Oncogenic Alterations of Metabolism Associated with Resistance to Chemotherapy

Page: [856 - 866] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Metabolic reprogramming in cancer cells is a strategy to meet high proliferation rates, invasion, and metastasis. Also, several researchers indicated that the cellular metabolism changed during the resistance to chemotherapy. Since glycolytic enzymes play a prominent role in these alterations, the ability to reduce resistance to chemotherapy drugs is promising for cancer patients. Oscillating gene expression of these enzymes was involved in the proliferation, invasion, and metastasis of cancer cells. This review discussed the roles of some glycolytic enzymes associated with cancer progression and resistance to chemotherapy in the various cancer types.

[1]
Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun 2020; 11(1): 102.
[http://dx.doi.org/10.1038/s41467-019-13668-3] [PMID: 31900386]
[2]
Bhattacharya B, Mohd Omar MF, Soong R. The Warburg effect and drug resistance. Br J Pharmacol 2016; 173(6): 970-9.
[http://dx.doi.org/10.1111/bph.13422] [PMID: 26750865]
[3]
Ganapathy-Kanniappan S, Geschwind JFH. Tumor glycolysis as a target for cancer therapy: Progress and prospects. Mol Cancer 2013; 12(1): 152.
[http://dx.doi.org/10.1186/1476-4598-12-152] [PMID: 24298908]
[4]
Warburg O. On the origin of cancer cells. Science 1956; 123(3191): 309-14.
[http://dx.doi.org/10.1126/science.123.3191.309]
[5]
Li C, Zhang G, Zhao L, Ma Z, Chen H. Metabolic reprogramming in cancer cells: Glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer. World J Surg Oncol 2015; 14(1): 15.
[http://dx.doi.org/10.1186/s12957-016-0769-9] [PMID: 26791262]
[6]
Yang YF, Chuang HW, Kuo WT, Lin BS, Chang YC. Current development and application of anaerobic glycolytic enzymes in urothelial cancer. Int J Mol Sci 2021; 22(19): 10612.
[http://dx.doi.org/10.3390/ijms221910612] [PMID: 34638949]
[7]
Zhao H, Duan Q, Zhang Z, et al. Up-regulation of glycolysis promotes the stemness and EMT phenotypes in gemcitabine-resistant pancreatic cancer cells. J Cell Mol Med 2017; 21(9): 2055-67.
[http://dx.doi.org/10.1111/jcmm.13126] [PMID: 28244691]
[8]
Lew CR, Tolan DR. Targeting of several glycolytic enzymes using RNA interference reveals aldolase affects cancer cell proliferation through a non-glycolytic mechanism. J Biol Chem 2012; 287(51): 42554-63.
[http://dx.doi.org/10.1074/jbc.M112.405969] [PMID: 23093405]
[9]
Xintaropoulou C, Ward C, Wise A, et al. Expression of glycolytic enzymes in ovarian cancers and evaluation of the glycolytic pathway as a strategy for ovarian cancer treatment. BMC Cancer 2018; 18(1): 636.
[http://dx.doi.org/10.1186/s12885-018-4521-4] [PMID: 29866066]
[10]
Mathupala SP, Ko YH, Pedersen PL, Hexokinase II. Cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 2006; 25(34): 4777-86.
[http://dx.doi.org/10.1038/sj.onc.1209603] [PMID: 16892090]
[11]
Li Z, Tang X, Luo Y, et al. NK007 helps in mitigating paclitaxel resistance through p38MAPK activation and HK2 degradation in ovarian cancer. J Cell Physiol 2019; 234(9): 16178-90.
[http://dx.doi.org/10.1002/jcp.28278] [PMID: 30786006]
[12]
Lis P, Dyląg M, Niedźwiecka K, et al. The HK2 dependent “Warburg effect” and mitochondrial oxidative phosphorylation in cancer: Targets for effective therapy with 3-bromopyruvate. Molecules 2016; 21(12): 1730.
[http://dx.doi.org/10.3390/molecules21121730] [PMID: 27983708]
[13]
Wang H, Peng R, Chen X, et al. Effect of HK2, PKM2 and LDHA on Cetuximab efficacy in metastatic colorectal cancer. Oncol Lett 2018; 15(4): 5553-60.
[http://dx.doi.org/10.3892/ol.2018.8005] [PMID: 29552193]
[14]
Wang H, Wang L, Zhang Y, Wang J, Deng Y, Lin D. Inhibition of glycolytic enzyme hexokinase II (HK2) suppresses lung tumor growth. Cancer Cell Int 2016; 16(1): 9.
[http://dx.doi.org/10.1186/s12935-016-0280-y] [PMID: 26884725]
[15]
Yang H, Hou H, Zhao H, et al. HK2 is a crucial downstream regulator of miR-148a for the maintenance of sphere-forming property and cisplatin resistance in cervical cancer cells. Front Oncol 2021; 11: 794015-5.
[http://dx.doi.org/10.3389/fonc.2021.794015] [PMID: 34858863]
[16]
Sato-Tadano A, Suzuki T, Amari M, et al. Hexokinase II in breast carcinoma: A potent prognostic factor associated with hypoxia-inducible factor-1α and Ki-67. Cancer Sci 2013; 104(10): 1380-8.
[http://dx.doi.org/10.1111/cas.12238] [PMID: 23869589]
[17]
Pastorino JG, Shulga N, Hoek JB. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem 2002; 277(9): 7610-8.
[http://dx.doi.org/10.1074/jbc.M109950200] [PMID: 11751859]
[18]
Wolf A. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med 2011; 208(2): 313-26.
[19]
Gu JJ, Singh A, Xue K, et al. Up-regulation of hexokinase II contributes to rituximab-chemotherapy resistance and is a clinically relevant target for therapeutic development. Oncotarget 2018; 9(3): 4020-33.
[http://dx.doi.org/10.18632/oncotarget.23425] [PMID: 29423101]
[20]
Zhang XY, Zhang M, Cong Q, et al. Hexokinase 2 confers resistance to cisplatin in ovarian cancer cells by enhancing cisplatin-induced autophagy. Int J Biochem Cell Biol 2018; 95: 9-16.
[http://dx.doi.org/10.1016/j.biocel.2017.12.010] [PMID: 29247711]
[21]
Edry Botzer L, Maman S, Sagi-Assif O, et al. Hexokinase 2 is a determinant of neuroblastoma metastasis. Br J Cancer 2016; 114(7): 759-66.
[http://dx.doi.org/10.1038/bjc.2016.26] [PMID: 26986252]
[22]
Peng QP, Zhou JM, Zhou Q, Pan F, Zhong DP, Liang HJ. Downregulation of the hexokinase II gene sensitizes human colon cancer cells to 5-fluorouracil. Chemotherapy 2008; 54(5): 357-63.
[http://dx.doi.org/10.1159/000153655] [PMID: 18772588]
[23]
Wang J. Knockdown of hexokinase 2 (HK2) inhibits breast cancer cell proliferation and reduces their resistance to fluorouracil. Xi bao yu fen zi Mian yi xue za zhi 2021; 37(8): 722-.
[24]
Yang T, Ren C, Qiao P, et al. PIM2-mediated phosphorylation of hexokinase 2 is critical for tumor growth and paclitaxel resistance in breast cancer. Oncogene 2018; 37(45): 5997-6009.
[http://dx.doi.org/10.1038/s41388-018-0386-x] [PMID: 29985480]
[25]
Mizushima N, Komatsu M. Autophagy: Renovation of cells and tissues. Cell 2011; 147(4): 728-41.
[http://dx.doi.org/10.1016/j.cell.2011.10.026] [PMID: 22078875]
[26]
Zhi X, Zhong Q. Autophagy in cancer. F1000Prime Rep 2015; 7: 18.
[http://dx.doi.org/10.12703/P7-18] [PMID: 25750736]
[27]
Huang X, Liu M, Sun H, et al. HK2 is a radiation resistant and independent negative prognostic factor for patients with locally advanced cervical squamous cell carcinoma. Int J Clin Exp Pathol 2015; 8(4): 4054-63.
[PMID: 26097593]
[28]
Wang Y, Pan S, He X, et al. CPNE1 enhances colorectal cancer cell growth, glycolysis, and drug resistance through regulating the AKT-GLUT1/HK2 pathway. OncoTargets Ther 2021; 14: 699-710.
[http://dx.doi.org/10.2147/OTT.S284211] [PMID: 33536762]
[29]
Nikravesh H, Khodayar MJ, Behmanesh B, et al. The combined effect of dichloroacetate and 3-bromopyruvate on glucose metabolism in colorectal cancer cell line, HT-29; the mitochondrial pathway apoptosis. BMC Cancer 2021; 21(1): 903.
[http://dx.doi.org/10.1186/s12885-021-08564-3] [PMID: 34364387]
[30]
Gao R, Buechel D, Kalathur RKR, et al. USP29-mediated HIF1α stabilization is associated with Sorafenib resistance of hepatocellular carcinoma cells by upregulating glycolysis. Oncogenesis 2021; 10(7): 52.
[http://dx.doi.org/10.1038/s41389-021-00338-7] [PMID: 34272356]
[31]
Kim JY, Cho H, Yoo J, et al. HDAC8 deacetylates HIF-1α and enhances its protein stability to promote tumor growth and migration in melanoma. Cancers 2023; 15(4): 1123.
[http://dx.doi.org/10.3390/cancers15041123] [PMID: 36831463]
[32]
Zhang B, Chan SH, Liu XQ, et al. Targeting hexokinase 2 increases the sensitivity of oxaliplatin by Twist1 in colorectal cancer. J Cell Mol Med 2021; 25(18): 8836-49.
[http://dx.doi.org/10.1111/jcmm.16842] [PMID: 34378321]
[33]
Zancan P, Almeida FVR, Faber-Barata J, Dellias JM, Sola-Penna M. Fructose-2,6-bisphosphate counteracts guanidinium chloride, thermal, and ATP-induced dissociation of skeletal muscle key glycolytic enzyme 6-phosphofructo-1-kinase: A structural mechanism for PFK allosteric regulation. Arch Biochem Biophys 2007; 467(2): 275-82.
[http://dx.doi.org/10.1016/j.abb.2007.08.032] [PMID: 17923106]
[34]
Jiang P, Du W, Wu M. Regulation of the pentose phosphate pathway in cancer. Protein Cell 2014; 5(8): 592-602.
[http://dx.doi.org/10.1007/s13238-014-0082-8] [PMID: 25015087]
[35]
Icard P, Simula L, Wu Z, et al. Why may citrate sodium significantly increase the effectiveness of transarterial chemoembolization in hepatocellular carcinoma? Drug Resist Updat 2021; 59: 100790.
[http://dx.doi.org/10.1016/j.drup.2021.100790] [PMID: 34924279]
[36]
Houles T, Gravel SP, Lavoie G, et al. RSK regulates PFK-2 activity to promote metabolic rewiring in melanoma. Cancer Res 2018; 78(9): 2191-204.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2215] [PMID: 29440170]
[37]
Li K, Zhu X, Yuan C. Inhibition of miR-185-3p Confers erlotinib resistance through upregulation of PFKL/MET in lung cancers. Front Cell Dev Biol 2021; 9: 677860.
[http://dx.doi.org/10.3389/fcell.2021.677860] [PMID: 34368128]
[38]
Deng X, Li D, Ke X, et al. Mir‐488 alleviates chemoresistance and glycolysis of colorectal cancer by targeting PFKFB3. J Clin Lab Anal 2021; 35(1): e23578.
[http://dx.doi.org/10.1002/jcla.23578] [PMID: 32990355]
[39]
Ganapathy-Kanniappan S. Rac1 repression reverses chemoresistance by targeting tumor metabolism. Cancer Biol Ther 2020; 21(10): 888-90.
[http://dx.doi.org/10.1080/15384047.2020.1809923] [PMID: 32866423]
[40]
Kawai K, Uemura M, Munakata K, et al. Fructose-bisphosphate aldolase A is a key regulator of hypoxic adaptation in colorectal cancer cells and involved in treatment resistance and poor prognosis. Int J Oncol 2017; 50(2): 525-34.
[http://dx.doi.org/10.3892/ijo.2016.3814] [PMID: 28000858]
[41]
Niu Y, Lin Z, Wan A, et al. Loss‐of‐function genetic screening identifies ALDOA as an essential driver for liver cancer cell growth under hypoxia. Hepatology 2021; 74(3): 1461-79.
[http://dx.doi.org/10.1002/hep.31846] [PMID: 33813748]
[42]
Chang YC, Yang YF, Chiou J, et al. Nonenzymatic function of Aldolase A downregulates miR-145 to promote the Oct4/DUSP4/TRAF4 axis and the acquisition of lung cancer stemness. Cell Death Dis 2020; 11(3): 195.
[http://dx.doi.org/10.1038/s41419-020-2387-2] [PMID: 32188842]
[43]
Chang YC, Chiou J, Yang YF, et al. Therapeutic targeting of aldolase A interactions inhibits lung cancer metastasis and prolongs survival. Cancer Res 2019; 79(18): 4754-66.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-4080] [PMID: 31358528]
[44]
Niu Y, Lin Z, Wan A, et al. Loss‐of‐function genetic screening identifies aldolase A as an essential driver for liver cancer cell growth under hypoxia. Hepatology 2021; 74(3): 1461-79.
[http://dx.doi.org/10.1002/hep.31846] [PMID: 33813748]
[45]
Grandjean G, de Jong PR, James BP, et al. Definition of a novel feed-forward mechanism for glycolysis-HIF1α signaling in hypoxic tumors highlights aldolase A as a therapeutic target. Cancer Res 2016; 76(14): 4259-69.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0401] [PMID: 27261507]
[46]
Yang H, Geng YH, Wang P, Zhang HQ, Fang WG, Tian XX. Extracellular ATP promotes breast cancer chemoresistance via HIF-1α signaling. Cell Death Dis 2022; 13(3): 199.
[http://dx.doi.org/10.1038/s41419-022-04647-6] [PMID: 35236823]
[47]
Li Q, Qin T, Bi Z, et al. Rac1 activates non-oxidative pentose phosphate pathway to induce chemoresistance of breast cancer. Nat Commun 2020; 11(1): 1456.
[http://dx.doi.org/10.1038/s41467-020-15308-7] [PMID: 32193458]
[48]
Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V, Zaravinos A. EMT factors and metabolic pathways in cancer. Front Oncol 2020; 10: 499.
[http://dx.doi.org/10.3389/fonc.2020.00499] [PMID: 32318352]
[49]
Yi Y. CAMSAP1 mutation correlates with improved prognosis in small cell lung cancer patients treated with platinum-based chemotherapy. Front Cell Dev Biol 2021; 9: 770811.
[PMID: 35087829]
[50]
Yang T, Deng Z, Xu L, et al. Macrophages-aPKCɩ-CCL5 feedback loop modulates the progression and chemoresistance in cholangiocarcinoma. J Exp Clin Cancer Res 2022; 41(1): 23.
[http://dx.doi.org/10.1186/s13046-021-02235-8] [PMID: 34980222]
[51]
Alrashed MM, Alharbi H, Alshehry AS, Ahmad M, Aloahd MS. MiR-624-5p enhances NLRP3 augmented gemcitabine resistance via EMT/IL-1β/Wnt/β-catenin signaling pathway in ovarian cancer. J Reprod Immunol 2022; 150: 103488.
[http://dx.doi.org/10.1016/j.jri.2022.103488] [PMID: 35124344]
[52]
Gu M, Jiang B, Li H, Zhu D, Jiang Y, Xu W. Aldolase A promotes cell proliferation and cisplatin resistance via the EGFR pathway in gastric cancer. Am J Transl Res 2022; 14(9): 6586-95.
[PMID: 36247245]
[53]
Tarrado-Castellarnau M, Diaz-Moralli S, Polat IH, et al. Glyceraldehyde-3-phosphate dehydrogenase is overexpressed in colorectal cancer onset. Transl Med Commun 2017; 2(1): 6.
[http://dx.doi.org/10.1186/s41231-017-0015-7]
[54]
Colell A, Green DR, Ricci J-E. Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ 2009; 16(12): 1573-81.
[http://dx.doi.org/10.1038/cdd.2009.137] [PMID: 19779498]
[55]
Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: Role of ATP–dependent transporters. Nat Rev Cancer 2002; 2(1): 48-58.
[http://dx.doi.org/10.1038/nrc706] [PMID: 11902585]
[56]
Byun WS, Bae ES, Park SC, Kim WK, Shin J, Lee SK. Antitumor activity of asperphenin B by induction of apoptosis and regulation of glyceraldehyde-3-phosphate dehydrogenase in human colorectal cancer cells. J Nat Prod 2021; 84(3): 683-93.
[http://dx.doi.org/10.1021/acs.jnatprod.0c01155] [PMID: 33398999]
[57]
Liu K, Tang Z, Huang A, et al. Glyceraldehyde-3-phosphate dehydrogenase promotes cancer growth and metastasis through upregulation of SNAIL expression. Int J Oncol 2017; 50(1): 252-62.
[http://dx.doi.org/10.3892/ijo.2016.3774] [PMID: 27878251]
[58]
Camacho-Jiménez L, Leyva-Carrillo L, Peregrino-Uriarte AB, Duarte-Gutiérrez JL, Tresguerres M, Yepiz-Plascencia G. Regulation of glyceraldehyde-3-phosphate dehydrogenase by hypoxia inducible factor 1 in the white shrimp Litopenaeus vannamei during hypoxia and reoxygenation. Comp Biochem Physiol A Mol Integr Physiol 2019; 235: 56-65.
[http://dx.doi.org/10.1016/j.cbpa.2019.05.006] [PMID: 31100464]
[59]
Mikeladze MA, Dutysheva EA, Kartsev VG, Margulis BA, Guzhova IV, Lazarev VF. Disruption of the complex between GAPDH and Hsp70 sensitizes C6 glioblastoma cells to hypoxic stress. Int J Mol Sci 2021; 22(4): 1520.
[http://dx.doi.org/10.3390/ijms22041520] [PMID: 33546324]
[60]
Guan J, Sun J, Sun F, et al. Hypoxia-induced tumor cell resistance is overcome by synergistic GAPDH-siRNA and chemotherapy co-delivered by long-circulating and cationic-interior liposomes. Nanoscale 2017; 9(26): 9190-201.
[http://dx.doi.org/10.1039/C7NR02663C] [PMID: 28650490]
[61]
Zhang J-Y, Zhang F, Hong CQ, et al. Critical protein GAPDH and its regulatory mechanisms in cancer cells. Cancer Biol Med 2015; 12(1): 10-22.
[PMID: 25859407]
[62]
Tang Z, Yuan S, Hu Y, et al. Over-expression of GAPDH in human colorectal carcinoma as a preferred target of 3-Bromopyruvate Propyl Ester. J Bioenerg Biomembr 2012; 44(1): 117-25.
[http://dx.doi.org/10.1007/s10863-012-9420-9] [PMID: 22350014]
[63]
Hu H, Zhu W, Qin J, et al. Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis. Hepatology 2017; 65(2): 515-28.
[http://dx.doi.org/10.1002/hep.28887] [PMID: 27774669]
[64]
Chiarelli LR, Morera SM, Bianchi P, et al. Molecular insights on pathogenic effects of mutations causing phosphoglycerate kinase deficiency. PLoS One 2012; 7(2): e32065.
[http://dx.doi.org/10.1371/journal.pone.0032065] [PMID: 22348148]
[65]
Liu H. The basic functions of phosphoglycerate kinase 1 and its roles in cancer and other diseases. Eur J Pharmacol 2022; 920: 174835.
[66]
He Y, Wang X, Lu W, et al. PGK1 contributes to tumorigenesis and sorafenib resistance of renal clear cell carcinoma via activating CXCR4/ERK signaling pathway and accelerating glycolysis. Cell Death Dis 2022; 13(2): 118.
[http://dx.doi.org/10.1038/s41419-022-04576-4] [PMID: 35121728]
[67]
Sun S, Liang X, Zhang X, et al. Phosphoglycerate kinase-1 is a predictor of poor survival and a novel prognostic biomarker of chemoresistance to paclitaxel treatment in breast cancer. Br J Cancer 2015; 112(8): 1332-9.
[http://dx.doi.org/10.1038/bjc.2015.114] [PMID: 25867275]
[68]
Yan H. Over-expression of cofilin-1 and phosphoglycerate kinase 1 in astrocytomas involved in pathogenesis of radioresistance. CNS Neurosci Ther 2012; 18: 729-36.
[http://dx.doi.org/10.1111/j.1755-5949.2012.00353.x]
[69]
Lincet H, Guével B, Pineau C, et al. Comparative 2D-DIGE proteomic analysis of ovarian carcinoma cells: Toward a reorientation of biosynthesis pathways associated with acquired platinum resistance. J Proteomics 2012; 75(4): 1157-69.
[http://dx.doi.org/10.1016/j.jprot.2011.10.030] [PMID: 22100381]
[70]
He Y. PGK1-mediated cancer progression and drug resistance. Am J Cancer Res 2019; 9(11): 2280-302.
[71]
Sun S, Wu H, Wu X, et al. Silencing of PGK1 promotes sensitivity to paclitaxel treatment by upregulating XAF1-mediated apoptosis in triple-negative breast cancer. Front Oncol 2021; 11: 535230.
[http://dx.doi.org/10.3389/fonc.2021.535230] [PMID: 33747900]
[72]
Li X. Mitochondria-translocated PGK1 functions as a protein kinase to coordinate glycolysis and the TCA cycle in tumorigenesis. Mol Cell 2016; 61(5): 705-19.
[http://dx.doi.org/10.1016/j.molcel.2016.02.009]
[73]
Cai Q, Wang S, Jin L, et al. Long non-coding RNA GBCDRlnc1 induces chemoresistance of gallbladder cancer cells by activating autophagy. Mol Cancer 2019; 18(1): 82.
[http://dx.doi.org/10.1186/s12943-019-1016-0] [PMID: 30953511]
[74]
Lay AJ, Jiang XM, Kisker O, et al. Phosphoglycerate kinase acts in tumour angiogenesis as a disulphide reductase. Nature 2000; 408(6814): 869-73.
[http://dx.doi.org/10.1038/35048596] [PMID: 11130727]
[75]
Pancholi V. Multifunctional α-enolase: Its role in diseases. Cell Mol Life Sci 2001; 58(7): 902-20.
[http://dx.doi.org/10.1007/PL00000910] [PMID: 11497239]
[76]
Georges E, Bonneau A-M, Prinos P. RNAi-mediated knockdown of α-enolase increases the sensitivity of tumor cells to antitubulin chemotherapeutics. Int J Biochem Mol Biol 2011; 2(4): 303-8.
[PMID: 22187664]
[77]
Almaguel FA. Alpha-enolase: Emerging tumor-associated antigen, cancer biomarker, and oncotherapeutic target. Front Genet 2021; 11: 614726.
[http://dx.doi.org/10.3389/fgene.2020.614726]
[78]
Wang L, Bi R, Yin H, Liu H, Li L. ENO1 silencing impaires hypoxia-induced gemcitabine chemoresistance associated with redox modulation in pancreatic cancer cells. Am J Transl Res 2019; 11(7): 4470-80.
[PMID: 31396350]
[79]
Zhang W, Gao J, Cheng C, et al. Cinnamaldehyde enhances antimelanoma activity through covalently binding ENO1 and exhibits a promoting effect with dacarbazine. Cancers (Basel) 2020; 12(2): 311.
[http://dx.doi.org/10.3390/cancers12020311] [PMID: 32013122]
[80]
Fu J, Pan J, Yang X, et al. Mechanistic study of lncRNA UCA1 promoting growth and cisplatin resistance in lung adenocarcinoma. Cancer Cell Int 2021; 21(1): 505.
[http://dx.doi.org/10.1186/s12935-021-02207-0] [PMID: 34544452]
[81]
Osthus RC, Shim H, Kim S, et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 2000; 275(29): 21797-800.
[http://dx.doi.org/10.1074/jbc.C000023200] [PMID: 10823814]
[82]
Ray A, Song Y, Du T, Chauhan D, Anderson KC. Preclinical validation of Alpha-Enolase (ENO1) as a novel immunometabolic target in multiple myeloma. Oncogene 2020; 39(13): 2786-96.
[http://dx.doi.org/10.1038/s41388-020-1172-0] [PMID: 32024967]
[83]
Qian X, Xu W, Xu J, et al. Enolase 1 stimulates glycolysis to promote chemoresistance in gastric cancer. Oncotarget 2017; 8(29): 47691-708.
[http://dx.doi.org/10.18632/oncotarget.17868] [PMID: 28548950]
[84]
Santana-Rivera Y, Rabelo-Fernández RJ, Quiñones-Díaz BI, et al. Reduced expression of enolase-1 correlates with high intracellular glucose levels and increased senescence in cisplatin-resistant ovarian cancer cells. Am J Transl Res 2020; 12(4): 1275-92.
[PMID: 32355541]
[85]
Zhu Q. Pyruvate kinase M2 inhibits the progression of bladder cancer by targeting MAKP pathway. J Cancer Res Ther 2018; 14: S616-21.
[86]
Chen J. MiR-139-5p is associated with poor prognosis and regulates glycolysis by repressing PKM2 in gallbladder carcinoma. Cell Prolif 2018; 51(6): e12510.
[87]
Wang Y, Hao F, Nan Y, et al. PKM2 inhibitor shikonin overcomes the cisplatin resistance in bladder cancer by inducing necroptosis. Int J Biol Sci 2018; 14(13): 1883-91.
[http://dx.doi.org/10.7150/ijbs.27854] [PMID: 30443191]
[88]
Chen X, Chen S, Yu D. Protein kinase function of pyruvate kinase M2 and cancer. Cancer Cell Int 2020; 20(1): 523.
[http://dx.doi.org/10.1186/s12935-020-01612-1]
[89]
Yang W. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 2012; 150(4): 685-96.
[http://dx.doi.org/10.1016/j.cell.2012.07.018]
[90]
Wang X, Zhang H, Yang H, et al. Exosome‐delivered circRNA promotes glycolysis to induce chemoresistance through the miR‐122‐PKM2 axis in colorectal cancer. Mol Oncol 2020; 14(3): 539-55.
[http://dx.doi.org/10.1002/1878-0261.12629] [PMID: 31901148]
[91]
Wang D, Zhao C, Xu F, et al. Cisplatin-resistant NSCLC cells induced by hypoxia transmit resistance to sensitive cells through exosomal PKM2. Theranostics 2021; 11(6): 2860-75.
[http://dx.doi.org/10.7150/thno.51797] [PMID: 33456577]
[92]
Jiang CF, Xie YX, Qian YC, et al. TBX15/miR-152/KIF2C pathway regulates breast cancer doxorubicin resistance via promoting PKM2 ubiquitination. Cancer Cell Int 2021; 21(1): 542.
[http://dx.doi.org/10.1186/s12935-021-02235-w] [PMID: 34663310]
[93]
Wu H, Du J, Li C, Li H, Guo H, Li Z. Kaempferol can reverse the 5-Fu resistance of colorectal cancer cells by inhibiting PKM2-mediated glycolysis. Int J Mol Sci 2022; 23(7): 3544.
[http://dx.doi.org/10.3390/ijms23073544] [PMID: 35408903]
[94]
Mishra D, Banerjee D. Lactate dehydrogenases as metabolic links between tumor and stroma in the tumor microenvironment. Cancers 2019; 11(6): 750.
[http://dx.doi.org/10.3390/cancers11060750] [PMID: 31146503]
[95]
Thabault L. Discovery of a novel lactate dehydrogenase tetramerization domain using epitope mapping and peptides. J Biol Chem 2021; 296: 100422.
[http://dx.doi.org/10.1016/j.jbc.2021.100422]
[96]
Rani R, Kumar V. Recent update on human lactate dehydrogenase enzyme 5 (h LDH5) inhibitors: A promising approach for cancer chemotherapy. J Med Chem 2016; 59(2): 487-96.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00168] [PMID: 26340601]
[97]
Jiang F, Ma S, Xue Y, Hou J, Zhang Y. LDH-A promotes malignant progression via activation of epithelial-to-mesenchymal transition and conferring stemness in muscle-invasive bladder cancer. Biochem Biophys Res Commun 2016; 469(4): 985-92.
[http://dx.doi.org/10.1016/j.bbrc.2015.12.078] [PMID: 26721441]
[98]
Jiang W, Zhou F, Li N, Li Q, Wang L. FOXM1-LDHA signaling promoted gastric cancer glycolytic phenotype and progression. Int J Clin Exp Pathol 2015; 8(6): 6756-63.
[PMID: 26261559]
[99]
Fan Y, Hu D, Li D, et al. UCHL3 promotes aerobic glycolysis of pancreatic cancer through upregulating LDHA expression. Clin Transl Oncol 2021; 23(8): 1637-45.
[http://dx.doi.org/10.1007/s12094-021-02565-1] [PMID: 33616859]
[100]
Shi M, Cui J, Du J, et al. A novel KLF4/LDHA signaling pathway regulates aerobic glycolysis in and progression of pancreatic cancer. Clin Cancer Res 2014; 20(16): 4370-80.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0186] [PMID: 24947925]
[101]
Dong C, Yuan T, Wu Y, et al. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 2013; 23(3): 316-31.
[http://dx.doi.org/10.1016/j.ccr.2013.01.022] [PMID: 23453623]
[102]
Zhao Y, Liu H, Liu Z, et al. Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism. Cancer Res 2011; 71(13): 4585-97.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0127] [PMID: 21498634]
[103]
Zhao Y, Butler EB, Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 2013; 4(3): e532.
[http://dx.doi.org/10.1038/cddis.2013.60] [PMID: 23470539]
[104]
Zhou M. Warburg effect in chemosensitivity: Targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol Cancer 2010; 9: 33.
[http://dx.doi.org/10.1186/1476-4598-9-33]
[105]
Lee M, Yoon J-H. Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication. World J Biol Chem 2015; 6(3): 148-61.
[http://dx.doi.org/10.4331/wjbc.v6.i3.148] [PMID: 26322173]
[106]
Icard P, Poulain L, Lincet H. Understanding the central role of citrate in the metabolism of cancer cells. Biochim Biophys Acta 2012; 1825(1): 111-6.
[PMID: 22101401]
[107]
Le A. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci 2010; 107(5): 2037-42.
[http://dx.doi.org/10.1073/pnas.0914433107]
[108]
Das CK, Parekh A, Parida PK, Bhutia SK, Mandal M. Lactate dehydrogenase A regulates autophagy and tamoxifen resistance in breast cancer. Biochim Biophys Acta Mol Cell Res 2019; 1866(6): 1004-18.
[http://dx.doi.org/10.1016/j.bbamcr.2019.03.004] [PMID: 30878502]
[109]
Yang Y, Liu H, Li Z, et al. Role of fatty acid synthase in gemcitabine and radiation resistance of pancreatic cancers. Int J Biochem Mol Biol 2011; 2(1): 89-98.
[PMID: 21331354]