Ionic Liquid Immobilized Pd Nanocatalysts for Chemoselective Reduction of Aliphatic/Aromatic Nitro Compounds

Page: [1170 - 1181] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

In this work, we have successfully synthesized four types of ionic liquid-mediated Pd nanocatalysts and performed the physiochemical analysis of the developed Pd-based nanocatalysts using a transmission electron microscope (TEM), X-Ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), and atomic absorption spectroscopy (AAS) analysis. The well-dispersed and fine Pd nanoparticles were recorded in the ILPdNPs-4 catalytic system. We used this catalytic system to reduce a series of aliphatic and aromatic compounds with nitro groups and developed various biologically active amine molecules. In the continuation of the same, we also reduced nitrolactone, which is considered one of the important starting materials for the synthesis of renin inhibitor aliskiren (Tekturna®, and worldwide as Rasilez®). We also completed the catalyst stability test and recycled the ILPdNPs-4 catalytic system for up to eight runs. No sign of metal leaching, Pd black formation, and agglomeration was recorded during recycling runs.

Graphical Abstract

[1]
Reddy, K.P.; Swetha, C.; Murugadoss, A. ACS Sustain. Chem.& Eng., 2023, 11(5), 1643-1654.
[http://dx.doi.org/10.1021/acssuschemeng.2c04955]
[2]
Orlandi, M.; Brenna, D.; Harms, R.; Jost, S.; Benaglia, M. Org. Process Res. Dev., 2018, 22(4), 430-445.
[http://dx.doi.org/10.1021/acs.oprd.6b00205]
[3]
Perez, A.R.; Bornowski, E.C.; Chen, L.; Wolfe, J.P. Org. Lett., 2023, 25(16), 2767-2770.
[http://dx.doi.org/10.1021/acs.orglett.3c00571] [PMID: 37071777]
[4]
Ishikawa, H.; Nakatani, N.; Yamaguchi, S.; Mizugaki, T.; Mitsudome, T. ACS Catal., 2023, 13(8), 5744-5751.
[http://dx.doi.org/10.1021/acscatal.3c00128]
[5]
Formenti, D.; Ferretti, F.; Scharnagl, F.K.; Beller, M. Chem. Rev., 2019, 119(4), 2611-2680.
[http://dx.doi.org/10.1021/acs.chemrev.8b00547] [PMID: 30516963]
[6]
Ansari, S.; Khorshidi, A.; Shariati, S. RSC Advances, 2020, 10(6), 3554-3565.
[http://dx.doi.org/10.1039/C9RA09561F] [PMID: 35497750]
[7]
Portada, T. Margetić D.; Štrukil, V. Molecules, 2018, 23, 3163.
[8]
Grieco, G.; Blacque, O. Appl. Organomet. Chem., 2022, 36(1), e6452.
[http://dx.doi.org/10.1002/aoc.6452]
[9]
Nose, A.; Kudo, T. Chem. Pharm. Bull. (Tokyo), 1989, 37(3), 816-818.
[http://dx.doi.org/10.1248/cpb.37.816]
[10]
Tafesh, A.M. Weiguny. J. Chem. Rev., 1996, 96(6), 2035-2052.
[http://dx.doi.org/10.1021/cr950083f] [PMID: 11848820]
[11]
Lu, H.; Geng, Z.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Org. Lett., 2016, 18(11), 2774-2776.
[http://dx.doi.org/10.1021/acs.orglett.6b01274] [PMID: 27214590]
[12]
Stergiou, A.D.; Broadhurst, D.H.; Symes, M.D. ACS Organic & Inorganic Au, 2023, 3(1), 51-58.
[http://dx.doi.org/10.1021/acsorginorgau.2c00047] [PMID: 36748077]
[13]
Prakash, O.; Jangir, B.; Srivastava, V. Lett. Org. Chem., 2023, 20, 154-168.
[14]
Wang, Q.; Wei, Z.; Li, J.; Feng, D.; Feng, A.; Zhang, H. ACS Appl. Mater. Interfaces, 2022, 14(24), 27775-27790.
[http://dx.doi.org/10.1021/acsami.2c01378] [PMID: 35679591]
[15]
Sedghi, R.; Heravi, M. Curr. Org. Chem., 2015, 20, 696-734.
[http://dx.doi.org/10.2174/1385272819666150907192826]
[16]
Tskhovrebov, A.G.; Novikov, A.S.; Odintsova, O.V.; Mikhaylov, V.N.; Sorokoumov, V.N.; Serebryanskaya, T.V.; Starova, G.L. J. Organomet. Chem., 2019, 886, 71-75.
[http://dx.doi.org/10.1016/j.jorganchem.2019.01.023]
[17]
Katkova, S.A.; Kinzhalov, M.A.; Tolstoy, P.M.; Novikov, A.S.; Boyarskiy, V.P.; Ananyan, A.Y.; Gushchin, P.V.; Haukka, M.; Zolotarev, A.A.; Ivanov, A.Y.; Zlotsky, S.S.; Kukushkin, V.Y. Organometallics, 2017, 36(21), 4145-4159.
[http://dx.doi.org/10.1021/acs.organomet.7b00569]
[18]
Katkova, A. Chemistry, 2019, 25, 8590-8598.
[http://dx.doi.org/10.1002/chem.201901187]
[19]
Adams, R.; Cohen, F.L.; Rees, O.W. J. Am. Chem. Soc., 1927, 49(4), 1093-1099.
[http://dx.doi.org/10.1021/ja01403a035]
[20]
Maki, Y.; Sugiyama, H.; Kikuchi, K.; Seto, S. Chem. Lett., 2006, 4, 1093-1094.
[21]
Li, H.; Li, F.; Frett, B. Synlett, 2014, 25(10), 1403-1408.
[http://dx.doi.org/10.1055/s-0033-1339025] [PMID: 26843785]
[22]
Cantillo, D.; Moghaddam, M.M.; Kappe, C.O. J. Org. Chem., 2013, 78(9), 4530-4542.
[http://dx.doi.org/10.1021/jo400556g] [PMID: 23560824]
[23]
Sivcev, V.P.; Volcho, K.P.; Salakhutdinov, N.F.; Anikeev, V.I. J. Supercrit. Fluids, 2015, 103, 101-104.
[http://dx.doi.org/10.1016/j.supflu.2015.04.029]
[24]
Huber, D.; Andermann, G.; Leclerc, G. Tetrahedron Lett., 1988, 29(6), 635-638.
[http://dx.doi.org/10.1016/S0040-4039(00)80169-0]
[25]
Hutchins, R.O.; Lamson, D.W.; Rua, L.; Milewski, C.; Maryanoff, B. J. Org. Chem., 1971, 36(6), 803-806.
[http://dx.doi.org/10.1021/jo00805a015]
[26]
Chua, C.K.; Pumera, M. Chem. Commun. (Camb.), 2016, 52(1), 72-75.
[http://dx.doi.org/10.1039/C5CC08170J] [PMID: 26525927]
[27]
Astruc, D. Chem. Rev., 2020, 120(2), 461-463.
[http://dx.doi.org/10.1021/acs.chemrev.8b00696] [PMID: 31964144]
[28]
Chanda, K. Lett. Org. Chem., 2022, 19(4), 257-258.
[http://dx.doi.org/10.2174/1570178618666210914125919]
[29]
Cong, H.; Porco, J.A., Jr ACS Catal., 2012, 2(1), 65-70.
[http://dx.doi.org/10.1021/cs200495s] [PMID: 22347681]
[30]
Chaturvedi, S.; Dave, P.N.; Shah, N.K. J. Saudi Chem. Soc., 2012, 16(3), 307-325.
[http://dx.doi.org/10.1016/j.jscs.2011.01.015]
[31]
Somwanshi, S.B.; Somvanshi, S.B.; Kharat, P.B. J Energy Chem, 2014, 2, 106-115.
[32]
Redón, R.; Peña, N.; Crescencio, F. Recent Pat. Nanotechnol., 2014, 8(1), 31-51.
[http://dx.doi.org/10.2174/1872210508999140130122644] [PMID: 24635207]
[33]
Srivastava, V. Curr. Organocatal., 2018, 5.
[34]
Camats, M.; Pla, D.; Gómez, M. Nanoscale, 2021, 13(45), 18817-18838.
[http://dx.doi.org/10.1039/D1NR05894K] [PMID: 34757356]
[35]
Upadhyay, P.; Srivastava, V. Catal. Lett., 2016, 146(1), 12-21.
[http://dx.doi.org/10.1007/s10562-015-1654-9]
[36]
Upadhyay, P.; Srivastava, V. Lett. Org. Chem., 2015, 12(8), 528-533.
[http://dx.doi.org/10.2174/157017861208150826112807]
[37]
Upadhyay, P.; Srivastava, V. AIP Conf. Proc., 2016, 1724.
[38]
Upadhyay, P.; Srivastava, V. RSC Advances, 2015, 5(1), 740-745.
[http://dx.doi.org/10.1039/C4RA12324G]
[39]
Upadhyay, P.R.; Srivastava, V. Lett. Org. Chem., 2016, 13, 459-465.
[http://dx.doi.org/10.2174/1570178613666160815095733]
[40]
Upadhyay, P.R.; Srivastava, V. Catal. Lett., 2016, 146(8), 1478-1486.
[http://dx.doi.org/10.1007/s10562-016-1772-z]
[41]
Upadhyay, P.R.; Srivastava, V. Catal. Lett., 2017, 147(4), 1051-1060.
[http://dx.doi.org/10.1007/s10562-017-1995-7]
[42]
Upadhyay, P.R.; Srivastava, V. Lett. Org. Chem., 2016, 13, 380-387.
[http://dx.doi.org/10.2174/1570178613666160303002129]
[43]
Upadhyay, P.; Srivastava, V. Nanomaterials; Apple Academic Press, 2019, pp. 67-89.
[44]
Srivastava, V. Lett. Org. Chem., 2017, 14(2), 74-79.
[http://dx.doi.org/10.2174/1570178614666170126121836]
[45]
Srivastava, V. Lett. Org. Chem., 2015, 12(1), 67-72.
[http://dx.doi.org/10.2174/1570178611666141201223344]
[46]
Srivastava, V. Lett. Org. Chem., 2019, 16(5), 396-408.
[http://dx.doi.org/10.2174/1570178615666180816120058]
[47]
Fatnassi, A.; Cammarano, C.; Oliviero, E.; Hulea, V.; Brun, N. ACS Appl. Nano Mater., 2022, 5(10), 14227-14234.
[http://dx.doi.org/10.1021/acsanm.2c03313]
[48]
Gautam, P.; Srivastava, V. Lett. Org. Chem., 2021, 19, 705-710.
[49]
Ramprakash Upadhyay, P.; Srivastava, V. Curr. Catal., 2016, 5(3), 162-181.
[http://dx.doi.org/10.2174/2211544705666160624082343]
[50]
Antonietti, M.; Kuang, D.; Smarsly, B.; Zhou, Y. Angew. Chem. Int. Ed., 2004, 43(38), 4988-4992.
[http://dx.doi.org/10.1002/anie.200460091] [PMID: 15372641]
[51]
He, Z.; Alexandridis, P. Adv. Colloid Interface Sci., 2017, 244, 54-70.
[http://dx.doi.org/10.1016/j.cis.2016.08.004] [PMID: 27567031]
[52]
Hallett, J.P.; Welton, T. Chem. Rev., 2011, 111(5), 3508-3576.
[http://dx.doi.org/10.1021/cr1003248] [PMID: 21469639]
[53]
Kaur, G.; Kumar, H.; Singla, M. J. Mol. Liq., 2022, 351, 118556.
[http://dx.doi.org/10.1016/j.molliq.2022.118556]
[54]
Chun, Y.S.; Shin, J.Y.; Song, C.E.; Lee, S. Chem. Commun., 2008, (8), 942-944.
[http://dx.doi.org/10.1039/B715463A] [PMID: 18283343]
[55]
Manojkumar, K.; Sivaramakrishna, A.; Vijayakrishna, K. J. Nanopart. Res., 2016, 18(4), 1-22.
[56]
Annat, G.; Forsyth, M.; MacFarlane, D.R. J. Phys. Chem. B, 2012, 116(28), 8251-8258.
[http://dx.doi.org/10.1021/jp3012602] [PMID: 22759206]
[57]
Hassanpour, M.; Shahavi, M.H.; Heidari, G.; Kumar, A.; Nodehi, M.; Moghaddam, F.D.; Mohammadi, M.; Nikfarjam, N.; Sharifi, E.; Makvandi, P.; Male, H.K.; Zare, E.N. Journal of Ionic Liquids, 2022, 2(2), 100033.
[http://dx.doi.org/10.1016/j.jil.2022.100033]
[58]
He, Z.; Alexandridis, P. Phys. Chem. Chem. Phys., 2015, 17(28), 18238-18261.
[http://dx.doi.org/10.1039/C5CP01620G] [PMID: 26120610]
[59]
Seitkalieva, M.M.; Samoylenko, D.E.; Lotsman, K.A.; Rodygin, K.S.; Ananikov, V.P. Coord. Chem. Rev., 2021, 445, 213982.
[http://dx.doi.org/10.1016/j.ccr.2021.213982]
[60]
Sosa, J.E.; Santiago, R.; Redondo, A.E.; Avila, J.; Lepre, L.F.; Gomes, M.C.; Araújo, J.M.M.; Palomar, J.; Pereiro, A.B. Environ. Sci. Technol., 2022, 56(9), 5898-5909.
[http://dx.doi.org/10.1021/acs.est.2c00051] [PMID: 35435682]
[61]
Neumann, J.G.; Stassen, H. J. Chem. Inf. Model., 2020, 60(2), 661-666.
[http://dx.doi.org/10.1021/acs.jcim.9b00885] [PMID: 31917575]
[62]
Shunmugavel, S.; Kegnæs, S.; Due-Hansen, J.; Gretasdottir, T.; Riisager, A.; Fehrmann, R. ECS Trans., 2010, 33(7), 117-126.
[http://dx.doi.org/10.1149/1.3484768]
[63]
Soleimani, O. Journal of Chemical Reviews, 2020, 2, 169-181.
[64]
Pereira, M.A.; Immobilized Ionic Liquids, M. Curr. Org. Chem., 2012, 16, 1680-1710.
[65]
Adams, B.D.; Chen, A. Mater. Today, 2011, 14(6), 282-289.
[http://dx.doi.org/10.1016/S1369-7021(11)70143-2]
[66]
Mao, Z.; Gu, H.; Lin, X. Catalysts, 2021, 11, 1078.
[67]
Powers, D.C.; Ritter, T. Top. Organomet. Chem., 2011, 35, 129-156.
[http://dx.doi.org/10.1007/978-3-642-17429-2_6] [PMID: 21461129]
[68]
della Ca’, N. Catalysts, 2021, 11, 588.
[69]
Ren, J.; Zhang, J.; Yang, C.; Yang, Y.; Zhang, Y.; Yang, F.; Ma, R.; Yang, L.; He, H.; Huang, H. Mater. Today Energy, 2020, 16, 100409.
[http://dx.doi.org/10.1016/j.mtener.2020.100409]
[70]
Yang, C.; He, H.; Jiang, Q.; Liu, X.; Shah, S.P.; Huang, H.; Li, W. Int. J. Hydrogen Energy, 2021, 46(1), 589-598.
[http://dx.doi.org/10.1016/j.ijhydene.2020.09.243]
[71]
Xiao, D.; Jiang, Q.; Xu, C.; Yang, C.; Yang, L.; He, H.; Huang, H. J. Colloid Interface Sci., 2022, 616, 781-790.
[http://dx.doi.org/10.1016/j.jcis.2022.02.111] [PMID: 35247815]
[72]
Basu, B.; Jha, S.; Bhuiyan, M.M.; Das, P. Synlett, 2003, 2003(4), 0555-0557.
[http://dx.doi.org/10.1055/s-2003-37509]
[73]
Sukhorukov, A.Y. Front Chem., 2020, 8, 215.
[http://dx.doi.org/10.3389/fchem.2020.00215] [PMID: 32351929]
[74]
Zhao, D.; Fei, Z.; Geldbach, T.J.; Scopelliti, R.; Dyson, P.J. J. Am. Chem. Soc., 2004, 126(48), 15876-15882.
[http://dx.doi.org/10.1021/ja0463482] [PMID: 15571412]
[75]
Monshi, A.; Foroughi, M.R.; Monshi, M.R.; Monshi, A.; Foroughi, M.R.; Monshi, M.R. World J. Nano Sci. Eng., 2012, 2(3), 154-160.
[http://dx.doi.org/10.4236/wjnse.2012.23020]
[76]
Holzwarth, U.; Gibson, N. Nat. Nanotechnol., 2011, 6(9), 534.
[77]
Baylet, A.; Marécot, P.; Duprez, D.; Castellazzi, P.; Groppi, G.; Forzatti, P. Phys. Chem. Chem. Phys., 2011, 13(10), 4607-4613.
[http://dx.doi.org/10.1039/c0cp01331e] [PMID: 21279224]
[78]
Palanna, M.; Mohammed, I.; Aralekallu, S.; Nemakal, M.; Sannegowda, L.K. New J. Chem., 2020, 44(4), 1294-1306.
[http://dx.doi.org/10.1039/C9NJ05252F]
[79]
Amrhein, J.A.; Knapp, S.; Hanke, T. J. Med. Chem., 2021, 64(12), 7991-8009.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00217] [PMID: 34076436]
[80]
Dunn, P.J. Comprehensive Organic Functional Group Transformations II, 1995, 5, 741-782.
[http://dx.doi.org/10.1016/B0-08-044705-8/00245-4]
[81]
Weiss, R.J.; Spahn, P.N.; Toledo, A.G.; Chiang, A.W.T.; Kellman, B.P.; Li, J.; Benner, C.; Glass, C.K.; Gordts, P.L.S.M.; Lewis, N.E.; Esko, J.D. Proc. Natl. Acad. Sci. USA, 2020, 117(17), 9311-9317.
[http://dx.doi.org/10.1073/pnas.1920880117] [PMID: 32277030]
[82]
Romagnoli, R.; Baraldi, P.G.; Salvador, M.K.; Prencipe, F.; Bertolasi, V.; Cancellieri, M.; Brancale, A.; Hamel, E.; Castagliuolo, I.; Consolaro, F.; Porcù, E.; Basso, G.; Viola, G. J. Med. Chem., 2014, 57(15), 6795-6808.
[http://dx.doi.org/10.1021/jm5008193] [PMID: 25025853]
[83]
Wang, X.; Lin, X.; Xu, X.; Li, W.; Hao, L.; Liu, C.; Zhao, D.; Cheng, M. Molecules, 2017, 22(11), 1925.
[84]
Krátký, M. Konečná, K.; Janoušek, J.; Brablíková, M.; Janďourek, O.; Trejtnar, F.; Stolaříková, J.; Vinšová. J. Biomolecules, 2019, 10(1), 9.
[http://dx.doi.org/10.3390/biom10010009] [PMID: 31861596]
[85]
Hanessian, S.; Guesné, S.; Chénard, E. Org. Lett., 2010, 12(8), 1816-1819.
[http://dx.doi.org/10.1021/ol100427v] [PMID: 20235519]
[86]
Peters, B.K.; Liu, J.; Margarita, C.; Andersson, P.G. Chemistry, 2015, 21(19), 7292-7296.
[http://dx.doi.org/10.1002/chem.201406523] [PMID: 25783891]
[87]
Wu, Y.; Sun, X.W.; Wu, X.M.; Sun, H. Zhongguo Yaoke Daxue Xuebao, 2011, 42, 400-406.
[88]
Ho, T.L.; Wong, C.M. Synthesis, 1974, 1974(1), 45.
[http://dx.doi.org/10.1055/s-1974-23246]
[89]
Hazlet, S.E.; Dornfeld, C.A. J. Am. Chem. Soc., 1944, 66(10), 1781-1782.
[http://dx.doi.org/10.1021/ja01238a049]
[90]
dos Santos, D.J.V.A.; Cordeiro, M.N.D.S. Mol. Simul., 2015, 41(5-6), 455-462.
[http://dx.doi.org/10.1080/08927022.2014.986122]
[91]
Bystrov, S.S.; Matveev, V.V.; Chernyshev, Y.S. Balevičius, V.; Chizhik, V.I. J. Phys. Chem. B, 2019, 123(10), 2362-2372.
[http://dx.doi.org/10.1021/acs.jpcb.8b11250] [PMID: 30779569]