Kalanchoe pinnata (Patharchatta): A Therapeutic Boon to Mankind

Article ID: e190623218102 Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Bryophyllum pinnatum, commonly known as the “patharchatta,” belongs to the family of “Crassulaceae.” Bryophyllum pinnatum is often used to treat gallbladder stones and heal wounds. It possesses a lot of pharmacological properties, such as antioxidant, anti-cancerous, antimicrobial, antiviral, etc. It is an aromatic plant having a sweet and sour smell and is used as a herb. In different plant species, essential oils present in the leaves and other parts give them their unique smell and fragrance. Many phytochemicals have been isolated from this plant, like alkaloids, triterpenes, cardenolides, flavonoids, and bufadienolides, as well as lipids, steroids, and glycosides from various extracts. Among them, only some compounds have medicinal properties. In this review, we have analyzed the ADME properties of the phytochemicals present in the plant to identify which chemical can act as a drug candidate using the SwissADME server.

Graphical Abstract

[1]
Bijauliya, R.K.; Alok, S.; Chanchal, D.K.; Sabharwal, M.; Yadav, R.D. An updated review of pharmacological studies on Azadirachta indica (neem). Int. J. Pharm. Sci. Res., 2018, 9(7), 2645-2655. a
[2]
Gahlaut, A.; Pawar, S.D.; Mandal, T.K.; Dabur, R. Evaluation of clinical efficacy of Bryophyllum pinnatum Salisb. for treatment of lithiasis. Int. J. Pharm. Pharm. Sci., 2012, 4(4), 505-507.
[3]
Khan, M.; Patil, P.A.; Shobha, J.C. Influence of Bryophyllum pinnatum (Lim.) leaf extract on wound healing in albino rats. J. Nat. Rem., 2004, 4(1), 41-46.
[4]
Asiedu-Gyekye, I.J.; Antwi, D.A.; Bugyei, K.A.; Awortwe, C. Comparative study of two kalanchoe species: Total flavonoid, phenolic contents and antioxidant properties. Afr. J. Pure Appl. Chem., 2012, 6(5), 65-73.
[5]
Devbhuti, D.; Gupta, J.K.; Devbhuti, P. Studies on antitumor activity of Bryophyllum calycinum Salisb. against Ehrlich ascites carcinoma in Swiss albino mice. J. Pharm. Sci. Technol., 2012, 2(1), 31-33.
[6]
Akinpelu, D.A. Antimicrobial activity of Bryophyllum pinnatum leaves. Fitoterapia, 2000, 71(2), 193-194.
[http://dx.doi.org/10.1016/S0367-326X(99)00135-5] [PMID: 10727819]
[7]
Mahata, S.; Maru, S.; Shukla, S.; Pandey, A.; Mugesh, G.; Das, B.C.; Bharti, A.C. Anticancer property of Bryophyllum pinnata (Lam.) Oken. leaf on human cervical cancer cells. BMC Complement. Altern. Med., 2012, 12(1), 15.
[http://dx.doi.org/10.1186/1472-6882-12-15] [PMID: 22405256]
[8]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12(4), 564-582.
[http://dx.doi.org/10.1128/CMR.12.4.564] [PMID: 10515903]
[9]
Mule, P.; Upadhye, M.; Taru, P.; Dhole, S. A review on Bryophyllum pinnatum (Lam.). Oken. Res. J. Pharmacogn. Phytochem, 2020, 12(2), 111-113.
[http://dx.doi.org/10.5958/0975-4385.2020.00019.9]
[10]
Kamboj, A.; Saluja, A. Bryophyllum pinnatum (Lam.) Kurz.: Phytochemical and pharmacological profile: a review. Pharmacogn. Rev., 2009, 3(6), 364.
[11]
Dassharma, K.; Bhatkar, A.; Pandey, P.; Shaikh, N. Bryophyllum pinnatum (Lam): A potential source of antioxidants. Bionano Frontier., 2013, 6, 140-143.
[12]
Kīrtikara, KR; Basu, BD; An, IC; Blatter, E; Caius, JF; Mhaskar, KS Indian medicinal plants, with illustrations,
[13]
Anjoo, K.; Kumar, S.A. Microscopical and preliminary phytochemical studies on aerial part (leaves and stem) of Bryophyllum pinnatum Kurz. Pharmacogn. J., 2010, 2(9), 254-259.
[http://dx.doi.org/10.1016/S0975-3575(10)80113-0]
[14]
Paranjpe, P. Indian medicinal plants: forgotten healers: a guide to ayurvedic herbal medicine with identity, habitat, botany, photochemistry, ayurvedic properties, formulations & clinical usage; Chaukhamba Sanskrit Pratishthan, 2001.
[15]
Jaiswal, S.; Sawhney, S. Correlation of epiphyllous bud differentiation with foliar senescence in crassulacean succulent Kalanchoe pinnata as revealed by thidiazuron and ethrel application. J. Plant Physiol., 2006, 163(7), 717-722.
[http://dx.doi.org/10.1016/j.jplph.2005.08.001] [PMID: 16616582]
[16]
Marriage, P.B.; Wilson, D.G. Analysis of the organic acids of Bryophyllum calycinum. Can. J. Biochem., 1971, 49(3), 282-296.
[http://dx.doi.org/10.1139/o71-041] [PMID: 5549729]
[17]
Nagaratna, A; Hegde, PL A comprehensive review on Parnabeeja [Bryophyllum pinnatum (Lam.) Oken]. J med plants stud., 2015, 3(5), 166-171.
[18]
Thorat, S.S.; Shah, R.R.; Mohite, S.A.; Patel, N.R. A review on Bryophyllum pinnatum. Int. Res. J. Pharm., 2018, 8(12), 1-3.
[http://dx.doi.org/10.7897/2230-8407.0812243]
[19]
Omoruyi, F.O.; Menon, N.; Sparks, J. Oxidative stress parameters and erythrocyte membrane adenosine triphosphatase activities in streptozotocin-induced diabetic rats administered aqueous preparation of Kalanchoe Pinnata leaves. Pharmacognosy Res., 2016, 8(2), 85-88.
[http://dx.doi.org/10.4103/0974-8490.172656] [PMID: 27034597]
[20]
Gomes, D.C.O.; Muzitano, M.F.; Costa, S.S.; Rossi-Bergmann, B. Effectiveness of the immunomodulatory extract of Kalanchoe pinnata against murine visceral leishmaniasis. Parasitology, 2010, 137(4), 613-618.
[http://dx.doi.org/10.1017/S0031182009991405] [PMID: 19961648]
[21]
Stoll, A.; Suter, E.; Kreis, W.; Bussemaker, B.B.; Hofmann, A. Die herzaktiven substanzen der Meerzwiebel. Scillaren A. Helv. Chim. Acta, 1933, 16(1), 703-733.
[http://dx.doi.org/10.1002/hlca.19330160198]
[22]
Burnett-Boothroyd, S.C.; McCarthy, B.J. Antimicrobial treatments of textiles for hygiene and infection control applications: An industrial perspective. In: Textiles for hygiene and infection control 2011 Jan 1; Woodhead Publishing, 2011; pp. 196-209.
[23]
Sahin, A.Z.; Mou, M.A.; Pervin, A.; Karim, M.; Tajwar, A.; Asim, M.H.; Salim, M.; Al, A. Antimicrobial activity of natural compounds from Kalanchoe crenata against pathogenic bacteria. Clin. Microbiol. Infect., 2019, 4, 1-4.
[24]
Afzal, M.; Gupta, G.; Kazmi, I.; Rahman, M.; Afzal, O.; Alam, J.; Hakeem, K.R.; Pravez, M.; Gupta, R.; Anwar, F. Anti-inflammatory and analgesic potential of a novel steroidal derivative from Bryophyllum pinnatum. Fitoterapia, 2012, 83(5), 853-858.
[http://dx.doi.org/10.1016/j.fitote.2012.03.013] [PMID: 22465504]
[25]
Okwu, D.E.; Josiah, C. Evaluation of the chemical composition of two Nigerian medicinal plants. Afr. J. Biotechnol., 2006, 5(4), 357-361.
[26]
Almeida, A.P.; Da Silva, S.A.G.; Souza, M.L.M.; Lima, L.M.T.R.; Rossi-Bergmann, B.; Gonçalves de Moraes, V.L.; Costa, S.S. Isolation and chemical analysis of a fatty acid fraction of Kalanchoe pinnata with a potent lymphocyte suppressive activity. Planta Med., 2000, 66(2), 134-137.
[http://dx.doi.org/10.1055/s-2000-11131] [PMID: 10763586]
[27]
Nwali, B.U.; Okaka, A.N.; Offor, C.E.; Aja, P.M.; Nwachi, U.E. Proximate and mineral compositions of Bryophyllum pinnatum leaves. Am. J. Phtyomedicine Clin. Ther., 2014, 2(3), 286-289.
[28]
Ogidi, O.I.; Esie, N.G.; Dike, O.G. Phytochemical, Proximate and Mineral compositions of Bryophyllum pinnatum (Never die) Medicinal plant. J. Pharmacogn. Phytochem., 2019, 8(1), 629-635.
[29]
Loi, M.; Paciolla, C.; Logrieco, A.F.; Mulè, G. Plant bioactive compounds in pre-and postharvest management for aflatoxins reduction. Front. Microbiol., 2020, 11, 243.
[http://dx.doi.org/10.3389/fmicb.2020.00243] [PMID: 32226415]
[30]
Puschett, J.B.; Agunanne, E.; Uddin, M.N. Emerging role of the bufadienolides in cardiovascular and kidney diseases. Am. J. Kidney Dis., 2010, 56(2), 359-370.
[http://dx.doi.org/10.1053/j.ajkd.2010.01.023] [PMID: 20417001]
[31]
Quazi Majaz, A.; Tatiya, A.U.; Khurshid, M.; Nazim, S.; Siraj, S. The miracle plant (Kalanchoe pinnata): A phytochemical and pharmacological review. Int. J. Res. Ayurveda Pharm., 2011, 2(5), 1478-1482.
[32]
Gaind, K.N.; Gupta, R.L. Alkanes, alkanols, triterpenes and sterols of Kalanchoe pinnata. Phytochemistry, 1972, 11(4), 1500-1502.
[http://dx.doi.org/10.1016/S0031-9422(00)90117-1]
[33]
Singh, H.; Singh, A.P.; Singh, A.P. A review on kalanchoe pinnata (Crassulaceae). Indian J Pharm Pharmacol., 2021, 8(3), 182-188.
[http://dx.doi.org/10.18231/j.ijpp.2021.031]
[34]
Muzitano, M.F.; Tinoco, L.W.; Guette, C.; Kaiser, C.R.; Rossi-Bergmann, B.; Costa, S.S. The antileishmanial activity assessment of unusual flavonoids from Kalanchoe pinnata. Phytochemistry, 2006, 67(18), 2071-2077.
[http://dx.doi.org/10.1016/j.phytochem.2006.06.027] [PMID: 16930642]
[35]
Supratman, U.; Fujita, T.; Akiyama, K.; Hayashi, H.; Murakami, A.; Sakai, H.; Koshimizu, K.; Ohigashi, H. Anti-tumor promoting activity of bufadienolides from Kalanchoe pinnata and K. daigremontiana x tubiflora. Biosci. Biotechnol. Biochem., 2001, 65(4), 947-949.
[http://dx.doi.org/10.1271/bbb.65.947] [PMID: 11388478]
[36]
Pattewar, S.V. Kalanchoe pinnata: Phytochemical and pharmacological profile. Int. J. Pharm. Sci. Res., 2012, 3(4), 993.
[37]
Gao, H.; Popescu, R.; Kopp, B.; Wang, Z. Bufadienolides and their antitumor activity. Nat. Prod. Rep., 2011, 28(5), 953-969.
[http://dx.doi.org/10.1039/c0np00032a] [PMID: 21416078]
[38]
Anza, M.; Endale, M.; Cardona, L.; Cortes, D.; Eswaramoorthy, R.; Zueco, J.; Rico, H.; Trelis, M.; Abarca, B. Antimicrobial activity,] in silico molecular docking, ADMET and DFT analysis of secondary metabolites from roots of three ethiopian medicinal plants. Adv. Appl. Bioinform. Chem., 2021, 14, 117-132.
[http://dx.doi.org/10.2147/AABC.S323657] [PMID: 34447254]
[39]
Flores-Holguín, N.; Frau, J.; Glossman-Mitnik, D. In silico pharmacokinetics, ADMET study and conceptual DFT analysis of two plant cyclopeptides isolated from rosaceae as a computational Peptidology approach. Front Chem., 2021, 9, 708364.
[http://dx.doi.org/10.3389/fchem.2021.708364] [PMID: 34458236]
[40]
Yalcin, S. Molecular docking, drug likeness, and ADMET analyses of passiflora compounds as p-glycoprotein (P-gp) inhibitor for the treatment of cancer. Curr. Pharmacol. Rep., 2020, 6(6), 429-440.
[http://dx.doi.org/10.1007/s40495-020-00241-6]
[41]
Yadav, A.; Mohite, S. Anticancer activity and In-Silico ADMET analysis of malvastrum coromandelianum. Int. J. Pharm. Sci. Res., 2020, 11(5), 71-73.
[42]
Taskin, D.; Ozdemir, M.; Yalcin, B. LC-ESI-tandem MS and in silico ADMET analysis of polyphenols from Rhus coriaria L. and Micromeria fruticosa (L.) Druce ssp. brachycalyx P. H. Davis. Future J. Pharm. Sci., 2021, 7(1), 168.
[http://dx.doi.org/10.1186/s43094-021-00317-0]
[43]
Aurora, Y.; Tarigan, I.P.N.; Suryanto, N.M.M.; Santosa, P.; Pricillia, V.; Parikesit, A.A. Identification of flavonoids of kalanchoe pinnata as candidate drugs for COVID-19 gamma-variant treatment. Mal. J. Fund. Appl. Sci., 2022, 18(6), 630-643.
[http://dx.doi.org/10.11113/mjfas.v18n6.2594]
[44]
Agarwal, H.; Shanmugam, V.K. Anti-inflammatory activity screening of Kalanchoe pinnata methanol extract and its validation using a computational simulation approach. Inform. Med. Unlocked., 2019, 14, 6-14.
[http://dx.doi.org/10.1016/j.imu.2019.01.002]
[45]
Rajesh, A.; Shamsudin, M. In silico molecular docking studies on phytocompounds from the plant Kalanchoe pinnata targeting the pi-class glutathione-s-transferase of Wuchereria bancrofti. Int. J. Zool. Appl. Biosci., 2017, 2(5), 258-265.
[46]
Al-Snafi, A.E. The Chemical constituents and pharmacological effects of Bryophyllum calycinum. A review. J. Pharm. Sci. Res., 2013, 4(12), 171-176.
[47]
Adesanwo, J.K.; Raji, Y.; Olaleye, S.B.; Onasanwo, S.A.; Fadare, O.O.; Ige, O.O.; Odusanya, O.O. Antiulcer activity of methanolic extract of Bryophyllum pinnatum in rats. J. Biol. Sci., 2007, 7(2), 409-412.
[http://dx.doi.org/10.3923/jbs.2007.409.412]
[48]
Yadav, N.P.; Dixit, V.K. Hepatoprotective activity of leaves of Kalanchoe pinnata Pers. J. Ethnopharmacol., 2003, 86(2-3), 197-202.
[http://dx.doi.org/10.1016/S0378-8741(03)00074-6] [PMID: 12738087]
[49]
Sarker, S.D.; Latif, Z.; Gray, A.I. Natural product isolation: an overview; Natural Products Isolation, 2005, pp. 1-25.
[http://dx.doi.org/10.1385/1592599559]
[50]
Joseph, B.; Sridhar, S.; Sankarganesh, J. Justinraj; Edwin, B.T. Rare medicinal plant-Kalanchoe pinnata. Res. J. Microbiol., 2011, 6(4), 322-327.
[http://dx.doi.org/10.3923/jm.2011.322.327]
[51]
Ebere, O.D.; Uchenna, N.F. A novel antimicrobial phenanthrene alkaloid from Bryopyllum pinnatum. E-J. Chem., 2011, 8(3), 1456-1461.
[http://dx.doi.org/10.1155/2011/972359]
[52]
Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev., 2019, 18(1), 241-272.
[http://dx.doi.org/10.1007/s11101-018-9591-z]
[53]
Zakharchenko, N.S.; Belous, A.S.; Biryukova, Y.K.; Medvedeva, O.A.; Belyakova, A.V.; Masgutova, G.A.; Trubnikova, E.V.; Buryanov, Y.I.; Leb-edeva, A.A. Immunomodulating and revascularizing activity of kalanchoe pinnata synergize with fungicide activity of biogenic peptide cecropin P1. J. Immunol. Res., 2017, 2017, 3940743.
[http://dx.doi.org/10.1155/2017/3940743]
[54]
Rajsekhar, P.; Bharani, R.; Ramachandran, M.; Angel, K.; Rajsekhar, S. The “wonder plant” Kalanchoe pinnata (linn.) pers.: A review. J. Appl. Pharm. Sci., 2016, 6(3), 151-158.
[http://dx.doi.org/10.7324/JAPS.2016.60326]
[55]
Mariyammal, V.; Sathiageetha, V.; Amalraj, S.; Gurav, S.S.; Amiri-Ardekani, E.; Jeeva, S.; Ayyanar, M. Chemical profiling of Aristolochia tagala Cham. leaf extracts by GC-MS analysis and evaluation of its antibacterial activity. J. Indian Chem. Soc., 2023, 100(1), 100807.
[http://dx.doi.org/10.1016/j.jics.2022.100807]
[56]
Caprari, C.; Fantasma, F.; Monaco, P.; Divino, F.; Iorizzi, M.; Ranalli, G.; Fasano, F.; Saviano, G. Chemical profiles, in vitro antioxidant and antifungal activity of four different Lavandula angustifolia L. EOs. Molecules, 2023, 28(1), 392.
[http://dx.doi.org/10.3390/molecules28010392] [PMID: 36615586]
[57]
Sharma, V.; Kaushik, S.; Pandit, P.; Dhull, D.; Yadav, J.P.; Kaushik, S. Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Appl. Microbiol. Biotechnol., 2019, 103(2), 881-891.
[http://dx.doi.org/10.1007/s00253-018-9488-1] [PMID: 30413849]
[58]
Sharma, Y.; Kaushik, S.; Boora, S.; Kumar, P.; Kumar, A.; Yadav, J.P.; Kaushik, S. Antiviral potential of medicinal plants for the COVID-19. Antiinfect. Agents, 2022, 20(4), 54-63.
[59]
Sharma, Y.; Kawatra, A.; Sharma, V.; Dhull, D.; Kaushik, S.; Yadav, J.P.; Kaushik, S. In-vitro and in-silico evaluation of the anti-chikungunya potential of Psidium guajava leaf extract and their synthesized silver nanoparticles. Virusdisease, 2021, 32(2), 260-265.
[http://dx.doi.org/10.1007/s13337-021-00685-4] [PMID: 33869673]
[60]
Kaushik, S.; Dar, L.; Kaushik, S.; Yadav, J.P. Anti-dengue activity of super critical extract and isolated oleanolic acid of Leucas cephalotes using in vitro and in silico approach. BMC Complement. Med., 2021, 21(1), 227.
[http://dx.doi.org/10.1186/s12906-021-03402-2] [PMID: 34496833]
[61]
Kaushik, S.; Dar, L.; Kaushik, S.; Yadav, J.P. Identification and characterization of new potent inhibitors of dengue virus NS5 proteinase from Andrographis paniculata supercritical extracts on in animal cell culture and in silico approaches. J. Ethnopharmacol., 2021, 267, 113541.
[http://dx.doi.org/10.1016/j.jep.2020.113541] [PMID: 33152438]
[62]
Kaushik, S.; Dar, L.; Kaushik, S.; Kumar, R.; Kumar, D.; Parkash, Y.J. in vitro and in silico Anti-dengue activity of Supercritical extract of medicinal plants against Dengue serotype-2. Res J Pharm Technol., 2021, 14(11), 5895-5902.
[http://dx.doi.org/10.52711/0974-360X.2021.01025]
[63]
Kaushik, S.; Jangra, G.; Kundu, V.; Yadav, J.P.; Kaushik, S. Anti-viral activity of Zingiber officinale (Ginger) ingredients against the Chikungunya virus. Virusdisease, 2020, 31(3), 270-276.
[http://dx.doi.org/10.1007/s13337-020-00584-0] [PMID: 32420412]
[64]
Kaushik, S.; Kaushik, S.; Kumar, R.; Dar, L.; Yadav, J.P. In-vitro and in silico activity of Cyamopsis tetragonoloba (Gaur) L. supercritical extract against the dengue-2 virus. Virusdisease, 2020, 31(4), 470-478.
[http://dx.doi.org/10.1007/s13337-020-00624-9] [PMID: 32904730]
[65]
Kaushik, S.; Kaushik, S.; Sharma, V.; Yadav, J. Antiviral and therapeutic uses of medicinal plants and their derivatives against dengue viruses. Pharmacogn. Rev., 2018, 12(24)
[66]
Kaushik, S.; Sharma, V.; Chhikara, S.; Yadav, J.P.; Kaushik, S. Anti-chikungunya activity of green synthesized silver nanoparticles using Carica papaya leaves in animal cell culture model. Asian J. Pharm. Clin. Res., 2019, 12(6), 170-174.
[67]
Lath, A.; Santal, A.R.; Kaur, N.; Kumari, P.; Singh, N.P. Anti-cancer peptides: Their current trends in the development of peptide-based therapy and anti-tumor drugs. Biotechnol. Genet. Eng. Rev., 2022, 39(1), 45-84.
[PMID: 35699384]
[68]
Wink, M. Medicinal plants: A source of anti-parasitic secondary metabolites. Molecules, 2012, 17(11), 12771-12791.
[http://dx.doi.org/10.3390/molecules171112771] [PMID: 23114614]