Endocrine, Metabolic & Immune Disorders - Drug Targets

Author(s): Sonia Singh*, Shiwangi Sharma and Himanshu Sharma

DOI: 10.2174/1871530323666230622122901

Naturally Occurring Herbs and their Bioactive Metabolites: Potential Targets and Signaling Pathways of Antiviral Agents

Page: [1505 - 1537] Pages: 33

  • * (Excluding Mailing and Handling)

Abstract

Viruses significantly impact global health because they are the leading cause of death everywhere they are found. Despite the rapid development of human healthcare, more effective viricidal or antiviral therapies must be developed. The need to find safe, novel, and effective alternatives against viral diseases is heightened by the rapid emergence of resistance to, and the high cost of, synthetic antiviral drug(s). The development of novel multi-target antiviral compounds that affect multiple steps of the viral life cycle and host proteins has benefited tremendously from looking to nature for guidance and inspiration. Hundreds of natural molecules are preferred over synthetic drugs because of concerns regarding efficacy and safety and a high resistance rate to conventional therapies. In addition, naturally occurring antiviral agents have demonstrated reasonable antiviral value in both animal and human studies. Therefore, finding new antiviral drugs is crucial, and natural products provide an excellent opportunity. This brief review examines the evidence of antiviral effects exhibited by various plants and herbs.

Graphical Abstract

[1]
Martinez, J.P.; Sasse, F.; Brönstrup, M.; Diez, J.; Meyerhans, A. Antiviral drug discovery: Broad-spectrum drugs from nature. Nat. Prod. Rep., 2020, 32(1), 29-48.
[2]
Ben-Shabat, S.; Yarmolinsky, L.; Porat, D.; Dahan, A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv. Transl. Res., 2020, 10(2), 354-367.
[http://dx.doi.org/10.1007/s13346-019-00691-6] [PMID: 31788762]
[3]
Martin, K.W.; Ernst, E. Antiviral agents from plants and herbs: A systematic review. Antivir. Ther., 2003, 8(2), 77-90.
[http://dx.doi.org/10.1177/135965350300800201] [PMID: 12741619]
[4]
Abad, M.J.; Guerra, J.A.; Bermejo, P.; Irurzun, A.; Carrasco, L. Search for antiviral activity in higher plant extracts. Phytother. Res., 2000, 14(8), 604-607.
[http://dx.doi.org/10.1002/1099-1573(200012)14:8<604:AID-PTR678>3.0.CO;2-L] [PMID: 11113996]
[5]
Omrani, M.; Keshavarz, M.; Nejad Ebrahimi, S.; Mehrabi, M.; McGaw, L.J.; Ali Abdalla, M.; Mehrbod, P. Potential natural products against respiratory viruses: A perspective to develop anti-COVID-19 medicines. Front. Pharmacol., 2021, 11, 586993.
[http://dx.doi.org/10.3389/fphar.2020.586993] [PMID: 33679384]
[6]
Sohail, M.N.; Rasul, F.; Karim, A.; Kanwal, U.; Attitalla, I.H. Plant as a source of natural antiviral agents. Asian J. Anim. Vet. Adv., 2011, 6(12), 1125-1152.
[http://dx.doi.org/10.3923/ajava.2011.1125.1152]
[7]
Bachar, S.C.; Mazumder, K.; Bachar, R.; Aktar, A.; Al Mahtab, M. A review of medicinal plants with antiviral activity available in Bangladesh and mechanistic insight into their bioactive metabolites on SARS-CoV-2, HIV and HBV. Front. Pharmacol., 2021, 12, 732891.
[http://dx.doi.org/10.3389/fphar.2021.732891] [PMID: 34819855]
[8]
Lin, L.T.; Hsu, W.C.; Lin, C.C. Antiviral natural products and herbal medicines. J. Tradit. Complement. Med., 2014, 4(1), 24-35.
[http://dx.doi.org/10.4103/2225-4110.124335] [PMID: 24872930]
[9]
Mohammadi Pour, P.; Fakhri, S.; Asgary, S.; Farzaei, M.H.; Echeverría, J. The signaling pathways, and therapeutic targets of antiviral agents: Focusing on the antiviral approaches and clinical perspectives of anthocyanins in the management of viral diseases. Front. Pharmacol., 2019, 10, 1207.
[http://dx.doi.org/10.3389/fphar.2019.01207] [PMID: 31787892]
[10]
Jassim, S.A.A.; Naji, M.A. Novel antiviral agents: A medicinal plant perspective. J. Appl. Microbiol., 2003, 95(3), 412-427.
[http://dx.doi.org/10.1046/j.1365-2672.2003.02026.x] [PMID: 12911688]
[11]
Perera, W.P.R.T.; Liyanage, J.A.; Dissanayake, K.G.C.; Gunathilaka, H.; Weerakoon, W.M.T.D.N.; Wanigasekara, D.N.; Fernando, W.S.K.; Rajapaksha, R.M.H.; Liyanage, R.P.; Perera, B.T. Antiviral potential of selected medicinal herbs and their isolated natural products. BioMed Res. Int., 2021, 2021, 1-18.
[http://dx.doi.org/10.1155/2021/7872406] [PMID: 34926691]
[12]
Guan, Y.; Chen, H. Resistance to anti-influenza agents. Lancet, 2005, 366(9492), 1139-1140.
[http://dx.doi.org/10.1016/S0140-6736(05)67340-0] [PMID: 16198748]
[13]
De Clercq, E. Current treatment of hepatitis B virus infections. Rev. Med. Virol., 2015, 25(6), 354-365.
[http://dx.doi.org/10.1002/rmv.1849] [PMID: 26205627]
[14]
Elion, G.B. Acyclovir: Discovery, mechanism of action, and selectivity. J. Med. Virol., 1993, 41(S1), 2-6.
[http://dx.doi.org/10.1002/jmv.1890410503] [PMID: 8245887]
[15]
De Clercq, E. The history of antiretrovirals: Key discoveries over the past 25 years. Rev. Med. Virol., 2009, 19(5), 287-299.
[http://dx.doi.org/10.1002/rmv.624] [PMID: 19714702]
[16]
Montaner, J.S.G.; Wood, E.; Kerr, T.; Lima, V.; Barrios, R.; Shannon, K.; Harrigan, R.; Hogg, R. Expanded highly active antiretroviral therapy coverage among HIV-positive drug users to improve individual and public health outcomes. J. Acquir. Immune Defic. Syndr., 2010, 55(S1), S5-S9.
[http://dx.doi.org/10.1097/QAI.0b013e3181f9c1f0] [PMID: 21045601]
[17]
de Béthune, M.P. Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: A review of the last 20 years (1989–2009). Antiviral Res., 2010, 85(1), 75-90.
[http://dx.doi.org/10.1016/j.antiviral.2009.09.008] [PMID: 19781578]
[18]
Schiller, D.S.; Youssef-Bessler, M. Etravirine: A second-generation nonnucleoside reverse transcriptase inhibitor (NNRTI) active against NNRTI-resistant strains of HIV. Clin. Ther., 2009, 31(4), 692-704.
[http://dx.doi.org/10.1016/j.clinthera.2009.04.020] [PMID: 19446143]
[19]
Adams, J.; Patel, N.; Mankaryous, N.; Tadros, M.; Miller, C.D. Nonnucleoside reverse transcriptase inhibitor resistance and the role of the second-generation agents. Ann. Pharmacother., 2010, 44(1), 157-165.
[http://dx.doi.org/10.1345/aph.1M359] [PMID: 19996323]
[20]
Telenti, A.; Paolo Rizzardi, G. Limits to potent antiretroviral therapy. Rev. Med. Virol., 2000, 10(6), 385-393.
[http://dx.doi.org/10.1002/1099-1654(200011/12)10:6<385:AID-RMV296>3.0.CO;2-1] [PMID: 11114077]
[21]
Hazuda, D.J.; Felock, P.; Witmer, M.; Wolfe, A.; Stillmock, K.; Grobler, J.A.; Espeseth, A.; Gabryelski, L.; Schleif, W.; Blau, C.; Miller, M.D. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science, 2000, 287(5453), 646-650.
[http://dx.doi.org/10.1126/science.287.5453.646] [PMID: 10649997]
[22]
Pommier, Y.; Johnson, A.A.; Marchand, C. Integrase inhibitors to treat HIV/Aids. Nat. Rev. Drug Discov., 2005, 4(3), 236-248.
[http://dx.doi.org/10.1038/nrd1660] [PMID: 15729361]
[23]
Grinsztejn, B.; Nguyen, B.Y.; Katlama, C.; Gatell, J.M.; Lazzarin, A.; Vittecoq, D.; Gonzalez, C.J.; Chen, J.; Harvey, C.M.; Isaacs, R.D. Safety and efficacy of the HIV-1 integrase inhibitor raltegravir (MK-0518) in treatment-experienced patients with multidrug-resistant virus: A phase II randomised controlled trial. Lancet, 2007, 369(9569), 1261-1269.
[http://dx.doi.org/10.1016/S0140-6736(07)60597-2] [PMID: 17434401]
[24]
Eron, J.J., Jr HIV-1 protease inhibitors. Clin. Infect. Dis., 2000, 30(S2), S160-S170.
[http://dx.doi.org/10.1086/313853] [PMID: 10860901]
[25]
Vassilaki, N.; Friebe, P.; Meuleman, P.; Kallis, S.; Kaul, A.; Paranhos-Baccalà, G.; Leroux-Roels, G.; Mavromara, P.; Bartenschlager, R. Role of the hepatitis C virus core+1 open reading frame and core cis-acting RNA elements in viral RNA translation and replication. J. Virol., 2008, 82(23), 11503-11515.
[http://dx.doi.org/10.1128/JVI.01640-08] [PMID: 18799568]
[26]
Simon, V.; Ho, D.D.; Abdool, K.Q. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet, 2006, 368(9534), 489-504.
[http://dx.doi.org/10.1016/S0140-6736(06)69157-5] [PMID: 16890836]
[27]
Kitazato, K.; Wang, Y.; Kobayashi, N. Viral infectious disease and natural products with antiviral activity. Drug Discov. Ther., 2007, 1(1), 14-22.
[PMID: 22504360]
[28]
Gubareva, L.V.; Kaiser, L.; Hayden, F.G. Influenza virus neuraminidase inhibitors. Lancet, 2000, 355(9206), 827-835.
[http://dx.doi.org/10.1016/S0140-6736(99)11433-8] [PMID: 10711940]
[29]
De Clercq, E. Antiviral agents active against influenza A viruses. Nat. Rev. Drug Discov., 2006, 5(12), 1015-1025.
[http://dx.doi.org/10.1038/nrd2175] [PMID: 17139286]
[30]
Tozzi, V. Pharmacogenetics of antiretrovirals. Antiviral Res., 2010, 85(1), 190-200.
[http://dx.doi.org/10.1016/j.antiviral.2009.09.001] [PMID: 19744523]
[31]
Chaponda, M.; Pirmohamed, M. Hypersensitivity reactions to HIV therapy. Br. J. Clin. Pharmacol., 2011, 71(5), 659-671.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03784.x] [PMID: 21480946]
[32]
Huthoff, H.; Towers, G.J. Restriction of retroviral replication by APOBEC3G/F and TRIM5α. Trends Microbiol., 2008, 16(12), 612-619.
[http://dx.doi.org/10.1016/j.tim.2008.08.013] [PMID: 18976920]
[33]
Opar, A. New HIV drug classes on the horizon. Nat. Rev. Drug Discov., 2007, 6(4), 258-259.
[http://dx.doi.org/10.1038/nrd2294] [PMID: 17457997]
[34]
Antonelli, G.; Turriziani, O. Antiviral therapy: Old and current issues. Int. J. Antimicrob. Agents, 2012, 40(2), 95-102.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.04.005] [PMID: 22727532]
[35]
Kindberg, E. Mickienė A.; Ax, C.; Åkerlind, B.; Vene, S.; Lindquist, L.; Lundkvist, Å.; Svensson, L. A deletion in the chemokine receptor 5 (CCR5) gene is associated with tickborne encephalitis. J. Infect. Dis., 2008, 197(2), 266-269.
[http://dx.doi.org/10.1086/524709] [PMID: 18179389]
[36]
Lim, J.K.; Murphy, P.M. Chemokine control of West Nile virus infection. Exp. Cell Res., 2011, 317(5), 569-574.
[http://dx.doi.org/10.1016/j.yexcr.2011.01.009] [PMID: 21376172]
[37]
Holt, N.; Wang, J.; Kim, K.; Friedman, G.; Wang, X.; Taupin, V.; Crooks, G.M.; Kohn, D.B.; Gregory, P.D.; Holmes, M.C.; Cannon, P.M. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat. Biotechnol., 2010, 28(8), 839-847.
[http://dx.doi.org/10.1038/nbt.1663] [PMID: 20601939]
[38]
Rahman, S.H.; Maeder, M.L.; Joung, J.K.; Cathomen, T. Zinc-finger nucleases for somatic gene therapy: The next frontier. Hum. Gene Ther., 2011, 22(8), 925-933.
[http://dx.doi.org/10.1089/hum.2011.087] [PMID: 21631241]
[39]
Yuan, J.; Wang, J.; Crain, K.; Fearns, C.; Kim, K.A.; Hua, K.L.; Gregory, P.D.; Holmes, M.C.; Torbett, B.E. Zinc-finger nuclease editing of human cxcr4 promotes HIV-1 CD4(+) T cell resistance and enrichment. Mol. Ther., 2012, 20(4), 849-859.
[http://dx.doi.org/10.1038/mt.2011.310] [PMID: 22273578]
[40]
Reeves, P.M.; Bommarius, B.; Lebeis, S.; McNulty, S.; Christensen, J.; Swimm, A.; Chahroudi, A.; Chavan, R.; Feinberg, M.B.; Veach, D.; Bornmann, W.; Sherman, M.; Kalman, D. Disabling poxvirus pathogenesis by inhibition of Abl-family tyrosine kinases. Nat. Med., 2005, 11(7), 731-739.
[http://dx.doi.org/10.1038/nm1265] [PMID: 15980865]
[41]
Yang, H.; Kim, S.K.; Kim, M.; Reche, P.A.; Morehead, T.J.; Damon, I.K.; Welsh, R.M.; Reinherz, E.L. Antiviral chemotherapy facilitates control of poxvirus infections through inhibition of cellular signal transduction. J. Clin. Invest., 2005, 115(2), 379-387.
[http://dx.doi.org/10.1172/JCI200523220] [PMID: 15690085]
[42]
Miller, R.L.; Meng, T.C.; Tomai, M.A. The antiviral activity of Toll-like receptor 7 and 7/8 agonists. Drug News Perspect., 2008, 21(2), 69-87.
[http://dx.doi.org/10.1358/dnp.2008.21.2.1188193] [PMID: 18389099]
[43]
Koumbi, L. Current and future antiviral drug therapies of hepatitis B chronic infection. World J. Hepatol., 2015, 7(8), 1030-1040.
[http://dx.doi.org/10.4254/wjh.v7.i8.1030] [PMID: 26052392]
[44]
Hakim, M.S.; Spaan, M.; Janssen, H.L.A.; Boonstra, A. Inhibitory receptor molecules in chronic hepatitis B and C infections: Novel targets for immunotherapy? Rev. Med. Virol., 2014, 24(2), 125-138.
[http://dx.doi.org/10.1002/rmv.1779] [PMID: 24757728]
[45]
Chen, W.; Dimitrov, D.S. Monoclonal antibody-based candidate therapeutics against HIV type 1. AIDS Res. Hum. Retroviruses, 2012, 28(5), 425-434.
[http://dx.doi.org/10.1089/aid.2011.0226] [PMID: 21827278]
[46]
Zeller, S.J.; Kumar, P. RNA-based gene therapy for the treatment and prevention of HIV: From bench to bedside. YJBM, 2011, 84(3), 301-309.
[PMID: 21966049]
[47]
Kropeit, D.; McCormick, D.; Erb-Zohar, K.; Moiseev, V.S.; Kobalava, Z.D.; Stobernack, H.P.; Zimmermann, H.; Rübsamen-Schaeff, H. Pharmacokinetics and safety of the anti‐human cytomegalovirus drug letermovir in subjects with hepatic impairment. Br. J. Clin. Pharmacol., 2017, 83(12), 2678-2686.
[http://dx.doi.org/10.1111/bcp.13376] [PMID: 28722153]
[48]
Melendez, D.P.; Razonable, R.R. Letermovir and inhibitors of the terminase complex: A promising new class of investigational antiviral drugs against human cytomegalovirus. Infect. Drug Resist., 2015, 8, 269-277.
[PMID: 26345608]
[49]
McVoy, M.A.; Nixon, D.E. Impact of 2-bromo-5,6-dichloro-1-β-D-ribofuranosyl benzimidazole riboside and inhibitors of DNA, RNA, and protein synthesis on human cytomegalovirus genome maturation. J. Virol., 2005, 79(17), 11115-11127.
[http://dx.doi.org/10.1128/JVI.79.17.11115-11127.2005] [PMID: 16103162]
[50]
Champier, G.; Couvreux, A.; Hantz, S.; Rametti, A.; Mazeron, M.C.; Bouaziz, S.; Denis, F.; Alain, S. Putative functional domains of human cytomegalovirus pUL56 involved in dimerization and benzimidazole D-ribonucleoside activity. Antivir. Ther., 2008, 13(5), 643-654.
[http://dx.doi.org/10.1177/135965350801300504] [PMID: 18771048]
[51]
Valiente-Echeverría, F.; Hermoso, M.A.; Soto-Rifo, R. RNA helicase DDX3: At the crossroad of viral replication and antiviral immunity. Rev. Med. Virol., 2015, 25(5), 286-299.
[http://dx.doi.org/10.1002/rmv.1845] [PMID: 26174373]
[52]
Kleymann, G.; Fischer, R.; Betz, U.A.K.; Hendrix, M.; Bender, W.; Schneider, U.; Handke, G.; Eckenberg, P.; Hewlett, G.; Pevzner, V.; Baumeister, J.; Weber, O.; Henninger, K.; Keldenich, J.; Jensen, A.; Kolb, J.; Bach, U.; Popp, A.; Mäben, J.; Frappa, I.; Haebich, D.; Lockhoff, O.; Rübsamen-Waigmann, H. New helicase-primase inhibitors as drug candidates for the treatment of herpes simplex disease. Nat. Med., 2002, 8(4), 392-398.
[http://dx.doi.org/10.1038/nm0402-392] [PMID: 11927946]
[53]
Chono, K.; Katsumata, K.; Kontani, T.; Kobayashi, M.; Sudo, K.; Yokota, T.; Konno, K.; Shimizu, Y.; Suzuki, H. ASP2151, a novel helicase-primase inhibitor, possesses antiviral activity against varicella-zoster virus and herpes simplex virus types 1 and 2. J. Antimicrob. Chemother., 2010, 65(8), 1733-1741.
[http://dx.doi.org/10.1093/jac/dkq198] [PMID: 20534624]
[54]
Yang, N.; Sun, C.; Zhang, L.; Liu, J.; Song, F. Identification and analysis of novel inhibitors against NS3 helicase and NS5B RNA-dependent RNA polymerase from hepatitis C virus 1b (Con1). Front. Microbiol., 2017, 8, 2153.
[http://dx.doi.org/10.3389/fmicb.2017.02153] [PMID: 29209282]
[55]
Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov., 2005, 4(3), 206-220.
[http://dx.doi.org/10.1038/nrd1657] [PMID: 15729362]
[56]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 2007, 70(3), 461-477.
[http://dx.doi.org/10.1021/np068054v] [PMID: 17309302]
[57]
Hao, B.J.; Wu, Y.H.; Wang, J.G.; Hu, S.Q.; Keil, D.J.; Hu, H.J.; Lou, J.D.; Zhao, Y. Hepatoprotective and antiviral properties of isochlorogenic acid A from Laggera alata against hepatitis B virus infection. J. Ethnopharmacol., 2012, 144(1), 190-194.
[http://dx.doi.org/10.1016/j.jep.2012.09.003] [PMID: 22982394]
[58]
Jiang, Z.Y.; Liu, W.F.; Zhang, X.M.; Luo, J.; Ma, Y.B.; Chen, J.J. Anti-HBV active constituents from Piper longum. Bioorg. Med. Chem. Lett., 2013, 23(7), 2123-2127.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.118] [PMID: 23434420]
[59]
Zeng, F.L.; Xiang, Y.F.; Liang, Z.R.; Wang, X.; Huang, D.; Zhu, S.N.; Li, M.M.; Yang, D.P.; Wang, D.M.; Wang, Y.F. Anti-hepatitis B virus effects of dehydrocheilanthifoline from Corydalis saxicola. Am. J. Chin. Med., 2013, 41(1), 119-130.
[http://dx.doi.org/10.1142/S0192415X13500092] [PMID: 23336511]
[60]
Mouler Rechtman, M.; Har-Noy, O.; Bar-Yishay, I.; Fishman, S.; Adamovich, Y.; Shaul, Y.; Halpern, Z.; Shlomai, A. Curcumin inhibits hepatitis B virus via down-regulation of the metabolic coactivator PGC-1α. FEBS Lett., 2010, 584(11), 2485-2490.
[http://dx.doi.org/10.1016/j.febslet.2010.04.067] [PMID: 20434445]
[61]
Hussein, G.; Miyashiro, H.; Nakamura, N.; Hattori, M.; Kakiuchi, N.; Shimotohno, K. Inhibitory effects of Sudanese medicinal plant extracts on hepatitis C virus (HCV) protease. Phytother. Res., 2000, 14(7), 510-516.
[http://dx.doi.org/10.1002/1099-1573(200011)14:7<510:AID-PTR646>3.0.CO;2-B] [PMID: 11054840]
[62]
Calland, N.; Dubuisson, J.; Rouillé, Y.; Séron, K. Hepatitis C virus and natural compounds: A new antiviral approach? Viruses, 2012, 4(10), 2197-2217.
[http://dx.doi.org/10.3390/v4102197] [PMID: 23202460]
[63]
Morishima, C; Shuhart, MC; Wang, CC Silymarin inhibits in vitro T-cell proliferation and cytokine production in hepatitis C virus infection. GI, 2010, 138(2), 671-681.
[64]
Chang, L.Y.; Tsao, K.C.; Hsia, S.H.; Shih, S.R.; Huang, C.G.; Chan, W.K.; Hsu, K.H.; Fang, T.Y.; Huang, Y.C.; Lin, T.Y. Transmission and clinical features of enterovirus 71 infections in household contacts in Taiwan. JAMA, 2004, 291(2), 222-227.
[http://dx.doi.org/10.1001/jama.291.2.222] [PMID: 14722149]
[65]
Lin, L.T.; Chen, T.Y.; Lin, S.C.; Chung, C.Y.; Lin, T.C.; Wang, G.H.; Anderson, R.; Lin, C.C.; Richardson, C.D. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry. BMC Microbiol., 2013, 13(1), 187.
[http://dx.doi.org/10.1186/1471-2180-13-187] [PMID: 23924316]
[66]
Zang, N.; Xie, X.; Deng, Y.; Wu, S.; Wang, L.; Peng, C.; Li, S.; Ni, K.; Luo, Y.; Liu, E. Resveratrol-mediated gamma interferon reduction prevents airway inflammation and airway hyperresponsiveness in respiratory syncytial virus-infected immunocompromised mice. J. Virol., 2011, 85(24), 13061-13068.
[http://dx.doi.org/10.1128/JVI.05869-11] [PMID: 21937650]
[67]
Tapparel, C.; Siegrist, F.; Petty, T.J.; Kaiser, L. Picornavirus and enterovirus diversity with associated human diseases. Infect. Genet. Evol., 2013, 14, 282-293.
[http://dx.doi.org/10.1016/j.meegid.2012.10.016] [PMID: 23201849]
[68]
Chiang, L.C.; Ng, L.T.; Cheng, P.W.; Chiang, W.; Lin, C.C. Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin. Exp. Pharmacol. Physiol., 2005, 32(10), 811-816.
[http://dx.doi.org/10.1111/j.1440-1681.2005.04270.x] [PMID: 16173941]
[69]
Choi, H.J.; Lim, C.H.; Song, J.H.; Baek, S.H.; Kwon, D.H. Antiviral activity of raoulic acid from Raoulia australis against Picornaviruses. Phytomedicine, 2009, 16(1), 35-39.
[http://dx.doi.org/10.1016/j.phymed.2008.10.012] [PMID: 19097770]
[70]
Cheng, P.W.; Ng, L.T.; Lin, C.C. Xiao Chai Hu Tang inhibits CVB1 virus infection of CCFS-1 cells through the induction of Type I interferon expression. Int. Immunopharmacol., 2006, 6(6), 1003-1012.
[http://dx.doi.org/10.1016/j.intimp.2006.01.011] [PMID: 16644487]
[71]
Cheng, P.W.; Chiang, L.C.; Yen, M.H.; Lin, C.C. Bupleurum kaoi inhibits Coxsackie B virus type 1 infection of CCFS-1 cells by induction of type I interferons expression. Food Chem. Toxicol., 2007, 45(1), 24-31.
[http://dx.doi.org/10.1016/j.fct.2006.06.007] [PMID: 17052829]
[72]
Black, W.C., IV; Bennett, K.E.; Gorrochótegui-Escalante, N.; Barillas-Mury, C.V.; Fernández-Salas, I.; de Lourdes Muñoz, M.; Farfán-Alé, J.A.; Olson, K.E.; Beaty, B.J. Flavivirus susceptibility in Aedes aegypti. Arch. Med. Res., 2002, 33(4), 379-388.
[http://dx.doi.org/10.1016/S0188-4409(02)00373-9] [PMID: 12234528]
[73]
Tuiskunen Bäck, A.; Lundkvist, Å. Dengue viruses – an overview. Infect. Ecol. Epidemiol., 2013, 3(1), 19839.
[http://dx.doi.org/10.3402/iee.v3i0.19839]
[74]
Sam, S.S.; Omar, S.F.S.; Teoh, B.T.; Abd-Jamil, J.; AbuBakar, S. Review of Dengue hemorrhagic fever fatal cases seen among adults: a retrospective study. PLoS Negl. Trop. Dis., 2013, 7(5), e2194.
[http://dx.doi.org/10.1371/journal.pntd.0002194] [PMID: 23658849]
[75]
Zandi, K.; Teoh, B.T.; Sam, S.S.; Wong, P.F.; Mustafa, M.R.; AbuBakar, S. Novel antiviral activity of baicalein against dengue virus. BMC Complement. Altern. Med., 2012, 12(1), 214.
[http://dx.doi.org/10.1186/1472-6882-12-214] [PMID: 23140177]
[76]
Zandi, K.; Teoh, B.T.; Sam, S.S.; Wong, P.F.; Mustafa, M.R.; AbuBakar, S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol. J., 2011, 8(1), 560.
[http://dx.doi.org/10.1186/1743-422X-8-560] [PMID: 22201648]
[77]
Low, J.S.Y.; Wu, K.X.; Chen, K.C.; Ng, M.M.L.; Chu, J.J.H. Narasin, a novel antiviral compound that blocks dengue virus protein expression. Antivir. Ther., 2011, 16(8), 1203-1218.
[http://dx.doi.org/10.3851/IMP1884] [PMID: 22155902]
[78]
Koishi, A.C.; Zanello, P.R.; Bianco, É.M.; Bordignon, J.; Nunes Duarte dos Santos, C. Screening of Dengue virus antiviral activity of marine seaweeds by an in situ enzyme-linked immunosorbent assay. PLoS One, 2012, 7(12), e51089.
[http://dx.doi.org/10.1371/journal.pone.0051089] [PMID: 23227238]
[79]
Wang, S.M.; Ho, T.S.; Lin, H.C.; Lei, H.Y.; Wang, J.R.; Liu, C.C. Reemerging of enterovirus 71 in Taiwan: The age impact on disease severity. Eur. J. Clin. Microbiol. Infect. Dis., 2012, 31(6), 1219-1224.
[http://dx.doi.org/10.1007/s10096-011-1432-6] [PMID: 21983920]
[80]
Huang, S.W.; Kiang, D.; Smith, D.J.; Wang, J.R. Evolution of re-emergent virus and its impact on enterovirus 71 epidemics. Exp. Biol. Med., 2011, 236(8), 899-908.
[http://dx.doi.org/10.1258/ebm.2010.010233] [PMID: 21715436]
[81]
Choi, H.J.; Song, J.H.; Park, K.S.; Baek, S.H. In vitro anti-enterovirus 71 activity of gallic acid from Woodfordia fruticosa flowers. Lett. Appl. Microbiol., 2010, 50(4), 438-440.
[http://dx.doi.org/10.1111/j.1472-765X.2010.02805.x] [PMID: 20149083]
[82]
Ho, H.Y.; Cheng, M.L.; Weng, S.F.; Leu, Y.L.; Chiu, D.T.Y. Antiviral effect of epigallocatechin gallate on enterovirus 71. J. Agric. Food Chem., 2009, 57(14), 6140-6147.
[http://dx.doi.org/10.1021/jf901128u] [PMID: 19537794]
[83]
Liang, T.J.; Hepatitis, B. The virus and disease. Hepatology, 2009, 49(S5)(Suppl.), S13-S21.
[http://dx.doi.org/10.1002/hep.22881] [PMID: 19399811]
[84]
Ni, Y.H.; Chen, D.S. Hepatitis B vaccination in children: The Taiwan experience. Pathol. Biol., 2010, 58(4), 296-300.
[http://dx.doi.org/10.1016/j.patbio.2009.11.002] [PMID: 20116181]
[85]
Kwon, H.; Lok, A.S. Hepatitis B therapy. Nat. Rev. Gastroenterol. Hepatol., 2011, 8(5), 275-284.
[http://dx.doi.org/10.1038/nrgastro.2011.33] [PMID: 21423260]
[86]
Franco, E.; Bagnato, B.; Marino, M.G.; Meleleo, C.; Serino, L.; Zaratti, L.; Hepatitis, B.; Hepatitis, B. Epidemiology and prevention in developing countries. World J. Hepatol., 2012, 4(3), 74-80.
[http://dx.doi.org/10.4254/wjh.v4.i3.74] [PMID: 22489259]
[87]
Zhang, L.; Wang, G.; Hou, W.; Li, P.; Dulin, A.; Bonkovsky, H.L. Contemporary clinical research of traditional Chinese medicines for chronic hepatitis B in China: An analytical review. Hepatology, 2010, 51(2), 690-698.
[http://dx.doi.org/10.1002/hep.23384] [PMID: 20101751]
[88]
Zhan, P.; Jiang, X.; Liu, X. Naturally occurring and synthetic bioactive molecules as novel non-nucleoside HBV inhibitors. Mini Rev. Med. Chem., 2010, 10(2), 162-171.
[http://dx.doi.org/10.2174/138955710791185118] [PMID: 20408799]
[89]
Cui, X.; Wang, Y.; Kokudo, N.; Fang, D.; Tang, W. Traditional Chinese medicine and related active compounds against hepatitis B virus infection. Biosci. Trends, 2010, 4(2), 39-47.
[PMID: 20448340]
[90]
Qiu, L.P.; Chen, K.P. Anti-HBV agents derived from botanical origin. Fitoterapia, 2013, 84, 140-157.
[http://dx.doi.org/10.1016/j.fitote.2012.11.003] [PMID: 23164603]
[91]
Chang, J.S.; Wang, K.C.; Liu, H.W.; Chen, M.C.; Chiang, L.C.; Lin, C.C. Sho-saiko-to (Xiao-Chai-Hu-Tang) and crude saikosaponins inhibit hepatitis B virus in a stable HBV-producing cell line. Am. J. Chin. Med., 2007, 35(2), 341-351.
[http://dx.doi.org/10.1142/S0192415X07004862] [PMID: 17436373]
[92]
Chiang, L.C.; Ng, L.T.; Liu, L.T.; Shieh, D.E.; Lin, C.C. Cytotoxicity and anti-hepatitis B virus activities of saikosaponins from Bupleurum species. Planta Med., 2003, 69(8), 705-709.
[http://dx.doi.org/10.1055/s-2003-42797] [PMID: 14531019]
[93]
Chang, J.; Liu, H.; Wang, K.; Chen, M.; Chiang, L.; Hua, Y.; Lin, C. Ethanol extract of Polygonum cuspidatum inhibits hepatitis B virus in a stable HBV-producing cell line. Antiviral Res., 2005, 66(1), 29-34.
[http://dx.doi.org/10.1016/j.antiviral.2004.12.006] [PMID: 15781129]
[94]
El-Serag, H.B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology, 2012, 142(6), 1264-1273.e1.
[http://dx.doi.org/10.1053/j.gastro.2011.12.061] [PMID: 22537432]
[95]
Welsch, C.; Jesudian, A.; Zeuzem, S.; Jacobson, I. New direct-acting antiviral agents for the treatment of hepatitis C virus infection and perspectives. Gut, 2012, 61(S1), i36-i46.
[http://dx.doi.org/10.1136/gutjnl-2012-302144] [PMID: 22504918]
[96]
Polyak, S.J.; Morishima, C.; Shuhart, M.C.; Wang, C.C.; Liu, Y.; Lee, D.Y.W. Inhibition of T-cell inflammatory cytokines, hepatocyte NF-kappaB signaling, and HCV infection by standardized Silymarin. Gastroenterology, 2007, 132(5), 1925-1936.
[http://dx.doi.org/10.1053/j.gastro.2007.02.038] [PMID: 17484885]
[97]
Polyak, S.J.; Morishima, C.; Lohmann, V.; Pal, S.; Lee, D.Y.W.; Liu, Y.; Graf, T.N.; Oberlies, N.H. Identification of hepatoprotective flavonolignans from silymarin. Proc. Natl. Acad. Sci., 2010, 107(13), 5995-5999.
[http://dx.doi.org/10.1073/pnas.0914009107] [PMID: 20231449]
[98]
Neumann, U.P.; Biermer, M.; Eurich, D.; Neuhaus, P.; Berg, T. Successful prevention of hepatitis C virus (HCV) liver graft reinfection by silibinin mono-therapy. J. Hepatol., 2010, 52(6), 951-952.
[http://dx.doi.org/10.1016/j.jhep.2010.02.002] [PMID: 20413176]
[99]
Mariño, Z.; Crespo, G.; D’Amato, M.; Brambilla, N.; Giacovelli, G.; Rovati, L.; Costa, J.; Navasa, M.; Forns, X. Intravenous silibinin monotherapy shows significant antiviral activity in HCV-infected patients in the peri-transplantation period. J. Hepatol., 2013, 58(3), 415-420.
[http://dx.doi.org/10.1016/j.jhep.2012.09.034] [PMID: 23063567]
[100]
Kim, K.; Kim, K.H.; Kim, H.Y.; Cho, H.K.; Sakamoto, N.; Cheong, J. Curcumin inhibits hepatitis C virus replication via suppressing the Akt-SREBP-1 pathway. FEBS Lett., 2010, 584(4), 707-712.
[http://dx.doi.org/10.1016/j.febslet.2009.12.019] [PMID: 20026048]
[101]
Anggakusuma; Colpitts, C.C.; Schang, L.M.; Rachmawati, H.; Frentzen, A.; Pfaender, S.; Behrendt, P.; Brown, R.J.P.; Bankwitz, D.; Steinmann, J.; Ott, M.; Meuleman, P.; Rice, C.M.; Ploss, A.; Pietschmann, T.; Steinmann, E. Turmeric curcumin inhibits entry of all hepatitis C virus genotypes into human liver cells. Gut, 2014, 63(7), 1137-1149.
[http://dx.doi.org/10.1136/gutjnl-2012-304299] [PMID: 23903236]
[102]
Ciesek, S.; von Hahn, T.; Colpitts, C.C.; Schang, L.M.; Friesland, M.; Steinmann, J.; Manns, M.P.; Ott, M.; Wedemeyer, H.; Meuleman, P.; Pietschmann, T.; Steinmann, E. The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology, 2011, 54(6), 1947-1955.
[http://dx.doi.org/10.1002/hep.24610] [PMID: 21837753]
[103]
Calland, N. Albecka, A.; Belouzard, S.; Wychowski, C.; Duverlie, G.; Descamps, V.; Hober, D.; Dubuisson, J.; Rouillé, Y.; Séron, K. (−)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry. Hepatology, 2012, 55(3), 720-729.
[http://dx.doi.org/10.1002/hep.24803] [PMID: 22105803]
[104]
Meuleman, P.; Albecka, A.; Belouzard, S.; Vercauteren, K.; Verhoye, L.; Wychowski, C.; Leroux-Roels, G.; Palmer, K.E.; Dubuisson, J. Griffithsin has antiviral activity against hepatitis C virus. Antimicrob. Agents Chemother., 2011, 55(11), 5159-5167.
[http://dx.doi.org/10.1128/AAC.00633-11] [PMID: 21896910]
[105]
Takebe, Y.; Saucedo, C.J.; Lund, G.; Uenishi, R.; Hase, S.; Tsuchiura, T.; Kneteman, N.; Ramessar, K.; Tyrrell, D.L.J.; Shirakura, M.; Wakita, T.; McMahon, J.B.; O’Keefe, B.R. Antiviral lectins from red and blue-green algae show potent in vitro and in vivo activity against hepatitis C virus. PLoS One, 2013, 8(5), e64449.
[http://dx.doi.org/10.1371/journal.pone.0064449] [PMID: 23700478]
[106]
Haid, S.; Novodomská, A.; Gentzsch, J.; Grethe, C.; Geuenich, S.; Bankwitz, D.; Chhatwal, P.; Jannack, B.; Hennebelle, T.; Bailleul, F.; Keppler, O.T.; Poenisch, M.; Bartenschlager, R.; Hernandez, C.; Lemasson, M.; Rosenberg, A.R.; Wong-Staal, F.; Davioud-Charvet, E.; Pietschmann, T. A plant-derived flavonoid inhibits entry of all HCV genotypes into human hepatocytes. Gastroenterology, 2012, 143(1), 213-222.e5.
[http://dx.doi.org/10.1053/j.gastro.2012.03.036] [PMID: 22465429]
[107]
Tamura, S.; Yang, G.M.; Yasueda, N.; Matsuura, Y.; Komoda, Y.; Murakami, N.; Tellimagrandin, I. HCV invasion inhibitor from Rosae rugosae Flos. Bioorg. Med. Chem. Lett., 2010, 20(5), 1598-1600.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.084] [PMID: 20144544]
[108]
Fatahzadeh, M.; Schwartz, R.A. Human herpes simplex labialis. Clinical and Experimental Dermatology. Clin. Dermatol., 2007, 32(6), 625-630.
[109]
Arduino, P.G.; Porter, S.R. Herpes Simplex Virus Type 1 infection: Overview on relevant clinico-pathological features. J. Oral Pathol. Med., 2008, 37(2), 107-121.
[http://dx.doi.org/10.1111/j.1600-0714.2007.00586.x] [PMID: 18197856]
[110]
Chentoufi, A.A.; BenMohamed, L. Mucosal herpes immunity and immunopathology to ocular and genital herpes simplex virus infections. Clin. Immunol., 2012, 2012, 149135.
[http://dx.doi.org/10.1155/2012/149135]
[111]
Morfin, F.; Thouvenot, D. Herpes simplex virus resistance to antiviral drugs. J. Clin. Virol., 2003, 26(1), 29-37.
[http://dx.doi.org/10.1016/S1386-6532(02)00263-9] [PMID: 12589832]
[112]
Cheng, H.Y.; Huang, H.H.; Yang, C.M.; Lin, L.T.; Lin, C.C. The in vitro anti-herpes simplex virus type-1 and type-2 activity of Long Dan Xie Gan Tan, a prescription of traditional Chinese medicine. Chemotherapy, 2008, 54(2), 77-83.
[http://dx.doi.org/10.1159/000119705] [PMID: 18332627]
[113]
Cheng, H.Y.; Lin, L.T.; Huang, H.H.; Yang, C.M.; Lin, C.C. Yin Chen Hao Tang, a Chinese prescription, inhibits both herpes simplex virus type-1 and type-2 infections in vitro. Antiviral Res., 2008, 77(1), 14-19.
[http://dx.doi.org/10.1016/j.antiviral.2007.08.012] [PMID: 17931713]
[114]
Yang, C.M.; Cheng, H.Y.; Lin, T.C.; Chiang, L.C.; Lin, C.C. Hippomanin a from acetone extract ofPhyllanthus urinaria inhibited HSV-2 but not HSV-1 infectionin vitro. Phytother. Res., 2007, 21(12), 1182-1186.
[http://dx.doi.org/10.1002/ptr.2232] [PMID: 17661333]
[115]
Yang, C.M.; Cheng, H.Y.; Lin, T.C.; Chiang, L.C.; Lin, C.C. The in vitro activity of geraniin and 1,3,4,6-tetra-O-galloyl-β-d-glucose isolated from Phyllanthus urinaria against herpes simplex virus type 1 and type 2 infection. J. Ethnopharmacol., 2007, 110(3), 555-558.
[http://dx.doi.org/10.1016/j.jep.2006.09.039] [PMID: 17113739]
[116]
Cheng, H.Y.; Yang, C.M.; Lin, T.C. Excoecarianin, isolated from Phyllanthus urinaria Linnea, inhibits herpes simplex virus type 2 infection through inactivation of viral particles. Evid. Based Complement. Alternat. Med., 2011, 2011, 259103.
[117]
Lin, L.T.; Chen, T.Y.; Chung, C.Y.; Noyce, R.S.; Grindley, T.B.; McCormick, C.; Lin, T.C.; Wang, G.H.; Lin, C.C.; Richardson, C.D. Hydrolyzable tannins (chebulagic acid and punicalagin) target viral glycoprotein-glycosaminoglycan interactions to inhibit herpes simplex virus 1 entry and cell-to-cell spread. J. Virol., 2011, 85(9), 4386-4398.
[http://dx.doi.org/10.1128/JVI.01492-10] [PMID: 21307190]
[118]
Khan, M.T.H.; Ather, A.; Thompson, K.D.; Gambari, R. Extracts and molecules from medicinal plants against herpes simplex viruses. Antiviral Res., 2005, 67(2), 107-119.
[http://dx.doi.org/10.1016/j.antiviral.2005.05.002] [PMID: 16040137]
[119]
Superti, F.; Ammendolia, M.; Marchetti, M. New advances in anti-HSV chemotherapy. Curr. Med. Chem., 2008, 15(9), 900-911.
[http://dx.doi.org/10.2174/092986708783955419] [PMID: 18473797]
[120]
Petrera, E.; Coto, C.E. Therapeutic effect of meliacine, an antiviral derived from Melia azedarach L., in mice genital herpetic infection. Phytother. Res., 2009, 23(12), 1771-1777.
[http://dx.doi.org/10.1002/ptr.2850] [PMID: 19441066]
[121]
Chen, S.D.; Gao, H.; Zhu, Q.C.; Wang, Y.Q.; Li, T.; Mu, Z.Q.; Wu, H.L.; Peng, T.; Yao, X.S. Houttuynoids A-E, anti-herpes simplex virus active flavonoids with novel skeletons from Houttuynia cordata. Org. Lett., 2012, 14(7), 1772-1775.
[http://dx.doi.org/10.1021/ol300017m] [PMID: 22414220]
[122]
Gescher, K.; Kühn, J.; Hafezi, W.; Louis, A.; Derksen, A.; Deters, A.; Lorentzen, E.; Hensel, A. Inhibition of viral adsorption and penetration by an aqueous extract from Rhododendron ferrugineum L. as antiviral principle against herpes simplex virus type-1. Fitoterapia, 2011, 82(3), 408-413.
[http://dx.doi.org/10.1016/j.fitote.2010.11.022] [PMID: 21129454]
[123]
Danaher, R.J.; Wang, C.; Dai, J.; Mumper, R.J.; Miller, C.S. Antiviral effects of blackberry extract against herpes simplex virus type 1. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2011, 112(3), e31-e35.
[http://dx.doi.org/10.1016/j.tripleo.2011.04.007] [PMID: 21827957]
[124]
Gescher, K.; Kühn, J.; Lorentzen, E.; Hafezi, W.; Derksen, A.; Deters, A.; Hensel, A. Proanthocyanidin-enriched extract from Myrothamnus flabellifolia Welw. exerts antiviral activity against herpes simplex virus type 1 by inhibition of viral adsorption and penetration. J. Ethnopharmacol., 2011, 134(2), 468-474.
[http://dx.doi.org/10.1016/j.jep.2010.12.038] [PMID: 21211557]
[125]
Bertol, J.W.; Rigotto, C.; de Pádua, R.M.; Kreis, W.; Barardi, C.R.M.; Braga, F.C.; Simões, C.M.O. Antiherpes activity of glucoevatromonoside, a cardenolide isolated from a Brazilian cultivar of Digitalis lanata. Antiviral Res., 2011, 92(1), 73-80.
[http://dx.doi.org/10.1016/j.antiviral.2011.06.015] [PMID: 21763352]
[126]
Vo, T.S.; Ngo, D.H.; Ta, Q.V.; Kim, S.K. Marine organisms as a therapeutic source against herpes simplex virus infection. Eur. J. Pharm. Sci., 2011, 44(1-2), 11-20.
[http://dx.doi.org/10.1016/j.ejps.2011.07.005] [PMID: 21782018]
[127]
Sagar, S.; Kaur, M.; Minneman, K.P. Antiviral lead compounds from marine sponges. Mar. Drugs, 2010, 8(10), 2619-2638.
[http://dx.doi.org/10.3390/md8102619] [PMID: 21116410]
[128]
Sierra, S.; Kupfer, B.; Kaiser, R. Basics of the virology of HIV-1 and its replication. J. Clin. Virol., 2005, 34(4), 233-244.
[http://dx.doi.org/10.1016/j.jcv.2005.09.004] [PMID: 16198625]
[129]
Shaw, G.M.; Hunter, E. HIV Transmission. Cold Spring Harb. Perspect. Med., 2012, 2(11), a006965.
[http://dx.doi.org/10.1101/cshperspect.a006965] [PMID: 23043157]
[130]
Burton, D.R.; Desrosiers, R.C.; Doms, R.W.; Koff, W.C.; Kwong, P.D.; Moore, J.P.; Nabel, G.J.; Sodroski, J.; Wilson, I.A.; Wyatt, R.T. HIV vaccine design and the neutralizing antibody problem. Nat. Immunol., 2004, 5(3), 233-236.
[http://dx.doi.org/10.1038/ni0304-233] [PMID: 14985706]
[131]
Amy, E.; Rachel, L.; Amy, M-T.; Anura, P.; Siobhan, S.; Michael, W. HIV revisited: The global impact of the HIV/AIDS epidemic. Skinmed, 2004, 3(3), 149-156.
[http://dx.doi.org/10.1111/j.1540-9740.2004.02304.x] [PMID: 15133394]
[132]
Piot, P.; Quinn, T.C. Response to the AIDS pandemic--a global health model. N. Engl. J. Med., 2013, 368(23), 2210-2218.
[http://dx.doi.org/10.1056/NEJMra1201533] [PMID: 23738546]
[133]
Singh, I.P.; Bodiwala, H.S. Recent advances in anti-HIV natural products. Nat. Prod. Rep., 2010, 27(12), 1781-1800.
[http://dx.doi.org/10.1039/c0np00025f] [PMID: 20976350]
[134]
Vlietinck, A.; De Bruyne, T.; Apers, S.; Pieters, L. Plant-derived leading compounds for chemotherapy of human immunodeficiency virus (HIV) infection. Planta Med., 1998, 64(2), 97-109.
[http://dx.doi.org/10.1055/s-2006-957384] [PMID: 9525100]
[135]
Zhou, X.; Liu, J.; Yang, B.; Lin, X.; Yang, X.W.; Liu, Y. Marine natural products with anti-HIV activities in the last decade. Curr. Med. Chem., 2013, 20(7), 953-973.
[PMID: 23210782]
[136]
Kim, S.K.; Karadeniz, F. Anti-HIV activity of extracts and compounds from marine algae. Adv. Food Nutr. Res., 2011, 64, 255-265.
[http://dx.doi.org/10.1016/B978-0-12-387669-0.00020-X] [PMID: 22054953]
[137]
Lubbe, A.; Seibert, I.; Klimkait, T.; van der Kooy, F. Ethnopharmacology in overdrive: The remarkable anti-HIV activity of Artemisia annua. J. Ethnopharmacol., 2012, 141(3), 854-859.
[http://dx.doi.org/10.1016/j.jep.2012.03.024] [PMID: 22465592]
[138]
Huerta-Reyes, M.; Basualdo, M.C.; Abe, F.; Jimenez-Estrada, M.; Soler, C.; Reyes-Chilpa, R. HIV-1 inhibitory compounds from Calophyllum brasiliense leaves. Biol. Pharm. Bull., 2004, 27(9), 1471-1475.
[http://dx.doi.org/10.1248/bpb.27.1471] [PMID: 15340243]
[139]
César, G.Z.J.; Alfonso, M.G.G.; Marius, M.M.; Elizabeth, E.M.; Ángel, C.B.M.; Maira, H.R.; Guadalupe, C.L.M.; Manuel, J.E.; Ricardo, R.C. Inhibition of HIV-1 reverse transcriptase, toxicological and chemical profile of Calophyllum brasiliense extracts from Chiapas, Mexico. Fitoterapia, 2011, 82(7), 1027-1034.
[http://dx.doi.org/10.1016/j.fitote.2011.06.006] [PMID: 21723379]
[140]
Kudo, E.; Taura, M.; Matsuda, K.; Shimamoto, M.; Kariya, R.; Goto, H.; Hattori, S.; Kimura, S.; Okada, S. Inhibition of HIV-1 replication by a tricyclic coumarin GUT-70 in acutely and chronically infected cells. Bioorg. Med. Chem. Lett., 2013, 23(3), 606-609.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.034] [PMID: 23290051]
[141]
Hood, J.L.; Jallouk, A.P.; Campbell, N.; Ratner, L.; Wickline, S.A. Cytolytic nanoparticles attenuate HIV-1 infectivity. Antivir. Ther., 2013, 18(1), 95-103.
[http://dx.doi.org/10.3851/IMP2346] [PMID: 22954649]
[142]
Eccles, R. Understanding the symptoms of the common cold and influenza. Lancet Infect. Dis., 2005, 5(11), 718-725.
[http://dx.doi.org/10.1016/S1473-3099(05)70270-X] [PMID: 16253889]
[143]
Rello, J.; Pop-Vicas, A. Clinical review: Primary influenza viral pneumoniaJ. Crit. Care Med., 2009, 13(6), 1-6.
[144]
Yamada, S.; Suzuki, Y.; Suzuki, T.; Le, M.Q.; Nidom, C.A.; Sakai-Tagawa, Y.; Muramoto, Y.; Ito, M.; Kiso, M.; Horimoto, T.; Shinya, K.; Sawada, T.; Kiso, M.; Usui, T.; Murata, T.; Lin, Y.; Hay, A.; Haire, L.F.; Stevens, D.J.; Russell, R.J.; Gamblin, S.J.; Skehel, J.J.; Kawaoka, Y. Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature, 2006, 444(7117), 378-382.
[http://dx.doi.org/10.1038/nature05264] [PMID: 17108965]
[145]
van der Vries, E.; Collins, P.J.; Vachieri, S.G.; Xiong, X.; Liu, J.; Walker, P.A.; Haire, L.F.; Hay, A.J.; Schutten, M.; Osterhaus, A.D.M.E.; Martin, S.R.; Boucher, C.A.B.; Skehel, J.J.; Gamblin, S.J. H1N1 2009 pandemic influenza virus: resistance of the I223R neuraminidase mutant explained by kinetic and structural analysis. PLoS Pathog., 2012, 8(9), e1002914.
[http://dx.doi.org/10.1371/journal.ppat.1002914] [PMID: 23028314]
[146]
Mak, P.W.Y.; Jayawardena, S.; Poon, L.L.M. The evolving threat of influenza viruses of animal origin and the challenges in developing appropriate diagnostics. Clin. Chem., 2012, 58(11), 1527-1533.
[http://dx.doi.org/10.1373/clinchem.2012.182626] [PMID: 22968105]
[147]
Centers for Disease Control and Prevention. Infectious disease. Antiviral agents for the treatment and chemoprophylaxis of influenza. Ann. Emerg. Med., 2011, 58(3), 299-303.
[http://dx.doi.org/10.1016/j.annemergmed.2011.07.007] [PMID: 21871233]
[148]
Samson, M.; Pizzorno, A.; Abed, Y.; Boivin, G. Influenza virus resistance to neuraminidase inhibitors. Antiviral Res., 2013, 98(2), 174-185.
[http://dx.doi.org/10.1016/j.antiviral.2013.03.014] [PMID: 23523943]
[149]
Krawitz, C.; Mraheil, M.A.; Stein, M.; Imirzalioglu, C.; Domann, E.; Pleschka, S.; Hain, T. Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses. BMC Complement. Altern. Med., 2011, 11(1), 16.
[http://dx.doi.org/10.1186/1472-6882-11-16] [PMID: 21352539]
[150]
Theisen, L.L.; Muller, C.P. EPs® 7630 (Umckaloabo®), an extract from Pelargonium sidoides roots, exerts anti-influenza virus activity in vitro and in vivo. Antiviral Res., 2012, 94(2), 147-156.
[http://dx.doi.org/10.1016/j.antiviral.2012.03.006] [PMID: 22475498]
[151]
He, W.; Han, H.; Wang, W.; Gao, B. Anti-influenza virus effect of aqueous extracts from dandelion. Virol. J., 2011, 8(1), 538.
[http://dx.doi.org/10.1186/1743-422X-8-538] [PMID: 22168277]
[152]
Ma, S.G.; Gao, R.M.; Li, Y.H.; Jiang, J.D.; Gong, N.B.; Li, L.; Lü, Y.; Tang, W.Z.; Liu, Y.B.; Qu, J.; Lü, H.N.; Li, Y.; Yu, S.S. Antiviral spirooliganones A and B with unprecedented skeletons from the roots of Illicium oligandrum. Org. Lett., 2013, 15(17), 4450-4453.
[http://dx.doi.org/10.1021/ol401992s] [PMID: 23937631]
[153]
Grienke, U.; Schmidtke, M.; von Grafenstein, S.; Kirchmair, J.; Liedl, K.R.; Rollinger, J.M. Influenza neuraminidase: A druggable target for natural products. Nat. Prod. Rep., 2012, 29(1), 11-36.
[http://dx.doi.org/10.1039/C1NP00053E] [PMID: 22025274]
[154]
Dao, T.T.; Nguyen, P.H.; Lee, H.S.; Kim, E.; Park, J.; Lim, S.I.; Oh, W.K. Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata. Bioorg. Med. Chem. Lett., 2011, 21(1), 294-298.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.016] [PMID: 21123068]
[155]
Dao, T.T.; Dang, T.T.; Nguyen, P.H.; Kim, E.; Thuong, P.T.; Oh, W.K. Xanthones from Polygala karensium inhibit neuraminidases from influenza A viruses. Bioorg. Med. Chem. Lett., 2012, 22(11), 3688-3692.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.028] [PMID: 22552195]
[156]
Jeong, H.J.; Kim, Y.M.; Kim, J.H.; Kim, J.Y.; Park, J.Y.; Park, S.J.; Ryu, Y.B.; Lee, W.S. Homoisoflavonoids from Caesalpinia sappan displaying viral neuraminidases inhibition. Biol. Pharm. Bull., 2012, 35(5), 786-790.
[http://dx.doi.org/10.1248/bpb.35.786] [PMID: 22687418]
[157]
Clements, C.J.; Cutts, F.T. The epidemiology of measles: Thirty years of vaccination. Curr. Top. Microbiol. Immunol., 1995, 191, 13-33.
[http://dx.doi.org/10.1007/978-3-642-78621-1_2] [PMID: 7789156]
[158]
Sabella, C. Measles: Not just a childhood rash. Cleve. Clin. J. Med., 2010, 77(3), 207-213.
[http://dx.doi.org/10.3949/ccjm.77a.09123] [PMID: 20200172]
[159]
Murray, C.J.; Lopez, A.D. Mortality by cause for eight regions of the world: GBD. Lancet, 1997, 349, 1269-1276.
[http://dx.doi.org/10.1016/S0140-6736(96)07493-4] [PMID: 9142060]
[160]
Nwodo, U.U.; Ngene, A.A.; Iroegbu, C.U.; Onyedikachi, O.A.L.; Chigor, V.N.; Okoh, A.I. In vivo evaluation of the antiviral activity of Cajanus cajan on measles virus. Arch. Virol., 2011, 156(9), 1551-1557.
[http://dx.doi.org/10.1007/s00705-011-1032-x] [PMID: 21614435]
[161]
Hall, C. Prospects for a respiratory syncytial virus vaccine. Science, 1994, 265(5177), 1393-1394.
[http://dx.doi.org/10.1126/science.7915433] [PMID: 7915433]
[162]
Braciale, T.J. Respiratory syncytial virus and T cells: interplay between the virus and the host adaptive immune system. Proc. Am. Thorac. Soc., 2005, 2(2), 141-146.
[http://dx.doi.org/10.1513/pats.200503-022AW] [PMID: 16113482]
[163]
Sigurs, N.; Gustafsson, P.M.; Bjarnason, R.; Lundberg, F.; Schmidt, S.; Sigurbergsson, F.; Kjellman, B. Severe respiratory syncytial virus bronchiolitis in infancy and asthma and allergy at age 13. Am. J. Respir. Crit. Care Med., 2005, 171(2), 137-141.
[http://dx.doi.org/10.1164/rccm.200406-730OC] [PMID: 15516534]
[164]
Glezen, W.P.; Taber, L.H.; Frank, A.L.; Kasel, J.A. Risk of primary infection and reinfection with respiratory syncytial virus. Am. J. Dis. Child., 1986, 140(6), 543-546.
[PMID: 3706232]
[165]
Geller, C.; Varbanov, M.; Duval, R. Human coronaviruses: Insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses, 2012, 4(11), 3044-3068.
[http://dx.doi.org/10.3390/v4113044] [PMID: 23202515]
[166]
Cheng, P.W.; Ng, L.T.; Chiang, L.C.; Lin, C.C. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin. Exp. Pharmacol. Physiol., 2006, 33(7), 612-616.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04415.x] [PMID: 16789928]
[167]
Li, S.; Chen, C.; Zhang, H.; Guo, H.; Wang, H.; Wang, L.; Zhang, X.; Hua, S.; Yu, J.; Xiao, P.; Li, R.S.; Tan, X. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res., 2005, 67(1), 18-23.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.007] [PMID: 15885816]
[168]
Ferreira, G.M.; de Mello Silva, B.; de Souza, G.H.B.; de Oliveira, A.B.; Brandão, G.C. Anti-zika activity of Ouratea semiserrata and dereplication of its constituents. Rev. Bras. Farmacogn., 2021, 31(1), 121-125.
[http://dx.doi.org/10.1007/s43450-021-00129-6]
[169]
Brandão, G.C.; Kroon, E.G.; dos Santos, J.R.; Stehmann, J.R.; Lombardi, J.A.; de Oliveira, A.B. Antiviral activity of plants occurring in the state of Minas Gerais (Brazil): Part III. J. Chem. Pharm. Res., 2011, 3(4), 223-236.
[170]
Angamuthu, D.; Purushothaman, I.; Kothandan, S.; Swaminathan, R. Antiviral study on Punica granatum L., Momordica charantia L., Andrographis paniculata Nees, and Melia azedarach L., to human herpes virus-3. Eur. J. Integr. Med., 2019, 28, 98-108.
[http://dx.doi.org/10.1016/j.eujim.2019.04.008]
[171]
Reis, A.C.C.; Moura, H.M.M.; Silva, B.M.; Oliveira, A.B.; Brandão, G.C. Antiviral activity and chemical characterization of Cissus erosa (Vitaceae) ethanol extracts. Rodriguésia, 2020, 71, e00522019.
[http://dx.doi.org/10.1590/2175-7860202071052]
[172]
Kim, T.Y.; Jeon, S.; Ko, M.; Du, Y.E.; Son, S.R.; Jang, D.S.; Kim, S.; Lee, C.J. Lancemaside A from Codonopsis lanceolata: Studies on antiviral activity and mechanism of action against SARS-CoV-2 and its variants of concern. Antimicrob. Agents Chemother., 2022, 66(12), e01201-e01222.
[http://dx.doi.org/10.1128/aac.01201-22] [PMID: 36374087]
[173]
Moradi, M.T.; Karimi, A.; Alidadi, S.; Hashemi, L. Anti-adenovirus activity, antioxidant potential, and phenolic content of dried flower buds of Syzygium aromaticum extract in HEp2 cell line. Marmara Pharm. J., 2017, 21(4), 852-859.
[http://dx.doi.org/10.12991/mpj.2017.4]
[174]
Hetta, M.; Mahmoud, R.; El-Senousy, W.; Ibrahim, M.; El-Taweel, G.; Ali, G. Antiviral and antimicrobial activities of Spirulina platensis. World J. Pharm. Pharm. Sci., 2014, 3, 31-39.
[175]
Reichling, J.; Neuner, A.; Sharaf, M.; Harkenthal, M.; Schnitzler, P. Antiviral activity of Rhus aromatica (fragrant sumac) extract against two types of herpes simplex viruses in cell culture. Pharmazie, 2009, 64(8), 538-541.
[PMID: 19746844]
[176]
Roner, M.R.; Sprayberry, J.; Spinks, M.; Dhanji, S. Antiviral activity obtained from aqueous extracts of the Chilean soapbark tree (Quillaja saponaria Molina). J. Gen. Virol., 2007, 88(1), 275-285.
[http://dx.doi.org/10.1099/vir.0.82321-0] [PMID: 17170461]
[177]
Sadeer, N.B.; Haddad, J.G.; Ezzat, M.O.; Desprès, P.; Abdallah, H.H.; Zengin, G.; Alshamrani, I.M.; Barnawi, J.; Khalid, A.; Abdalla, A.N.; Le Van, B.; El Kalamouni, C.; Mahomoodally, M.F. Rhizophora mucronata Lam., a halophyte from Mauritius Island, inhibits the entry of Zika virus in human cells (A549)- an in vitro and in silico analysis. J. Biomol. Struct. Dyn., 2023, 1-11.
[http://dx.doi.org/10.1080/07391102.2023.2167115] [PMID: 36648248]
[178]
Ao, Z.; Chan, M.; Ouyang, M.J.; Abiola, O.T.; Mahmoudi, M.; Kobasa, D.; Yao, X. Prunella vulgaris extract and suramin block SARS-coronavirus 2 virus Spike protein D614 and G614 variants mediated receptor association and virus entry in cell culture system. BioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.08.28.270306]
[179]
Liu, A.L.; Yang, F.; Zhu, M.; Zhou, D.; Lin, M.; Lee, S.; Wang, Y.T.; Du, G.H. In vitro anti-influenza viral activities of stilbenoids from the lianas of Gnetum pendulum. Planta Med., 2010, 76(16), 1874-1876.
[http://dx.doi.org/10.1055/s-0030-1250030] [PMID: 20539973]
[180]
Matsukura, S.; Kokubu, F.; Kubo, H.; Tomita, T.; Tokunaga, H.; Kadokura, M.; Yamamoto, T.; Kuroiwa, Y.; Ohno, T.; Suzaki, H.; Adachi, M. Expression of RANTES by normal airway epithelial cells after influenza virus A infection. Am. J. Respir. Cell Mol. Biol., 1998, 18(2), 255-264.
[http://dx.doi.org/10.1165/ajrcmb.18.2.2822] [PMID: 9476913]
[181]
Lin, S.C.; Ho, C.T.; Chuo, W.H.; Li, S.; Wang, T.T.; Lin, C.C. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect. Dis., 2017, 17(1), 144.
[http://dx.doi.org/10.1186/s12879-017-2253-8] [PMID: 28193191]
[182]
Alazard-Dany, N.; Denolly, S.; Boson, B.; Cosset, F.L. Overview of HCV life cycle with a special focus on current and possible future antiviral targets. Viruses, 2019, 11(1), 30.
[http://dx.doi.org/10.3390/v11010030] [PMID: 30621318]
[183]
Romero-López, C.; Berzal-Herranz, A. The role of the RNA-RNA interactome in the hepatitis C virus life cycle. Int. J. Mol. Sci., 2020, 21(4), 1479.
[http://dx.doi.org/10.3390/ijms21041479] [PMID: 32098260]
[184]
Lee, S.; Mailar, K.; Kim, M.I.; Park, M.; Kim, J.; Min, D.H.; Heo, T.H.; Bae, S.K.; Choi, W.; Lee, C. Plant-derived purification, chemical synthesis, and in vitro/in vivo evaluation of a resveratrol dimer, viniferin, as an HCV Replication inhibitor. Viruses, 2019, 11(10), 890.
[http://dx.doi.org/10.3390/v11100890] [PMID: 31547617]
[185]
Han, Y.S.; Penthala, N.R.; Oliveira, M.; Mesplède, T.; Xu, H.; Quan, Y.; Crooks, P.A.; Wainberg, M.A. Identification of resveratrol analogs as potent anti-dengue agents using a cell-based assay. J. Med. Virol., 2017, 89(3), 397-407.
[http://dx.doi.org/10.1002/jmv.24660] [PMID: 27509184]
[186]
Pflieger, A.; Waffo Teguo, P.; Papastamoulis, Y.; Chaignepain, S.; Subra, F.; Munir, S.; Delelis, O.; Lesbats, P.; Calmels, C.; Andreola, M.L.; Merillon, J.M.; Auge-Gouillou, C.; Parissi, V. Natural stilbenoids isolated from grapevine exhibiting inhibitory effects against HIV-1 integrase and eukaryote MOS1 transposase in vitro activities. PLoS One, 2013, 8(11), e81184.
[http://dx.doi.org/10.1371/journal.pone.0081184] [PMID: 24312275]
[187]
Aknin, C.; Smith, E.A.; Marchand, C.; Andreola, M.L.; Pommier, Y.; Metifiot, M. Discovery of novel integrase inhibitors acting outside the active site through high-throughput screening. Molecules, 2019, 24(20), 3675.
[http://dx.doi.org/10.3390/molecules24203675] [PMID: 31614773]
[188]
Harmalkar, D.S.; Lee, S.J.; Lu, Q.; Kim, M.I.; Park, J.; Lee, H.; Park, M.; Lee, A.; Lee, C.; Lee, K. Identification of novel non-nucleoside vinyl-stilbene analogs as potent norovirus replication inhibitors with a potential host-targeting mechanism. Eur. J. Med. Chem., 2019, 184, 111733.
[http://dx.doi.org/10.1016/j.ejmech.2019.111733] [PMID: 31604163]
[189]
Oh, M.; Park, S.; Song, J.H.; Ko, H.J.; Kim, S.H. Chemical components from the twigs of Caesalpinia latisiliqua and their antiviral activity. J. Nat. Med., 2020, 74(1), 26-33.
[http://dx.doi.org/10.1007/s11418-019-01335-2] [PMID: 31243670]
[190]
Ito, T.; Hayashi, K.; Nishiguchi, M.; Hayashi, T.; Iinuma, M. Resveratrol oligomer C-glucosides and anti-viral resveratrol tetramers isolated from the stem bark of Shorea uliginosa. Phytochem. Lett., 2018, 28, 1-7.
[http://dx.doi.org/10.1016/j.phytol.2018.07.026]
[191]
WHO. Hepatitis C. 2019. Available from: https://www.who.int/en/news-room/fact-sheets/detail/hepatitis-c
[192]
CDC. Norovirus worldwide., 2018. Available from: https://www.cdc.gov/norovirus/trends-outbreaks/worldwide.html
[193]
Tognarelli, E.I.; Palomino, T.F.; Corrales, N.; Bueno, S.M.; Kalergis, A.M.; González, P.A. Herpes simplex virus evasion of early host antiviral responses. Front. Cell. Infect. Microbiol., 2019, 9, 127.
[http://dx.doi.org/10.3389/fcimb.2019.00127] [PMID: 31114761]
[194]
Mukhtar, M.; Arshad, M.; Ahmad, M.; Pomerantz, R.J.; Wigdahl, B.; Parveen, Z. Antiviral potentials of medicinal plants. Virus Res., 2008, 131(2), 111-120.
[http://dx.doi.org/10.1016/j.virusres.2007.09.008] [PMID: 17981353]
[195]
Murti, Y.; Semwal, B.C.; Goyal, A.; Mishra, P. Naringenin scaffold as a template for drug designing. Curr. Tradit. Med., 2021, 7(1), 28-44.
[http://dx.doi.org/10.2174/2215083805666190617144652]
[196]
Murti, Y.; Agrawal, K.K.; Semwal, B.C.; Singh, S. Therapeutic approaches of nutraceuticals in the prevention of Alzheimer’s disease. J. Food Biochem., 2022.
[http://dx.doi.org/10.1007/s13596-022-00633-7]
[197]
Pandey, S.N.; Singh, G.; Semwal, B.C.; Gupta, G.; Alharbi, K.S.; Almalki, W.H.; Albratty, M.; Najmi, A.; Meraya, A.M. Therapeutic approaches of nutraceuticals in the prevention of Alzheimer’s disease. J. Food Biochem., 2022, 46(12), e14426.
[http://dx.doi.org/10.1111/jfbc.14426] [PMID: 36169224]
[198]
Murti, Y.; Agrawal, K.K.; Semwal, B.C.; Gupta, J.; Gupta, R. A review on novel herbal drug delivery system and its application. Curr. Tradit. Med., 2023, 9(2), e280422204154.
[http://dx.doi.org/10.2174/2215083808666220428092638]