Recent Patents on Nanotechnology

Author(s): Vijai M. Moorthy*, Rethinasamy Venkatesan and Viranjay M. Srivastava

DOI: 10.2174/1872210517666230622123317

DownloadDownload PDF Flyer Cite As
Optimization of Double-Gate Carbon Nanotube FET Characteristics for Short Channel Devices

Page: [148 - 155] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Transistors are the fundamental electronic component integrated into electronic devices' chips Carbon Nano Tube (CNT) based field.

Methods: Effect Transistor (FET) is a promising component for next-generation transistor technologies; as it has high carrier mobility, device stability, and mechanical flexibility. Nevertheless, some shortcomings in the CNT FET's design prevent it from providing the best performance while preserving thermal stability.

Results: The structure and functionality of transistors with Double-Gate (DG) devices, which use carbon nanotubes as active channel regions, have been examined by the authors of this study. The DG CNT FET has been extensively simulated using an electronic device simulator with various device geometrics, including channel length, oxide thickness for its output, and transfer characteristics. In comparison to reported patents and published works, this demonstrates a significant improvement.

Conclusion: A new perspective on the DG CNT FET's device performance characteristics is provided by this research work, which can be scaled down to minimum channel length without Short Channel Effects (SCEs).

Keywords: Carbon, carbon nanotube, nano transistors, flexible electronics, nanotechnology, nanomaterial.

Graphical Abstract

[1]
Viranjay M. MOSFET Technologies for Double-Pole Four-Throw Radio-Frequency Switch (Analog Circuits and Signal Processing Book 122). 2014th ed. Springer New York 2013.
[2]
Sedra AS, Smith KC. Microelectronic Circuits. (International Sixth Edition.), Oxford University Press 2011.
[3]
Ullmann B, Grasser T. Transformation: Nanotechnology—challenges in transistor design and future technologies. E&I Elektrotech Inf Tech 2017; 134(7): 349-54.
[http://dx.doi.org/10.1007/s00502-017-0534-y]
[4]
Moore GE. Cramming more components onto integrated circuits. Proc IEEE 1998; 86(1): 82-5.
[http://dx.doi.org/10.1109/JPROC.1998.658762]
[5]
Roy K, Prasad S. Low-power CMOS VLSI circuit design. Wiley 2000.
[6]
Haron NZ, Hamdioui S. Why is CMOS scaling coming to an END? 2008 3rd International Design and Test Workshop . 20-22 December 2008; Monastir, Tunisia 2009.
[7]
Amoosoltani N, Zarifkar A, Farmani A. Particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithms for a surface plasmon resonance-based gas sensor. J Comput Electron 2019; 18(4): 1354-64.
[http://dx.doi.org/10.1007/s10825-019-01391-7]
[8]
Farmani A, Mir A. Graphene sensor based on surface plasmon resonance for optical scan-ning. IEEE Photonics Technol Lett 2019; 31(8): 643-6.
[http://dx.doi.org/10.1109/LPT.2019.2904618]
[9]
Farmani A. Graphene plasmonic: Switching applications. In: Handbook of Graphene. Physics, Chemistry, and Biology 2019; p. 455.
[http://dx.doi.org/10.1002/9781119468455.ch33]
[10]
Matsumoto K, Maehashi K, Ohno Y, Inoue K. Recent advances in functional graphene biosensors. J Phys D Appl Phys 2014; 47(9): 094005.
[http://dx.doi.org/10.1088/0022-3727/47/9/094005]
[11]
Reddy MN, Panda DK. A comprehensive review on FinFET in terms of its device structure and performance matrices. Silicon 2022; 14(18): 12015-30.
[http://dx.doi.org/10.1007/s12633-022-01929-8]
[12]
Boukortt NEI, Trupti RL, Salvatore P. Effects of varying the fin width, fin height, gate dielectric material, and gate length on the DC and RF performance of a 14-nm SOI FinFET structure. Electronics 2022; 11(91): 17.
[13]
Gowthaman N, Srivastava VM. Parametric analysis of CSDG MOSFET with La2O3 gate oxide: Based on electrical field estimation. IEEE Access 2021; 9: 159421-31.
[http://dx.doi.org/10.1109/ACCESS.2021.3131980]
[14]
Gowthaman N, Srivastava VM. Mathematical modeling of drain current estimation in a CSDG MOSFET, based on La2O3 oxide layer with fabrication—a nanomaterial approach. Nanomaterials 2022; 12(19): 3374.
[http://dx.doi.org/10.3390/nano12193374] [PMID: 36234508]
[15]
Pucknell DA, Eshraghian K. Basic VLSI Design. (3rd ed.). Prentice Hall India Learning Private Limited 1995; p. 595.
[16]
Shimohigashi K, Seki K. Low-voltage ULSI design. IEEE J Solid-State Circuits 1993; 28(4): 408-13.
[http://dx.doi.org/10.1109/4.210022]
[17]
Sonkusare RS, Rathod SS. Analysis of multifin n-FinFET for analog performance at 30 nm gate length. 2016 International Conference on Communication and Electronics Systems (ICCES). 21-22 October 2016. 2016; Coimbatore, India. 2016; pp. 1-7.
[http://dx.doi.org/10.1109/CESYS.2016.7889956]
[18]
Chen TC. Overcoming research challenges for CMOS scaling: Industry directions. 2006 8th International Conference on Solid- State and Integrated Circuit Technology Proceedings. 21-22 October 2016; Coimbatore, India. 2006; pp. 4-7.
[http://dx.doi.org/10.1109/ICSICT.2006.306040]
[19]
The international roadmap for devices and systems. 2022.https://irds.ieee.org/images/files/pdf/2022/2022IRDS_ES.pdf
[20]
Carballo J, Chan WJ, Gargini PA, Kahng AB, Nath S. ITRS 2.0: Toward a re-framing of the semiconductor technology roadmap. 2014 IEEE 32nd International Conference on Computer Design (ICCD). 19-22 October 2014; Seoul, Korea (South). 2014.
[http://dx.doi.org/10.1109/ICCD.2014.6974673]
[21]
Zeitzoff PM, Huff HR. MOSFET scaling trends, challenges, and key associated metrology issues through the end of the roadmap. AIP Conference Proceedings Am Ins Phy. 2005; 788: pp. (1)203-13.
[22]
Venkatesan R, Joseph Daniel R, Shanmugaraja P. Optimization of CNT and TFT parameters for maximum transconductance and safe temperature operation of carbon nanotube thin-film transistors (CNT-TFTs) Employed in Flat Panel Displays. Trans Electr Electron 2021; 22(1): 47-56.
[http://dx.doi.org/10.1007/s42341-020-00216-w]
[23]
Dürkop T, Getty SA, Cobas E, Fuhrer MS. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett 2004; 4(1): 35-9.
[http://dx.doi.org/10.1021/nl034841q]
[24]
Moorthy VM, Sugantharathnam M, Rathnasami JD, Pattan S. Design and characterisation of graphene‐based nano‐photodiode array device for photo‐stimulation of subretinal implant. Micro & Nano Lett 2019; 14(11): 1131-5.
[http://dx.doi.org/10.1049/mnl.2019.0030]
[25]
Moorthy VM, Srivastava VM. Device modeling of organic photovoltaic cells with traditional and inverted cells using s-SWCNT:C60 as active layer. Nanomaterials 2022; 12(16): 2844.
[http://dx.doi.org/10.3390/nano12162844] [PMID: 36014708]
[26]
Moorthy VM, Srivastava VM. Device modelling and optimization of planar heteroJunction based organic solar cell (by Varying the Device Dimensions and Material Parameters). Nanomaterials 2022; 12(17): 3031.
[http://dx.doi.org/10.3390/nano12173031] [PMID: 36080068]
[27]
Peng L-M, Zhang Z, Qiu C. Carbon nanotube digital electronics. Nat Electron 2019; 2(11): 499-505.
[http://dx.doi.org/10.1038/s41928-019-0330-2]
[28]
Meyyappan MV, Parthasarathy V, Daniel RJ. Bio‐interface behaviour of graphene and semiconducting SWCNT:C 60 blend based nano photodiode for subretinal implant. Biosurf Biotribol 2020; 6(2): 53-8.
[http://dx.doi.org/10.1049/bsbt.2019.0045]
[29]
Avouris P. Molecular electronics with carbon nanotubes. Acc Chem Res 2002; 35(12): 1026-34.
[http://dx.doi.org/10.1021/ar010152e] [PMID: 12484790]
[30]
Appenzeller J, Lin YM, Knoch J, Chen Z, Avouris P. Comparing carbon nanotube transistors - the ideal choice: A novel tunneling device design. IEEE Trans Electron Dev 2005; 52(12): 2568-76.
[http://dx.doi.org/10.1109/TED.2005.859654]
[31]
Bari SMK, Biswas S, Arifuzzman AKM, Ahmad HMN, Hasan NMA. Performance analysis of dynamic threshold-voltage CNTFET for high-speed multi-level voltage detector. 2012 UKSim 14th International Conference on Computer Modelling and Simulation. 28-30 March 2012; Cambridge, UK 2012.
[http://dx.doi.org/10.1109/UKSim.2012.98]
[32]
Moorthy VM, Joseph Daniel R, Shanmugaraja P. Modelling, simulation and analysis of nano photo diode arrays using cnt’s and graphene nano materials for sub-retinal implant. IOP Conf Ser Mater Sci Eng 2021; 1225(012010): 1-13.
[33]
Franklin AD, Chen Z. Length scaling of carbon nanotube transistors. Nat Nanotechnol 2010; 5(12): 858-62.
[http://dx.doi.org/10.1038/nnano.2010.220] [PMID: 21102468]
[34]
Rahman A, Jing Guo , Datta S, Lundstrom MS. Theory of ballistic nanotransistors. IEEE Trans Electron Dev 2003; 50(9): 1853-64.
[http://dx.doi.org/10.1109/TED.2003.815366]
[35]
Bishop MD, Hills G, Srimani T, et al. Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities. Nat Electron 2020; 3(8): 492-501.
[http://dx.doi.org/10.1038/s41928-020-0419-7]
[36]
Chopade SS, Mane S, Padole D. Design of DG-CNFET for reduction of short channel effect over DG MOSFET at 20 nm. 2013 IEEE International Conference of IEEE Region 10 (TENCON 2013). 22-25 October 2013; Xi'an, China. 2013.
[37]
Moorthy VM, Srivastava VM. (Digital Presentation) effect of active layer thickness on organic thin-film transistors. ECS Trans 2022; 109(6): 115-21.
[http://dx.doi.org/10.1149/10906.0115ecst]
[38]
Yang X, Mohanram K. Modeling and performance investigation of the double-gate carbon nanotube transistor. IEEE Electron Device Lett 2011; 32(3): 231-3.
[http://dx.doi.org/10.1109/LED.2010.2095826]
[39]
Xu L, Qiu C, Peng L, Zhang Z. Suppression of leakage current in carbon nanotube field-effect transistors. Nano Res 2021; 14(4): 976-81.
[http://dx.doi.org/10.1007/s12274-020-3135-8]
[40]
Bala S, Khosla M. Design and simulation of nanoscale double-gate TFET/tunnel CNTFET. J Semicond 2018; 39(4): 044001.
[http://dx.doi.org/10.1088/1674-4926/39/4/044001]
[41]
Orouji AA, Arefinia Z. Detailed simulation study of a dual material gate carbon nanotube field-effect transistor. Physica E 2009; 41(4): 552-7.
[http://dx.doi.org/10.1016/j.physe.2008.10.005]
[42]
Kumar SS, Chaudhury S. Analysis of different parameters of channel material and temperature on threshold voltage of CNTFET. Mater Sci Semicond Process 2015; 31: 431-8.
[http://dx.doi.org/10.1016/j.mssp.2014.12.013]
[43]
Liow TY. Carrier transport characteristics of sub-30 nm strained n-channel finFETs featuring silicon-carbon source/drain regions and methods for further performance enhancement. 2006 International Electron Devices Meeting. 11-13 December 2006; San Francisco, CA, USA. 2006; pp. 1-4.
[http://dx.doi.org/10.1109/IEDM.2006.346815]
[44]
Frank DJ, Laux S, Fischetti M. Monte Carlo simulation of a 30 nm dual-gate MOSFET: How short can Si go? 1992 International Technical Digest on Electron Devices Meeting. 13-16 December 1992; San Francisco, CA, USA. 1992.
[http://dx.doi.org/10.1109/IEDM.1992.307422]
[45]
Irshad AM, Saahira AN. Quantum dots and their applications in television display technologies. WJARR 2022; 16(03): 997-1000.
[http://dx.doi.org/10.30574/wjarr.2022.16.3.1455]
[46]
Ahamed MI, Kumar KS. Modelling of electronic and optical properties of Cu 2 SnS 3 quantum dots for optoelectronics applications. Mater Sci Pol 2019; 37(1): 108-15.
[http://dx.doi.org/10.2478/msp-2018-0103]
[47]
Pesetski AA, Zhang H, Adam JD, et al. Carbon nanotube field effect transistor Patent EP2038933A2, 2009.
[48]
Bertin C, Meinhold M, Konsek S, Rueckes T, Guo F. Hybrid carbon nanotube FET(CNFET)-FET static RAM (SRAM) and method of making same Patent US20060237857A1, 2009.