Apis mellifera syriaca Venom Modulates Splenic Cytokines Levels in BALB/c Mice

Article ID: e230623218222 Pages: 5

  • * (Excluding Mailing and Handling)

Abstract

Bee venoms are well-known for their important biological activities. More specifically, the venom of Apis mellifera syriaca was shown to exhibit various biological effects, including antimicrobial effects. It is suggested that the anti-microbial effect of venom could be accompanied by an immunomodulatory response in the host favoring anti-inflammatory responses. Thus, in this work, we investigated, for the first time, the immunomodulatory effects of A. mellifera syriaca venom in mice. Firstly, it was found that this venom exhibited mild toxicity in BALB/c mice after intraperitoneal injection with an LD50 of 3.8 mg/kg. We then investigated its immunomodulatory effects by evaluating the splenic levels of both pro- and anti-inflammatory cytokines in mice by ELISA. Interestingly, at 1 mg/kg, A. mellifera syriaca venom induced a decrease in IFN-γ, TNF-α, IL-4, and IL-10 at 24h postinjection. At a higher dose (3 mg/kg), an increase in IFN-γ and IL-4 levels was observed, while the levels of TNF-α and IL-10 remained low compared to the control. Altogether, these preliminary data suggest that A. mellifera syriaca venom exhibits anti-inflammatory effects at a sublethal dose (1 mg/kg), while at a higher dose (3 mg/kg), it induces inflammatory effects.

Graphical Abstract

[1]
Zaitoun ST, Al-Ghzawi AM, Shannag HK. Population dynamics of the Syrian Honeybee, Apis mellifera syriaca, under semi-arid Mediterranean conditions. Zool Middle East 2000; 21(1): 129-32.
[http://dx.doi.org/10.1080/09397140.2000.10637839]
[2]
Frangieh J, Salma Y, Haddad K, et al. First characterization of the venom from Apis mellifera syriaca, A honeybee from the middle east region. Toxins 2019; 11(4): 191.
[http://dx.doi.org/10.3390/toxins11040191] [PMID: 30935025]
[3]
Yaacoub C, Wehbe R, Salma Y, et al. Apis mellifera syriaca Venom: Evaluation of its anticoagulant effect, proteolytic activity, and cytotoxicity along with its two main compounds-MEL and PLA2-On HeLa cancer cells. Molecules 2022; 27(5): 1653.
[http://dx.doi.org/10.3390/molecules27051653] [PMID: 35268753]
[4]
Yaacoub C, Rifi M, El-Obeid D, et al. The cytotoxic effect of apis mellifera venom with a synergistic potential of its two main components-melittin and PLA2-On colon cancer HCT116 cell lines. Molecules 2021; 26(8): 2264.
[http://dx.doi.org/10.3390/molecules26082264] [PMID: 33919706]
[5]
Nehme H, Ayde H, El Obeid D, Sabatier JM, Fajloun Z. Potential inhibitory effect of apis mellifera’s venom and of its two main components-melittin and PLA2-on Escherichia coli F1F0-ATPase. Antibiotics 2020; 9(11): 824.
[http://dx.doi.org/10.3390/antibiotics9110824] [PMID: 33218209]
[6]
Rahimian R, Shirazi FM, Schmidt JO, Klotz SA. Honeybee stings in the era of killer bees: Anaphylaxis and toxic envenomation. Am J Med 2020; 133(5): 621-6.
[http://dx.doi.org/10.1016/j.amjmed.2019.10.028] [PMID: 31715166]
[7]
Lee JD, Park HJ, Chae Y, Lim S. An overview of bee venom acupuncture in the treatment of arthritis. Evid Based Complement Alternat Med 2005; 2(1): 79-84.
[http://dx.doi.org/10.1093/ecam/neh070] [PMID: 15841281]
[8]
Wehbe R, Frangieh J, Rima M, El Obeid D, Sabatier JM, Fajloun Z. Bee venom: Overview of main compounds and bioactivities for therapeutic interests. Molecules 2019; 24(16): 2997.
[http://dx.doi.org/10.3390/molecules24162997] [PMID: 31430861]
[9]
Prado M, Solano-Trejos G, Lomonte B. Acute physiopathological effects of honeybee (Apis mellifera) envenoming by subcutaneous route in a mouse model. Toxicon 2010; 56(6): 1007-17.
[http://dx.doi.org/10.1016/j.toxicon.2010.07.005] [PMID: 20638400]
[10]
Pence RJ. Methods for procuring and bioassaying intact honey bee venom for medical use. Am Bee J 1981; 121: 726-31.
[11]
Schumacher MJ, Egen NB. Significance of Africanized bees for public health. A review. Arch Intern Med 1995; 155(19): 2038-43.
[http://dx.doi.org/10.1001/archinte.1995.00430190022003] [PMID: 7575061]
[12]
Ali MAASM. Studies on bee venom and its medical uses. Int J Adv Res Technol 2012; 2: 69-83.
[13]
Schmidt JO. Toxinology of venoms from the honeybee genus Apis. Toxicon 1995; 33(7): 917-27.
[http://dx.doi.org/10.1016/0041-0101(95)00011-A] [PMID: 8588216]
[14]
Pucca MB, Cerni FA, Oliveira IS, et al. Bee updated: Current knowledge on bee venom and bee envenoming therapy. Front Immunol 2019; 10: 2090.
[http://dx.doi.org/10.3389/fimmu.2019.02090] [PMID: 31552038]
[15]
Gu H, Kim WH, An HJ, et al. Therapeutic effects of bee venom on experimental atopic dermatitis. Mol Med Rep 2018; 18(4): 3711-8.
[http://dx.doi.org/10.3892/mmr.2018.9398] [PMID: 30132547]
[16]
El-tedawy D, Abd-alhaseeb M, Helmy M, Ghoneim A. Systemic bee venom exerts anti-arthritic and anti-inflammatory properties in a rat model of arthritis. Biomed Rep 2020; 13(4): 20.
[http://dx.doi.org/10.3892/br.2020.1327] [PMID: 32765859]
[17]
Kim WH, An HJ, Kim JY, et al. Anti-inflammatory effect of melittin on porphyromonas gingivalis LPS-stimulated human keratinocytes. Molecules 2018; 23(2): 332.
[http://dx.doi.org/10.3390/molecules23020332] [PMID: 29401750]
[18]
Iwaszko M,. Biały S, Bogunia-Kubik K. Significance of interleukin (IL)-4 and IL-13 in inflammatory arthritis. Cells 2021; 10(11): 3000.
[http://dx.doi.org/10.3390/cells10113000] [PMID: 34831223]
[19]
Carballido JM, Carballido-Perrig N, Terres G, Heusser CH, Blaser K. Bee venom phospholipase A2-specific T cell clones from human allergic and non-allergic individuals: cytokine patterns change in response to the antigen concentration. Eur J Immunol 1992; 22(6): 1357-63.
[http://dx.doi.org/10.1002/eji.1830220605] [PMID: 1601030]
[20]
Iyer SS, Cheng G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol 2012; 32(1): 23-63.
[http://dx.doi.org/10.1615/CritRevImmunol.v32.i1.30] [PMID: 22428854]