Short Synthetic Peptides as COX-2 Inhibitor with Antiproliferative Activity: A Probable Future Class of Drugs

Article ID: e210623218143 Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Cancer remains a leading cause of death worldwide, with traditional chemotherapy treatments causing significant side effects. Short synthetic peptides have emerged as a potential alternative due to their unique properties, including selectivity, stability and biocompatibility. Recent research has shown that short peptides can act as effective anticancer agents through their ability to inhibit the COX-2 (Cyclooxegenase-2) enzyme, a key enzyme involved in tumor growth and progression. In particular, short peptides have demonstrated promising results in targeting the tumor microenvironment, disrupting angiogenesis, and inducing apoptosis in cancer cells. This review summarizes the current literature on short peptides as anticancer agents, including their mechanisms of action and future directions for research and development. The results suggest that short peptides hold significant potential as a new class of anticancer agents and warrant further investigation.

Graphical Abstract

[1]
Apostolopoulos, V.; Bojarska, J.; Chai, T.T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; Perera, C.O.; Pickholz, M.; Remko, M.; Saviano, M.; Skwarczynski, M.; Tang, Y.; Wolf, W.M.; Yoshiya, T.; Zabrocki, J.; Zielenkiewicz, P.; AlKhazindar, M.; Barriga, V.; Kelaidonis, K.; Sarasia, E.M.; Toth, I. A global review on short peptides: Frontiers and perspectives. Molecules, 2021, 26(2), 430.
[http://dx.doi.org/10.3390/molecules26020430] [PMID: 33467522]
[2]
Fruton, J.S. Contrasts in Scientific Style: Research Groups in the Chemical and Biochemical Sciences; American Philosophical Society: Philadelphia, 1990.
[3]
Mulder, G.J. Sur la composition de quelques substances animales. Bull. Sci. Phys. Nat. Neerl, 1838, 104, 1-192.
[4]
Hartley, H. Origin of the Word ‘Protein’. Nature, 1951, 168(4267), 244-244.
[http://dx.doi.org/10.1038/168244a0]
[5]
Tanford, C. Reynolds, A History of Proteins; J. Nature’s Robots; Oxford University Press, Incorporated: Oxford, 2004.
[6]
Vickery, H.B.; Schmidt, C.L.A. The history of the discovery of the amino acids. Chem. Rev., 1931, 9(2), 169-318.
[http://dx.doi.org/10.1021/cr60033a001]
[7]
Vauquelin, L.N.; Robiquet, P.J. The discovery of a new plant principle in Asparagus sativus. Ann. Chim., 1806, 57, 88-93.
[8]
Anfinsen, C.B. The formation and stabilization of protein structure. Biochem. J., 1972, 128(4), 737-749.
[http://dx.doi.org/10.1042/bj1280737] [PMID: 4565129]
[9]
Paal, C. Ueber die Einwirkung von Phenyl‐i‐cyanat auf organische Aminosäuren. Ber. Dtsch. Chem. Ges., 1894, 27(1), 974-979.
[http://dx.doi.org/10.1002/cber.189402701205]
[10]
Chandrudu, S.; Simerska, P.; Toth, I. Chemical methods for peptide and protein production. Molecules, 2013, 18(4), 4373-4388.
[http://dx.doi.org/10.3390/molecules18044373] [PMID: 23584057]
[11]
Fischer, E.; Fourneau, E. Ueber einige derivate des Glykocolls. Ber. Dtsch. Chem. Ges., 1901, 34(2), 2868-2877.
[http://dx.doi.org/10.1002/cber.190103402249]
[12]
Wieland, T.; Bodanszky, M. The world of peptides: A brief history of peptide chemistry Springer Berlin Heidelberg: Berlin: Heidelberg, 1991.
[http://dx.doi.org/10.1007/978-3-642-75850-8]
[13]
Fields, G.B. Introduction to peptide synthesis. Curr. Protoc. Protein Sci., 2001, 26(1), 18.
[http://dx.doi.org/10.1002/0471140864.ps1801s26] [PMID: 18429226]
[14]
Liébecq, C. IUPAC-IUBMB Joint Commission on Biochemical Nomenclature (JCBN) and Nomenclature Committee of IUBMB (NC-IUBMB). IUBMB Life, 1997, 43(5), 1151-1156.
[http://dx.doi.org/10.1080/15216549700204981] [PMID: 9415825]
[15]
Flower, R.J. The development of COX2 inhibitors. Nat. Rev. Drug Discov., 2003, 2(3), 179-191.
[http://dx.doi.org/10.1038/nrd1034] [PMID: 12612644]
[16]
Sobolewski, C.; Cerella, C.; Dicato, M.; Ghibelli, L.; Diederich, M. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int. J. Cell Biol., 2010, 2010, 1-21.
[http://dx.doi.org/10.1155/2010/215158] [PMID: 20339581]
[17]
Li, Y.; Zhang, X.; Yang, J.; Zhang, Y.; Zhu, D.; Zhang, L.; Zhu, Y.; Li, D.; Zhou, J. Methylation of BNIP3 in pancreatic cancer inhibits the induction of mitochondrial-mediated tumor cell apoptosis. Oncotarget, 2017, 8(38), 63208-63222.
[http://dx.doi.org/10.18632/oncotarget.18736] [PMID: 28968982]
[18]
Li, L.; Xu, W.; Huang, Y.; Zhang, T.; Zhao, L.; Fan, J. Cyclooxygenase-2 gene polymorphisms and susceptibility to hepatocellular carcinoma: A meta-analysis based on 10 case-control studies. J. Cancer Res. Ther., 2018, 14(8)(Suppl.), 105.
[http://dx.doi.org/10.4103/0973-1482.172110] [PMID: 29578159]
[19]
Crosby, C.G.; DuBois, R.N. The cyclooxygenase-2 pathway as a target for treatment or prevention of cancer. Expert Opin. Emerg. Drugs, 2003, 8(1), 1-7.
[http://dx.doi.org/10.1517/14728214.8.1.1] [PMID: 14610907]
[20]
Mahboubi Rabbani, S.M.I.; Zarghi, A. Selective COX-2 inhibitors as anticancer agents: A patent review (2014-2018). Expert Opin. Ther. Pat., 2019, 29(6), 407-427.
[http://dx.doi.org/10.1080/13543776.2019.1623880] [PMID: 31132889]
[21]
Rai, A.; Kumar, U.; Raj, V.; Singh, A.K.; Kumar, P.; Keshari, A.K.; Kumar, D.; Maity, B.; De, A.; Samanta, A.; Nath, S.; Prakash, A.; Gosipatala, S.B.; Chand, G.; Saha, S. Novel 1,4-benzothazines obliterate COX-2 mediated JAK-2/STAT-3 signals with potential regulation of oxidative and metabolic stress during colorectal cancer. Pharmacol. Res., 2018, 132, 188-203.
[http://dx.doi.org/10.1016/j.phrs.2017.12.010] [PMID: 29229353]
[22]
Alexanian, A.; Sorokin, A. Cyclooxygenase 2: Protein-protein interactions and posttranslational modifications. Physiol. Genomics, 2017, 49(11), 667-681.
[http://dx.doi.org/10.1152/physiolgenomics.00086.2017] [PMID: 28939645]
[23]
Ahmaditaba, M.A.; Shahosseini, S.; Daraei, B.; Zarghi, A.; Houshdar Tehrani, M.H. Design, synthesis, and biological evaluation of new peptide analogues as selective COX-2 inhibitors. Arch. Pharm. (Weinheim), 2017, 350(10), 1700158.
[http://dx.doi.org/10.1002/ardp.201700158] [PMID: 28872704]
[24]
Ahmaditaba, M.A.; Tehrani, M.H.H.; Zarghi, A.; Shahosseini, S.; Hariri, S. Design and synthesis of novel tetrapeptide analogues as new cytotoxic agents. Trends Pept. Protein Sci., 2017, 1(4), 167-176.
[25]
Sharma, S.K.; Al-Hourani, B.J.; Wuest, M.; Mane, J.Y.; Tuszynski, J.; Baracos, V.; Suresh, M.; Wuest, F. Synthesis and evaluation of fluorobenzoylated di- and tripeptides as inhibitors of cyclooxygenase-2 (COX-2). Bioorg. Med. Chem., 2012, 20(7), 2221-2226.
[http://dx.doi.org/10.1016/j.bmc.2012.02.021] [PMID: 22386983]
[26]
Singh, P.; Kaur, S.; Kaur, J.; Singh, G.; Bhatti, R. Rational design of small peptides for optimal inhibition of cyclooxygenase-2: development of a highly effective anti-inflammatory agent. J. Med. Chem., 2016, 59(8), 3920-3934.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00134] [PMID: 27019010]
[27]
Ahmaditaba, M.A.; Houshdar Tehrani, M.H.; Zarghi, A.; Shahosseini, S.; Daraei, B. Design, synthesis and biological evaluation of novel peptide-like analogues as selective COX-2 inhibitors. Iran. J. Pharm. Res., 2018, 17(1), 87-92.
[PMID: 29755541]