator) leg muscle peptide and its anti-inflammatory effects on macrophage cells. Biocatal. Agric. Biotechnol., 2020, 25, 101577.
[http://dx.doi.org/10.1016/j.bcab.2020.101577]
[118]
Chiangjong, W.; Chutipongtanate, S.; Hongeng, S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). Int. J. Oncol., 2020, 57(3), 678-696.
[http://dx.doi.org/10.3892/ijo.2020.5099] [PMID: 32705178]
[119]
Xie, M.; Liu, D.; Yang, Y. Anti-cancer peptides: Classification, mechanism of action, reconstruction and modification. Open Biol., 2020, 10(7), 200004.
[http://dx.doi.org/10.1098/rsob.200004] [PMID: 32692959]
[120]
Wei, L.H.; Dong, Y.; Sun, Y.F.; Mei, X.S.; Ma, X.S.; Shi, J.; Yang, Q.; Ji, Y.R.; Zhang, Z.H.; Sun, H.N.; Sun, X.R.; Song, S.M. Anticancer property of Hemp Bioactive Peptides in Hep3B liver cancer cells through Akt/GSK3β/β-catenin signaling pathway. Food Sci. Nutr., 2021, 9(4), 1833-1841.
[http://dx.doi.org/10.1002/fsn3.1976] [PMID: 33841802]
[121]
Selamassakul, O.; Laohakunjit, N.; Kerdchoechuen, O.; Yang, L.; Maier, C.S. Isolation and characterisation of antioxidative peptides from bromelain-hydrolysed brown rice protein by proteomic technique. Process Biochem., 2018, 70, 179-187.
[http://dx.doi.org/10.1016/j.procbio.2018.03.024] [PMID: 31031560]
[122]
Ngamsuk, S.; Hsu, J.L.; Huang, T.C.; Suwannaporn, P. Ultrasonication of milky stage rice milk with bioactive peptides from rice bran: Its bioactivities and absorption. Food Bioprocess Technol., 2020, 13(3), 462-474.
[http://dx.doi.org/10.1007/s11947-019-02371-2]
[123]
Gaspar-Pintiliescu, A.; Oancea, A.; Cotarlet, M.; Vasile, A.M.; Bahrim, G.E.; Shaposhnikov, S.; Craciunescu, O.; Oprita, E.I. Angiotensin-converting enzyme inhibition, antioxidant activity and cytotoxicity of bioactive peptides from fermented bovine colostrum. Int. J. Dairy Technol., 2020, 73(1), 108-116.
[http://dx.doi.org/10.1111/1471-0307.12659]
[124]
Jayaprakash, R.; Perera, C.O. Partial purification and characterization of bioactive peptides from cooked new zealand green-lipped mussel (perna canaliculus) protein hydrolyzates. Foods, 2020, 9(7), 879.
[http://dx.doi.org/10.3390/foods9070879] [PMID: 32635431]
[125]
Muhialdin, B.J.; Abdul Rani, N.F.; Meor Hussin, A.S. Identification of antioxidant and antibacterial activities for the bioactive peptides generated from bitter beans (Parkia speciosa) via boiling and fermentation processes. Lebensm. Wiss. Technol., 2020, 131, 109776.
[http://dx.doi.org/10.1016/j.lwt.2020.109776]
[126]
Chen, S.; Yang, Q.; Chen, X.; Tian, Y.; Liu, Z.; Wang, S. Bioactive peptides derived from crimson snapper and: in vivo anti-aging effects on fat diet-induced high fat Drosophila melanogaster. In: Food Funct; Royal Society of Chemistry, 2020; pp. 524-533.
[http://dx.doi.org/10.1039/C9FO01414D]
[127]
Harman, D. Aging: A theory based on free radical and radiation chemistry. Sci. SAGE KE, 2002, 2002(37), cp14-cp14.
[http://dx.doi.org/10.1126/sageke.2002.37.cp14]