Smoking, Coffee Consumption, Alcohol Intake, and Obstructive Sleep Apnea: A Mendelian Randomization Study

Page: [280 - 289] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Previous studies revealed that obstructive sleep apnea (OSA) and smoking, alcohol consumption, and coffee intake are closely related. This study aimed to evaluate the causal effect between these factors and OSA.

Methods: The published genome-wide association study data (GWAS) provided genetic tools. We conducted a univariable two-sample Mendelian Randomization (MR) to estimate the causal effect between smoking initiation, never smoking, alcohol consumption, coffee intake, and coffee consumption with the risk of incidence OSA. Inverse variance weighting (IVW) was used as the main method for effect evaluation, and other MR methods were used for sensitivity analysis. After adjusting for body mass index (BMI), hypertension, and diabetes respectively by multivariable MR (MVMR), we further evaluate the causal effect of these factors on OSA.

Results: Under univariable MR analysis, we observed that smoking initiation was associated with an increased risk of incidence OSA (OR 1.326, 95% CI 1.001-1.757, p =0.049). Never smoking was associated with decreased risk of OSA (OR 0.872, 95% CI 0.807-0.942, p <0.001). Coffee intake and coffee consumption was associated with an increased incidence of OSA (OR 1.405, 95% CI 1.065-1.854, p =0.016) and (OR 1.330, 95% CI 1.013-1.746, p =0.040). Further multivariate MR showed that the causal relationship between never smoking and OSA existed but not coffee consumption, after adjusting for diabetes and hypertension. However, the all results did not support causality after adjusting for BMI.

Conclusion: This two-sample MR study showed that genetically predicted smoking and higher coffee intake are causally associated with an increased risk of OSA.

[1]
Punjabi NM. The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc 2008; 5(2): 136-43.
[http://dx.doi.org/10.1513/pats.200709-155MG] [PMID: 18250205]
[2]
Tishler PV, Larkin EK, Schluchter MD, Redline S. Incidence of sleep-disordered breathing in an urban adult population: The relative importance of risk factors in the development of sleep-disordered breathing. JAMA 2003; 289(17): 2230-7.
[http://dx.doi.org/10.1001/jama.289.17.2230] [PMID: 12734134]
[3]
Benjafield AV, Ayas NT, Eastwood PR, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir Med 2019; 7(8): 687-98.
[http://dx.doi.org/10.1016/S2213-2600(19)30198-5] [PMID: 31300334]
[4]
Kapur V, Strohl K, Redline S, Iber C, O'Connor G, Nieto J. Underdiagnosis of sleep apnea syndrome in U.S. communities. Sleep Breath 2002; 6(2): 49-54.
[http://dx.doi.org/10.1007/s11325-002-0049-5] [PMID: 12075479]
[5]
Adams R, Piantadosi C, Appleton S, Hill C, Visvanathan R, Wilson D, et al. Investigating obstructive sleep apnoea: Will the health system have the capacity to cope? A population study. Aust Health Rev 2012; 36(4): 424-9.
[http://dx.doi.org/10.1071/AH11098] [PMID: 23116561]
[6]
Floras JS. Sleep apnea and cardiovascular disease. Circ Res 2018; 122(12): 1741-64.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.310783] [PMID: 29880501]
[7]
Li J, Zhao L, Ding X, Cui X, Qi L, Chen Y. Obstructive sleep apnea and the risk of Alzheimer’s disease and Parkinson disease: A Mendelian randomization study OSA, Alzheimer’s disease and Parkinson disease. Sleep Med 2022; 97: 55-63.
[http://dx.doi.org/10.1016/j.sleep.2022.06.004] [PMID: 35724440]
[8]
Wang X, Fan J, Guo R, et al. Association of obstructive sleep apnoea with cardiovascular events in women and men with acute coronary syndrome. Eur Respir J 2023; 61(1): 2201110.
[http://dx.doi.org/10.1183/13993003.01110-2022] [PMID: 36104289]
[9]
Mohamed B, Yarlagadda K, Self Z, et al. Obstructive sleep apnea and stroke: Determining the mechanisms behind their association and treatment options. Transl Stroke Res 2023.
[http://dx.doi.org/10.1007/s12975-023-01123-x] [PMID: 36922470]
[10]
Pan Y, Wang W, Wang KS. Associations of alcohol consumption and chronic diseases with sleep apnea among US adults. Int J High Risk Behav Addict 2014; 3(2): e19088.
[http://dx.doi.org/10.5812/ijhrba.19088] [PMID: 25032163]
[11]
Davey Smith G, Ebrahim S. ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 2003; 32(1): 1-22.
[http://dx.doi.org/10.1093/ije/dyg070] [PMID: 12689998]
[12]
Timpson NJ, Wade KH, Smith GD. Mendelian randomization: Application to cardiovascular disease. Curr Hypertens Rep 2012; 14(1): 29-37.
[http://dx.doi.org/10.1007/s11906-011-0242-7] [PMID: 22161218]
[13]
Smith GD, Ebrahim S. Mendelian randomization: Prospects, potentials, and limitations. Int J Epidemiol 2004; 33(1): 30-42.
[http://dx.doi.org/10.1093/ije/dyh132] [PMID: 15075143]
[14]
Lawlor DA, Harbord RM, Sterne JAC, Timpson N, Davey Smith G. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat Med 2008; 27(8): 1133-63.
[http://dx.doi.org/10.1002/sim.3034] [PMID: 17886233]
[15]
Liu M, Jiang Y, Wedow R, et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet 2019; 51(2): 237-44.
[http://dx.doi.org/10.1038/s41588-018-0307-5] [PMID: 30643251]
[16]
Zhong VW, Kuang A, Danning RD, et al. A genome-wide association study of bitter and sweet beverage consumption. Hum Mol Genet 2019; 28(14): 2449-57.
[http://dx.doi.org/10.1093/hmg/ddz061] [PMID: 31046077]
[17]
Jiang L, Zheng Z, Fang H, Yang J. A generalized linear mixed model association tool for biobank-scale data. Nat Genet 2021; 53(11): 1616-21.
[http://dx.doi.org/10.1038/s41588-021-00954-4] [PMID: 34737426]
[18]
Yengo L, Sidorenko J, Kemper KE, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum Mol Genet 2018; 27(20): 3641-9.
[http://dx.doi.org/10.1093/hmg/ddy271] [PMID: 30124842]
[19]
Wood AR, Tyrrell J, Beaumont R, et al. Variants in the FTO and CDKAL1 loci have recessive effects on risk of obesity and type 2 diabetes, respectively. Diabetologia 2016; 59(6): 1214-21.
[http://dx.doi.org/10.1007/s00125-016-3908-5] [PMID: 26961502]
[20]
Kim J, Lee SK, Yoon DW, Shin C. Concurrent presence of obstructive sleep apnea and elevated homocysteine levels exacerbate the development of hypertension: A KoGES Six-year follow-up study. Sci Rep 2018; 8(1): 2665.
[http://dx.doi.org/10.1038/s41598-018-21033-5] [PMID: 29422547]
[21]
VanderWeele TJ, Tchetgen Tchetgen EJ, Cornelis M, Kraft P. Methodological challenges in mendelian randomization. Epidemiology 2014; 25(3): 427-35.
[http://dx.doi.org/10.1097/EDE.0000000000000081] [PMID: 24681576]
[22]
Sinnott-Armstrong N, Tanigawa Y, Amar D, et al. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nat Genet 2021; 53(2): 185-94.
[http://dx.doi.org/10.1038/s41588-020-00757-z] [PMID: 33462484]
[23]
Burgess S, Thompson SG. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol 2011; 40(3): 755-64.
[http://dx.doi.org/10.1093/ije/dyr036] [PMID: 21414999]
[24]
Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG. Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants. Epidemiology 2017; 28(1): 30-42.
[http://dx.doi.org/10.1097/EDE.0000000000000559] [PMID: 27749700]
[25]
Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 2016; 40(4): 304-14.
[http://dx.doi.org/10.1002/gepi.21965] [PMID: 27061298]
[26]
Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int J Epidemiol 2015; 44(2): 512-25.
[http://dx.doi.org/10.1093/ije/dyv080] [PMID: 26050253]
[27]
Greco MFD, Minelli C, Sheehan NA, Thompson JR. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat Med 2015; 34(21): 2926-40.
[http://dx.doi.org/10.1002/sim.6522] [PMID: 25950993]
[28]
Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 2018; 50(5): 693-8.
[http://dx.doi.org/10.1038/s41588-018-0099-7] [PMID: 29686387]
[29]
Papadimitriou N, Dimou N, Tsilidis KK, et al. Physical activity and risks of breast and colorectal cancer: A Mendelian randomisation analysis. Nat Commun 2020; 11(1): 597.
[http://dx.doi.org/10.1038/s41467-020-14389-8] [PMID: 32001714]
[30]
Arsenault BJ. From the garden to the clinic: How Mendelian randomization is shaping up atherosclerotic cardiovascular disease prevention strategies. Eur Heart J 2022; 43(42): 4447-9.
[http://dx.doi.org/10.1093/eurheartj/ehac394] [PMID: 35869924]
[31]
Krishnan V, Dixon-Williams S, Thornton JD. Where there is smoke…there is sleep apnea: Exploring the relationship between smoking and sleep apnea. Chest 2014; 146(6): 1673-80.
[http://dx.doi.org/10.1378/chest.14-0772] [PMID: 25451354]
[32]
Sériès F, Roy N, Marc I. Effects of sleep deprivation and sleep fragmentation on upper airway collapsibility in normal subjects. Am J Respir Crit Care Med 1994; 150(2): 481-5.
[http://dx.doi.org/10.1164/ajrccm.150.2.8049833] [PMID: 8049833]
[33]
McNamara JPH, Wang J, Holiday DB, et al. Sleep disturbances associated with cigarette smoking. Psychol Health Med 2014; 19(4): 410-9.
[http://dx.doi.org/10.1080/13548506.2013.832782] [PMID: 24040938]
[34]
St-Hilaire M, Duvareille C, Avoine O, Carreau A, Samson N, Micheau P, et al. Effects of postnatal smoke exposure on laryngeal chemoreflexes in newborn lambs. J Appl Physiol 2010; 109(6): 1820-6.
[http://dx.doi.org/10.1152/japplphysiol.01378.2009] [PMID: 20864563]
[35]
Haxhui MA, Deal EC Jr, Norcia MP, Van Lunteren E, Mitra J, Cherniack NS. Medullary effects of nicotine and GABA on tracheal smooth muscle tone. Respir Physiol 1986; 64(3): 351-63.
[http://dx.doi.org/10.1016/0034-5687(86)90128-3] [PMID: 2874599]
[36]
Antonaglia C, Passuti G, Giudici F, Salton F, Ruaro B, Radovanovic D, et al. Low arousal threshold: A common pathophysiological trait in patients with obstructive sleep apnea syndrome and asthma. Sleep Breath 2022; 27(3): 933-41.
[http://dx.doi.org/10.1007/s11325-022-02665-4] [PMID: 35907116]
[37]
Conway S, Roizenblatt S, Palombini L, Castro L, Bittencourt L, Silva R, et al. Effect of smoking habits on sleep. Braz J Med Biol Res 2008; 41(8): 722-7.
[38]
Oguma A, Shimizu K, Kimura H, Tanabe N, Sato S, Yokota I, et al. Differential role of mucus plugs in asthma: Effects of smoking and association with airway inflammation. Allergol Int 2022; 72(2): 262-70.
[http://dx.doi.org/10.1016/j.alit.2022.10.007] [PMID: 36402674]
[39]
Lin L, Li J, Song Q, Cheng W, Chen P. The role of HMGB1/RAGE/TLR4 signaling pathways in cigarette smoke‐induced inflammation in chronic obstructive pulmonary disease. Immun Inflamm Dis 2022; 10(11): e711.
[http://dx.doi.org/10.1002/iid3.711] [PMID: 36301039]
[40]
Virkkula P, Hytönen M, Bachour A, et al. Smoking and improvement after nasal surgery in snoring men. Am J Rhinol 2007; 21(2): 169-73.
[http://dx.doi.org/10.2500/ajr.2007.21.2991] [PMID: 17424873]
[41]
Ely AV, Wetherill RR. Reward and inhibition in obesity and cigarette smoking: Neurobiological overlaps and clinical implications. Physiol Behav 2023; 260: 114049.
[http://dx.doi.org/10.1016/j.physbeh.2022.114049] [PMID: 36470508]
[42]
Roehrs T, Roth T. Caffeine: Sleep and daytime sleepiness. Sleep Med Rev 2008; 12(2): 153-62.
[http://dx.doi.org/10.1016/j.smrv.2007.07.004] [PMID: 17950009]
[43]
Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 1999; 51(1): 83-133.
[PMID: 10049999]
[44]
Taveira KVM, Kuntze MM, Berretta F, et al. Association between obstructive sleep apnea and alcohol, caffeine and tobacco: A meta-analysis. J Oral Rehabil 2018; 45(11): 890-902.
[http://dx.doi.org/10.1111/joor.12686] [PMID: 29971810]
[45]
Moisey LL, Kacker S, Bickerton AC, Robinson LE, Graham TE. Caffeinated coffee consumption impairs blood glucose homeostasis in response to high and low glycemic index meals in healthy men. Am J Clin Nutr 2008; 87(5): 1254-61.
[http://dx.doi.org/10.1093/ajcn/87.5.1254] [PMID: 18469247]
[46]
Reis CEG, Dórea JG, da Costa THM. Effects of coffee consumption on glucose metabolism: A systematic review of clinical trials. J Tradit Complement Med 2019; 9(3): 184-91.
[http://dx.doi.org/10.1016/j.jtcme.2018.01.001] [PMID: 31193893]
[47]
van Dam RM, Willett WC, Manson JE, Hu FB. Coffee, caffeine, and risk of type 2 diabetes: A prospective cohort study in younger and middle-aged U.S. women. Diabetes Care 2006; 29(2): 398-403.
[http://dx.doi.org/10.2337/diacare.29.02.06.dc05-1512] [PMID: 16443894]